Bluespec Tutorial: Rule
Scheduling and Synthesis

Michael Pellauer
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc,
January 2005

March 4, 2005 BST-1

Improving performance via
scheduling

4 111

Latency and bandwidth can be improved by
performing more operations in each clock cycle
= That is, by firing more rules per cycle

#® Bluespec schedules all applicable rules in a cycle
to execute, except when there are resource
conflicts

Therefore: Improving performance is often
about resolving conflicts found by the scheduler

March 4, 2005 BST-2

Viewing the schedule

be used to dump the schedule
#® Three groups of information:

#The command-line flag -show-schedule can

= method scheduling information

= rule scheduling information

= the static execution order of rules and methods

March 4, 2005

BST-3

Method scheduling info

#For each method, there is an entry
like this:

__~ name of the method
Method: imem_get ‘/
Ready signal: 1

——expression for the ready signal
(1 for always ready)

Conflict-free: dmem get, dmem put, start, done

Sequenced before: imem_put

Conflicts: imem_get

March 4, 2005

conflict relationships
with other methods

BST-4

Types of conflicts

& Conflict-free
= Any methods which can execute in the same clock
cycle as the current method, in any execution order

4 Sequenced before
= Any methods which can execute in the same clock
cycle, but only if they sequence before the current
method in the execution order

@ Sequenced after
= Any methods which can execute in the same clock
cycle, but only if they sequence after the current
method

@ Conflicts
= Any methods which cannot execute in the same clock
cycle as this method

March 4, 2005 BST-5

Rule scheduling info

-

#For each rule, there is an entry like
this:

- hame of the rule

/
|/
/

« - expression for the rule’s condition
Rule: fetch N
Predicate: the bf.i notFull && the started.get

Blocking rulgs: imem_put, start

RN
N
AN

"\ more urgent rules which can
block the execution of this rule
(more on urgency later)

March 4, 2005 BST-6

Static execution order

#\\When multiple rules execute in a single
clock cycle, they must appear to
execute in sequence

This execution sequence is fixed at
compile-time. All rule conditions are
evaluated in this order during every
clock cycle

The final part of the schedule output is
this order

March 4, 2005 BST-7

Urgency

#The compiler performs aggressive
analysis of rule boolean conditions and
Is therefore aware of mutual exclusion
(i.e., when it is impossible for two rules
to be enabled simultaneously)
= Thus, typically the compiler does not often

need to choose between competing rules
= The compiler produces informational

messages about scheduling choices only
where necessary

March 4, 2005 BST-8

Viewing conflict information

@ The -show-schedule flag will inform you that
a rule is blocked by a conflicting rule
= The output won’t show you why the rules conflict

4-The output will show you that one rule was
sequenced before another rule

= The output won’t tell you whether the other order
was not possible due to a conflict

@ For conflict information,
use the -show-rule-rel flag

= See User Guide section 8.2.2

March 4, 2005 BST-9

Scheduling conflicting rules

 —

#When two rules conflict on a shared
resource, they cannot both execute in
the same clock

#The compiler produces logic that
ensures that, when both rules are
enabled, only one will fire

#Which one?
= The compiler chooses
(and informs you, during compilation)
» The “descending_urgency” attribute allows
the designer to control the choice

March 4, 2005 BST-10

Demo Example 2:
Concurrent Updates

#:Process 0 increments register x;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

(o3 (136 ()

rule procO (condO); || rule procl (condl); || rule proc2 (cond2);
X <= x + 1; y <=y +1; y <=y -1;
endrule X <= X — 1; endrule
endrule
(* descending_urgency = “proc2, procl, proc0” *)

show what happens under different urgency annotations

March 4, 2005

BST-11

o

Compile
Examplez.bsv)

Examplez_bsv)
#Run in vcs

lab3 handout)

Example2.bsv Demo

#®Examine WILL_FIRE
#® -keep-Tires (Examine CAN_FIRE)
#® -show-schedule
#® -show-rule-rel

(See manual)
march 4 4#Ghanaing the predicates to True?

(bsc

@Generate Verilog (bsc -verilog -g mkExample2

(See

BST-12

Conditionals and rule-spliting

#|n Rule Semantics this rule:

rule r1 (pl);

endrule

if (q1) f.enq(x);
else g-enq(y);

I\
\. < 9
2 W\
L\ ‘\"c\>\\<\>‘“‘ o
\6‘5

#1s equivalent to the following two rules:

rule rla (pl1 && ql);

I OF s
endrule xe 07 e?
Whet ¥ s
PRI\ '\0(\
O 0((\9 (\d\" \
rule rib (pl && ! ql); K»§€Na9d&coa&Neﬂ
g-enq(y); O et
endrule 0
March 4, 2005 BST-13
Demo rule splitting:
Example 3
A%TAE* descending_urgency = "'rl, r2
// Moving packets from input ‘
rule ri; _ IR
Tin x = 1l1.First(Q); 20 I
if (dest(x)== 1) ol.enq(xX); AN
else o02.enq(X); ‘ L,
i1.deq(); T
if (interesting(x)) ¢ <= c 20
endrule AN
// Moving packets from input Cmmé ;i
rule r2; certain packets
Tin x = 12_first(); X
-)
if (dest(x)== 1) ol.enq(x); o

else 02.enq(x);
i2.deqQ:
if (interesting(x)) c <= ¢

endrule
March 4, 2005

O
s e*{t«(;?&e foe©
R ot Tu\e
WO

00
NS
\N BST-14

Example3.bsv Demo

#Compiling
#Examining FIFO signals, enables

®Examining conservative conditions
= What are the predicates for R1, R2?
#-aggressive-conditions

= What are the predicates now?

