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1 Overview 

We consider the problem of communication in which a source wish to transmit information to a receiver. 
The transmission is conducted through a channel, which may generate errors in the information de­
pending on the options. In this model, we will introduce Shannon’s coding theorem, which shows that 
depending on the properties of the source and the channel, the probability of the receiver’s restoring the 
original data varies with a threshold. 

2 Shannon’s theory of information 

In this section we will discuss the main result from Shannon’s paper which was introduced in 1948 and 
founded the theory of information. 

There are three entities in Shannon’s model: 

•	 Source : The party which produces information by a probabilistic process. 

•	 Channel : The means of passing information from source to receiver. It may generate errors while 
transporting the information. 

•	 Receiver : The party which receives the information and tries to figure out information at source’s 
end. 

There are two options for channel, “Noisy” and “Noiseless” 

•	 Noisy channel : A channel that flips some bits of information sent across them. The bits that flips 
are determined by a probabilistic process. 

•	 Noiseless channel : A channel that perfectly transmits the information from source to receiver 
without any error. 

The source will generate and encode its message, and send it to receiver through the channel. When 
the message arrives, the receiver will decode the message. We want to find the encoding-decoding scheme 
which makes it possible for a receiver to restore the exact massage which a source sent. Shannon’s 
theorem states the conditions with which a restoration can be conducted with high probability. 

2.1 Shannon’s coding theorem 

Theorem 1 (Shannon’s coding theorem) 
There exist positive real values capacity C and rate R satisfying the followings. If R < C then 

information transmission is feasible(coding theorem.) If R > C then information transmission is not 
feasible(Converse of coding theorem.) 

Capacity C and rate R are the values associated with a source and a channel respectively. The 
general way to compute this two values are a bit complicated. To get a better understanding, we will 
start with simple examples of Shannon’s model one in noiseless model and one in noisy model. 
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2.2 preliminaries 

Before studying the examples, we study the property of the binary entropy function and Chernoff bounds 
which make crucial roles in the analyses in later chapters. 

Definition 2 For p ∃ [0, 1], the binary entropy function is defined as follows. 

1 1 
H(p) = plog2 + (1 − p)log2 . 

p 1 − p 

H(p) is a concave function and has a maximum values 1 where p=1/2. The following property of 
H(P) is used in later chapters. 

• Let Bn(0, r) be a ball of radius r(in Hamming distance) and center 0 in {0, 1}n . V (r, n) = 
� n 

≤ 2H(r/n)·nV ol(Bn(0, r)) = r
i=0 i 

. Hence V ol(pn, n) ≤ 2H(p)·n . 

Lemma 3 (Chernoff Bounds) 
If �1, �2, · · · , �n are independent random variables in [0,1] with EXP (�i) = p, then 

n 
·nP r[| i=1 �i 

− p| > �] � 2−�2 

. 
n 

2.3 An example of noiseless model 

Source produces a sequence of bits such that each bits are 0 with probability 1-p and 1 with probability 
p, where p � 1/2. Source produces one bit per unit of time. For it is a noiseless channel, the channel 
transmits exactly same bits to a receiver as the bits given from the source. The channel is allowed to 
transmit C bits per unit of time.. In this case, the rate of source is given as the entropy function H(p) 
and the capacity value is the number of bits transmitted through channel per unit of time. When n is 
the amount of time we used the channel, the Shannon’s coding theorem is expressed as follows. 

Theorem 4 (Shannon’s noiseless coding theorem) 
If C > H(p), then there exist encoding function En and decoding function Dn such that Pr[Receiver 

figures out what the source produced]� 1 − exp(−n). 
Also if C > H(p), then there exist encoding function En and decoding function Dn such that 

Pr[Receiver figures out what the source produced]� exp(−n). 

