
6.890: Algorithmic Lower Bounds Prof. Erik Demaine  
Fall 2014 

Problem Set 1 
Due: Monday, September 22nd, 2014 

Problem 1. For each of the following problems, either show that the problem is in P by giving a 
polynomial-time algorithm (e.g., by reducing to shortest paths, network flow, matching, or minimum 
spanning tree); or show that the problem is NP-hard by reducing from 3-Partition, 3-Dimensional 
Matching, or Numerical 3-Dimensional Matching. 

(a) Given a multiset of non-negative integers A = {a1, . . . , a2n} that sum to tn, find a partition 
of A into n groups S1, . . . , Sn of size 2 such that each group sums to t. 

Solution: Create a graph with one vertex for each input number. For each pair of numbers 
ai, aj check whether ai + aj = t. If so, add an edge to the graph. Otherwise, there should 
be no edge between ai and aj . Hence, each edge represents a possible group in the partition. 
Next, run a matching algorithm. If the result is a perfect matching, we can construct the 
corresponding partition by creating one group for each edge in the matching. Because we 
start with a matching, each ai can belong to at most one group in the corresponding partition. 
And because the matching that we start with is perfect, we are guaranteed to have n groups 
of size 2. 
The converse is also true. Suppose that we have a partition satisfying the problem constraints. 
For each group {ai, aj } in the partition, we are guaranteed that ai + aj = t, so the corre­
sponding edge (ai, aj ) must exist. Hence, we can add it to the matching. Because we started 
with a partition, no two edges in the matching share an endpoint. And because the number 
of groups is n while the number of vertices is 2n, we know that the matching constructed in 
this fashion must be perfect. 

Alternative Solution: Assume without loss of generality that the numbers a1, . . . , a2n are 
in sorted order. Suppose, for the sake of contradiction, that there is at least one solution to 
the problem, but that no solution contans the group {a1, a2n}. Pick an arbitrary solution, 
and let ai, aj be such that {a1, ai} and {aj , a2n} are sets in the solution we picked. Then 
ai = t − a1, and aj = t − a2n. Because the numbers are in sorted order, we know that 
a1 ≤ ai, aj ≤ a2n. Hence, we have a1 ≤ t − a2n, and t − a1 ≤ a2n. A little algebra shows that 
this is equivalent to saying that t ≤ a1 + a2n ≤ t, and therefore a1 + a2n = t. This means 
that ai = a2n, and aj = a1. Therefore, we can modify our solution to remove the groups 
{a1, ai}, {aj , a2n}, and replace them with groups {a1, a2n} and {ai, aj } without affecting the 
correctness. But this contradicts our assumption that there is no solution that contains the 
group {a1, a2n}. Therefore, we know that if there is any solution at all, there must be some 
solution containing {a1, a2n}. Hence, we may safely pair those two elements, and recurse on 
the remaining elements, so that ai is always paired with a2n+1−i. If this yields groups that 
sum to t, we have a solution. Otherwise, we know that there can be no solution. 

(b) Given a multiset of non-negative integers A = {a1, . . . , a2n} that sum to tn, find a partition 
of A into n groups S1, . . . , Sn of any size such that each group sums to t. 
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Solution: Reduce from standard 3-Partition (the variant where any number of numbers is 
allowed to belong to a single group). Let a1, . . . , a3n be the groups of input numbers. Define 
a new sequence of numbers b1, . . . , b4n as follows:  

ai if i ≤ 3n 
bi =

t otherwise 

Suppose that we are given a partition of these numbers into 2n groups that sum to t. Clearly, 
b3n+1, . . . , b4n = t, so any group containing one of those n numbers cannot contain any other 
numbers. Hence, the remaining n groups must contain all 3n numbers from the original 3­
Partition instance. Furthermore, each group must sum to t. Hence, the assignment of those 
numbers to the remaining n groups tells us how to solve the original 3-Partition problem. 