#-expand-if
= Why can certain generated rules never
fire?

March 4, 2005

BST-15

Summary of
performance tuning

-4 —_—

@If the schedule of rules is not as you expected or desire,
we have seen several ways to adjust the schedule for
improved performance:

= Remove rule conflicts by splitting rules
= Change rule urgency

@Sometimes, an urgency warning or a conflict can be due
to a mistake or oversight by the designer
= A rule may accidentally include an action which shouldn’t
be there
= A rule may accidentally write to the wrong state element

= A rule predicate might be missing an expression which

would make the rule mutually exclusive with a conflicting
rule

March 4, 2005 BST-16

Rule attributes

#We have already seen the
descending_urgency attribute on rules

#®There are two other useful attributes which
can be applied to rules:

» Tire_when_enabled
= NO_implicit conditions

#®These attributes are assertions about the rule
which bsc verifies

Does not change generated RTL

March 4, 2005 BST-17

fire when enabled

-

@ Asserts that the rule will always execute when
its condition is applicable
= i.e., there are no (more urgent) conflicting rules

@ Can be used to guarantee that a rule will
handle some condition, by guaranteeing that
the rule fires when the condition arises

#Examples:
= To handle an unbuffered input on the interface

¢ particularly in a time-based or synchronous module and
particularly when the interface is "always_enabled*

= To handle transient situations e.g., interrupts

March 4, 2005 BST-18

no _implicit conditions

®Asserts that rule actions do not
introduce any implicit conditions

= That the rule’s condition is exactly as the
user has written, and nothing more

#®Can be combined with the attribute
fire_when_enabled to guarantee that

the rule will fire when its explicit
condition Is true

March 4, 2005 BST-19

Matching to external interfaces

H—

... the external interface may not
use the same RDY/EN protocol as
Bluespec; interface attributes are
available to handle this situation ...

March 4, 2005 BST-20

10

Interface attributes

Useful attributes
» always ready
» always enabled

Attributes attach to a module

#They apply to the interface provided by
that module — when the module is
synthesized

#The attributes apply to all methods in
the interface

March 4, 2005

BST-21

always ready

T

This attribute has two effects:

#® Asserts that the ready signal for all
methods is True
= It is an error if the tool cannot prove this

#Removes the associated port in the
generated RTL module

= Any users of the module will assume a
value of True for the ready signals

= No RDY_method signal are found

March 4, 2005

BST-22

always enabled

#®Ties to True the enable signal for all action
methods

= If the method cannot be executed on every cycle
(due to internal conflicts), bsc reports an error

#®Removes the associated port in the generated
RTL module

= Any user of the module must execute the method on
every cycle, or it is an error

@#E.g. EN_method is assumed True and removed

March 4, 2005 BST-23

Interface attributes

#These attributes are used to match
externally-specified port lists which
do not have RDY and EN wires

#Or for a synchronous module
which should receive input on
every cycle

March 4, 2005 BST-24

12

Synchronous Binary Multiplier
Interface

interface Design_IFC;
method Action setlnput (Bit#(16) X,

Bit#(16) y, Bool start);
method Bit#(32) prod();
method Bool ready();
endinterface : Design_IFC

(* always_ready,always_enabled *)
module mkDesign (Design_IFC);

module mkDesign(clk,
reset,
setlnput_x,
setlnput_y,
setlnput_start,

prod,
ready);
March 4, 2005 BST-25
module mkMultl (Mult_ifc);
Reg#(Tout) product <- mkReg (0);
Reg#(Tout) d <- mkReg (0);
Reg#(Tin) r <- mkReg (0);
rule cycle (r = 0);
if (r[0] == 1) product <= product + d;
d<=d << 1;
r<=r > 1;
endrule: cycle
method Action start (Tin d_init, Tin r_init) if (r == 0);
d <= zeroExtend(d_init);
r <= r_init; product <= O;
endmethod
method Tout result () if (r == 0);
return product;
endmethod
endmodule: mkMultl
BST-26

March 4, 2005

13

Test bench for Example 1

B module mkTest (Empty);
// arrays a, b contain the numbers to be multiplied and
array ab contains the correct answers.
Mult_ifc m <- mkMult1(Q);
Reg#(Bool) busy <- mkReg(False);
Reg#(int) 1 <- mkReg(0); Reg#(int) j <- mkReg(0);
rule data_in (lbusy);
m.start (a[i]l, b[i]);
I <= i+l; busy <= True;
endrule
rule data_out (busy);
Tout x = m.result(Q);
$display (“%0-h X %0.h = %0.h Status: %0.d”,
alil. bLil. x, x==ab[j]):
J <= j+1; busy <= False;
endrule
endmodule: mkTest
March 4, 2005 BST-27

Examplel.bsv Demo

H—

®Compiling with -u

®The (* synthesize *) pragma
#Method RDY and EN

#®Making the multiplier synchronous
®(* always ready *)

#®Altering the testbench

®(* always _enabled *)
#Examining the final verilog ports

March 4, 2005 BST-28

14