2.4 An example of noisy model 

The source produces a sequence of bits such that each bits are 0 with probability 1/2 and 1 with 
probability 1/2. Source produceds R bits per unit of time, where R < 1. For it is a noisy channel, the 
channel filps each bit with a probabilistic process. In this example, channel flips each bit with probability 
p. Also the channel transmits one bit per unit of time. In this case, the rate R is the number of bits 
produced in the source per unit of time and the capacity C is given as 1-H(p). Then shannon’s coding 
theorem is expressed as follows. 

Theorem 5 (Shannon’s noisy coding theorem) 
If R < 1−H(p) then there exist encoding function En and decoding function Dn such that Pr[Receiver 

figures out what the source produced]� 1 − exp(−n). 
Also If R > 1 − H(p) then there exist encoding function En and decoding function Dn such that 

Pr[Receiver figures out what the source produced]� exp(−n). 
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We prove the first part of theorem using probabilistic method and give an idea of the proof for the 
second part of theorem. 
Proof (First part) 

Let k be the number of bits produced by source, then k = R ·n. For R < 1 −H(p), there exists � > 0 
such that R < 1 − H(p + �). For this �, let r = n(p + �) = n · p� . Now we can restate the theorem as 
follows. 

If R = k/n < 1 − H(p), then there exists functions E : {0, 1}k ≥ {0, 1}n, D : {0, 1}n ≥ {0, 1}k 

such that P r��BSCp ,m�Uk [m ∈= D(E(m) + �)] � exp(−n), where Uk is uniform distribution on k bit 
strings and BSCp,n is distribution on n bit strings with each bits to be 0 with probability 1-p and 1 
with probability p. 

Pick the encoding function E : {0, 1}k ≥ {0, 1}n at random, and the decoding function D : {0, 1}n ≥ 
{0, 1}k works as follows. Given a string y ∃ {0, 1}n, we find the m ∃ {0, 1}k such that �(y, E(m)) is 
minimized. This m is the value of D(y). Fix m ∃ {0, 1}k and fix E(m) also. For E is randomly chosen, 

� = m. Let y be the value that the receiver acquires. In order for D(y) ∈E(m�) is still random when m ∈ = m 
at least one of the following two events must occur: 

• There exists some m� ∈= m such that E(m�) ∃ B(y, r). 

• y /∃ B(E(m), r) 

If neither of above events happen, then m is the unique message such that E(m) is within a distance 
of r from y and so D(y) = m. 

We prove that the events above happen with low probability. For the first event to happen, the error 
� = y − E(m) has more than n(p + �) of 1 bits. By Chernoff bounds we will have 

P r[y / /2)n .∃ B(E(m), r)] � 2−(�2

For the second event happen to happen, fix y and an m� ∈= m and consider the event that E(m�) ∃ 
B(y, r). For E(m�) is random, the probability of this event is exactly V ol(B(y, r))/2n . Using 

� )nV ol(B(y, p n)) ≤ 2H(p � , 

we have 

� )n−nP r[E(m ) ∃ B(y, r)] ≤ 2H(p � . 

)n−nUsing union bound, we get P r[�m� ∃ {0, 1}k s.t. E(m�) ∃ B(y, r)] � 2k+H(p � 

For R = k/n < 1 − H(p�), 2k+H(p � )n−n = exp(−n). Therefore the probability that second event 
happens is also bounded by exp(−n). 

Hence the probability of at least one of above two events happens is bounded by exp(−n) where m 
and E(m) is fixed. Therefore for the random E and associated D, the probability is still bounded. Using 
probabilistic method, we see that there exists a encoding E and associated decoding D such that the 
probability that any of two events happen is still bounded by exp(−n). 

Here we give the brief sratch of the proof for second part of theorem. Decoding function partitions 
universe to 2k regions. By Chernoff bounds, Pr[number of 1 bits in error <pn] is low. Hence when 
E(m) was transmited from source, the corrupted value y that arrives at receiver will have spread-out 
distribution around E(m). It means the region that covers most of possible y value has much larger size 
than one of the 2k region that contains E(m). It will make the decoding inaccurate. 
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