Alternative Solution: For the variant originally posted, where the input numbers form a 
set (and thus do not contain any duplicates), we may show that the problem is in P as follows. 
Because we have 2n numbers divided among n groups, the average number of numbers per 
group is equal to 2. An empty group sums to 0, while t must be strictly greater than 0. There 
may be a single group of size 1, with one number equal to t, but because the input numbers 
form a set, there cannot be any other groups with one element that sum to t. 
Hence, we may solve the problem as follows. If A does not contain t, then the minimum size 
of each group is 2, and therefore each group must have size 2, reducing us to the situation 
from part (a). Otherwise, there must be one group with one element (containing t), one group 
with three elements (since the average number of elements per group is 2, and only one group 
contains fewer than 2 elements), and n − 2 groups with 2 elements. For each triple T ⊂ S 
with size |T | = 3, try forming a group of three with T , testing whether the sum of T is t, and 
then solving the rest of the problem (A\(T ∪ {t})) using the algorithm from part (a). If we 
succeed with any of these calls, then we have a solution to the overall problem. And because 
we have shown that any solution where t ∈ A must have this form (one group of 1, one group 
of 3, and n − 2 groups of 2), we know that if there is no solution of this form, then there is 
no solution overall. 

(c) Given a multiset of non-negative integers A = {a1, . . . , a2n} and a sequence of target numbers 
(t1, . . . , tn), find a partition of A into n groups S1, . . . , Sn of size 2 such that for each i ∈ 
{1, . . . , n}, the sum of the elements in Si is ti. 

Solution: Reduction from Numerical 3-Dimensional Matching. Given A = {a1, . . . , an}, 
B = {b1, . . . , bn}, and C = {c1, . . . , cn}, with target sum t, we define the new numbers as 
follows: 

d2(i−1)+1 = 2ai + 0 
d2(i−1)+2 = 2bi + 1 

And the target values are: 

qi = 2(t − ci) + 1 

Suppose that we have a sequence of groups S1, . . . , Sn satisfying the desired constraints. 
By examining the targets modulo 2, we can see that each group must contain exactly one 
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number that is equivalent to 1 mod 2. By construction, only the numbers d2(i−1)+2 ≡ 1 mod 2. 
Therefore, each group must contain exactly one number d2(i−1)+2 = 2bi + 1, and the other 
number in each group must be some d2(j−1)+1 = 2aj + 0. So for the kth group, we must have: 

d2(i−1)+2 + d2(j−1)+1 = qk 

2bi + 1 + 2aj + 0 = 2(t − ck) + 1 
aj + bi + ck = t 

Which is precisely what we wanted. 
Conversely, suppose that we have a solution to the original Numerical 3-Dimensional Match­
ing instance. Then for each group {ai, bj , ck}, we set Sk = {d2(i−1)+1, d2(j−1)+2}. We are 
guaranteed that ai + bj + ck = t, so we have: n 

Sk = 2ai + 0 + 2bj + 1 = 2(ai + bj ) + 1 = 2(t − ck) + 1 = qk 

Problem 2. Give a direct reduction from 3-Partition to Partition. (Hint: First reduce directly 
from 3-Partition to Subset-Sum, then modify the proof to work with Partition.) 

Solution: Let a1, . . . , a3n be the multiset of numbers to partition, and let T be the target sum for 
each group. For each number ai and each possible group k ∈ {0, . . . , n − 1}, we add the following 
number to our 2-Partition instance: 

xi,k = 1 · (Tn)n+i + ai · (Tn)k 

The target number we would aim for in a Subset-Sum problem would be: 
3n n−1n n 

T ' = 1 · (Tn)n+i + T · (Tn)k 

i=1 k=0 

Consider the values mod(Tn). Clearly, T mod (Tn) =  0, xi,k mod (Tn) 0.T , and for k = = So 
in order to get our target sum, we need to use a subset of the numbers x1,0, . . . , xn,0 that sums to 
T mod (Tn). By construction, this is equivalent to finding a subset of the numbers a1, . . . , a3n that 
sums to T , and then using the corresponding numbers xi,0 in our Subset-Sum problem. A similar 
argument shows that, for any k ∈ {0, . . . , n − 1}, we must pick numbers xi1,k, . . . , xiq ,k such that 
ai1 + . . . + aiq = T . Furthermore, if we examine the sum mod(Tn)n+i+1 for each i ∈ {1, . . . , 3n}, 
it is clear to see that for each number i ∈ {1, . . . , 3n}, we can pick only one xi,k to belong to our 
subset sum. Hence, if we can find a subset of numbers that sums to the target, we know that there 
must exist a partition of a1, . . . , a3n into n groups, each of which sums to T . 

Next, we wish to convert our reduction to Subset-Sum into a reduction to Partition. The sum 
of all numbers in our problem is 

n n−1nn 
Q = xi,k 

i=1 k=0 
n n−1  nn 

= 1 · (Tn)n+i + ai · (Tn)k
i=1 k=0

n n−1n n 
= n · (Tn)n+i + (Tn) · (Tn)k 

i=1 k=0 
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To ensure that we find a subset that sums to T , we add one extra number Q − 2T . (Note that 
because Q is very large in comparison to T , this new number will not be negative.) With this extra 
number, the new total becomes 2Q − 2T , so a solution to the Partition problem must make both 
halves sum to Q − T . One of those halves must contain the extra number Q − 2T , so the set of 
all other numbers in that half must sum to (Q − T ) − (Q − 2T ) = T , which is precisely what we 
wanted. 

Problem 3. Suppose you are given a weighted connected undirected graph G = (V, E, w) 
satisfying the triangle inequality—that is, for any three vertices x, y, z ∈ V connected in a triangle 
(x, y), (y, z), (x, z) ∈ E, we have w(x, z) ≤ w(x, y) + w(y, z). Your goal is to assign each node one 
of k colors. Define the total weight of a color be the sum of all of the distances between pairs of 
nodes of that color; where distance is is the weight of the minimum weight path between the nodes 
Show that it is NP-complete to find a color assignment in which the total weight of each color is 
less than t. 

Solution: The problem is obviously in NP with a possible certificate being the vertex assignment. 
We will prove this problem is NP-Complete by reducing from 3-Partition. For every number pi in 
our 3-Partition instance we will assign a vertex vi. We now construct a complete graph over these 
vertices with the weight of the edge between vi and vj equal to (pi + pj )/2. This weighting obeys 
the triangle inequality. If we pick some third vertex vl then the weight from vi to vj to vl is equal to 
(pi + pl)/2+(pl +pj )/2 = (pi + pj )/2+ pl ≥ (pi + pj )/2. We let the number of colors be equal to n/3e nwhere n is the number of elements in the 3-Partition. Set t = 3 Notice, if we assign each n i=1 pi. 
color to exactly three verticies, vi, vj , vk, the total weight of that color will be equal to pi + pj + pk. 
Now, if any color has fewer than 3 vertices, at least one color must have more than three vertices 
by the Pigeon Hole Principal. If this is the case, the total weight is equal to 1.5 times the sum of 
four elements from our 3-Partition. Since we are guaranteed these are between t/4 and t/2, any 
coloring of this sort cannot be a solution. Thus if there is a solution each color must have three 
vertices which corresponds to a solution of our 3-Partition, and there is only a solution if there is 
a solution to the corresponding 3-Partition problem. 

Problem 4. For each of the following problems, either show that it can be solved in polynomial 
time, or prove that the problem is NP-hard. 

√ √ 
(a) You are trying to solve a	 n × n (unsigned) square edge-matching puzzle, which originally 

had n pieces. Unfortunately, you’ve managed to misplace 2/3 of the puzzle pieces, leaving you 
with only n/3 pieces. A configuration of such a “partial” puzzle is a mapping of the remaining √ √ 
pieces onto the original n × n lattice; a configuration is valid if any two remaining pieces 
mapped to adjacent places match at their touching edges. How hard is it to solve (find a 
valid configuration of) the puzzle now? 

Solution: Our goal is to fit n/3 pieces of the edge-matching puzzle onto a board of size √ √ 
n × n such that there are no edge mismatches. By partitioning the potential positions 

into two sets in a checkerboard fashion and selecting the larger half, we can construct a set 
of at least n/2 cells such that no two cells are adjacent. In those n/2 cells, we can place any 
pieces we desire — in particular, we can place the n/3 pieces that we do have. Hence, it is 
always possible to solve the puzzle. 
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(b) Several weeks later, while digging through the attic, you unearth another 1/3 of the puzzle √ √ 
pieces, bringing you up to a total of 2n/3 pieces of the original n × n puzzle. How hard 
is it to solve the puzzle now? 

Solution: Reduction from 3-Partition, with structure borrowed from the original edge-e 
matching reduction. Let A = {a1, . . . , a3n} be the 3-Partition instance, with t = ( A)/n 
the target sum for each group. Without loss of generality, assume that t ≥ n. Set k = 2(t+2), 
and let m = k2 be the size of the original puzzle. We start by filling the puzzle with pieces, 
such that each color on the boundary is unique, and each color on the interior is used only by 
two pieces. We then cut out a box of width t and height n from the upper left corner, offset 
by 1 from the top and left. Call this the “frame.” On the sides of this box, we use the color 
red; on the top of the box, we use the color green. We then complete the reduction much like 
the original edge-matching reduction: for each ai, we create a bar of tiles of width ai, with 
red edge on either end, and green edges on the top and bottom. The internal edges will have 
color ci. 
To reduce the number of pieces, we examine the set of pieces on the strict interior of the 
frame. Those pieces can be partitioned into two sets that form a checkerboard (so that no 
pair of pieces from the same set are adjacent). Furthermore, one of those sets must contain 
more than half of the pieces on the strict interior of frame. We then remove a subset of the 
larger half of size m/3. 
First, we wish to verify that the larger half has at least m/3 puzzle pieces to remove. The 
frame contains k2 − tn pieces in total; the boundary of the frame contains 4(k − 1) pieces on 
the boundary of the square, and another t + n − 1 pieces on the boundary of the inset box. 
Therefore, the set of pieces we may remove has size at least 

(k2 − tn − 4(k − 1) − (t + n − 1))/2 
= (4(t + 2)2 − tn − (8t + 12) − (t + n − 1))/2 
≥ (4t2 + 16t + 16 − t2 − 8t − 12 − t − t + 1)/2 
= (3t2 + 6t + 5)/2. 

By construction, m = k2 = 4t2 + 16t + 16, so we are guaranteed to have enough pieces as 
long as: 

m/3 ≤ (3t2 + 6t + 5)/2 
(4t2 + 16t + 16)/3 ≤ (3t2 + 6t + 5)/2 

8t2 + 32t + 32 ≤ 9t2 + 18t + 15 
214t + 17 ≤ t

So as long as t ≥ 16, we can remove the correct number of pieces.  
Next, we wish to show that this puzzle can be solved if and only if there is a solution to the  
3-Partition instance. By construction, if we have a 3-Partition solution, we can construct the  
corresponding puzzle solution by putting the frame together the way we constructed it, and  
then slotting each width-ai bar into the row corresponding to the section of the partition.  
This works for the same reason as the original edge-matching reduction.  
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Suppose instead that we have a solution to the puzzle. Let q = m/3 be the number of 
pieces we removed. Consider the number of unique colors. Because each piece we removed 
is adjacent on all four sides to pieces that were not removed, we know that the number of 
unique colors in the remaining puzzle pieces is 4k + 4q: 4k from the four sides of the puzzle, 
and 4q from the four sides of the q pieces we removed. And because there are only q pieces 
missing from our puzzle, we know that there are at most 4k + 4q edges that can be adjacent 
to empty squares. Hence, for each color in our edge-matching puzzle, if an edge is adjacent 
to an empty square, then it must be one of the 4k +4q unique colors. And if an edge doesn’t 
have a unique color (that is, if it can be matched), it must either be on the boundary, or 
adjacent to another puzzle piece. 

In particular, consider the set of puzzle pieces on the boundary of the frame. Each color 
between two pieces in the frame boundary occurs exactly twice, once for each piece, and is 
therefore matchable. Hence, each adjacent pair of pieces in the frame boundary must be 
matched together in any puzzle solution. So, up to rigid transformations, there is only one 
configuration for these boundary pieces: each piece must be in the same place as it was during 
the construction. And because the frame spans a width of k and a height of k, there is only 
one possible position for its boundary. 

Consider the set of edges on the boundary of the frame that were colored red or green. There 
are multiple pieces with red or green sides; therefore, those pieces must be matched with 
other red or green sides. The only pieces that have red or green edges and do not belong 
to the frame boundary are the puzzle pieces used to construct each ai. Therefore, at least 
one such piece must be placed inside the box we cut out. Consider the set of puzzle pieces 
used to construct the ais. Each piece has four sides: two green sides, and two sides that are 
colored either red or ci. None of these colors is unique; therefore, none of the ai pieces can be 
adjacent to an empty square. Hence, by induction, the entire t × n box must be filled with 
pieces representing the values ai. An argument similar to the original edge-matching proof 
shows that we must therefore have a valid 3-Partition. 
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