
Verification and Testing

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 1

Verification versus Manufacturing Test

� Design verification determines whether your

design correctly implements a specification

…and hopefully that the specification was correct

�	 Manufacturing tests determine whether the

fabrication process successfully reproduced an

instance of your design with acceptable quality

–	 Quality measures include operating frequency, power

consumption, and expected operating lifetime
–	 Modern manufacturing test is impossible without on-chip

test structures: testability is part of design specification

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 2

Design Verification Philosophy

�	 If you haven’t verified it, it doesn’t work!

�	 Verification should be treated as an intrinsic part of the

design process
–	 not as an independent activity to be handled by lesser mortals

after the “genius” designers have finished their “masterpiece”
–	 Verification infrastructure often represents the “crown jewels”

of a successful chip design company (e.g., Intel x86 spec.)
� Verification infrastructure should be available before design

–	 Verification tests are the de facto specification of the part
–	 In your projects, you will write tests first!

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 3

Verification Approaches

� Fabricate prototype in target technology

–	 Impractical for large digital designs ($1M and several weeks per bug)
–	 Required for some analog/mixed-signal chips as simulation models or

scale prototypes are not accurate enough (5-10 design spins common)
� Breadboarding (Build prototype in alternative technology)

–	 Resurgence of interest now that field-programmable gate arrays
have sufficient capacity to emulate large pieces of ASIC design

–	 Prototype interacts with real world, helps avoid specification
mistakes

– Prototype environment usually less controllable than in simulation
� Simulation

–	 The primary approach for large-scale digital design
–	 Requires extensive CPU resources (10,000 CPU farms common for

microprocessor design teams)
� Formal Verification (Prove design meets specification)

–	 Techniques increasing in popularity and capability, but still impractical
for complete designs

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 4

Verification Mechanics

�	 Need to stimulate design under test (DUT) with test

inputs, and compare outputs to expected results

Testbench

DUT
Test

Inputs

DUT
Outputs

=?
Reference
Outputs

Test
Pass/Fail

�	 Recommend that you do minimal possible in the Verilog/BSV
testbench (these are not powerful programming languages)

�	 Use separate programs written in general purpose languages
(e.g., C++) to generate and check inputs and outputs.

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 5

Transaction-Level Test I/O

Arch.
State

Test Input

Arch.
State

Test Output

� Each test consists of an initial
architectural state plus sequences of
input messages
–	 Might also need time of arrival for

each message (tells testbench when to
inject message in DUT inputs)

–	 Initial state loaded into simulation
before simulation begins to reduce run
time

�	 Output from test is a final
architectural state plus a sequence of
output messages
–	 Might record timestamp when each

outgoing message received by
testbench

–	 Final state extracted from simulation
at end of simulation run

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 6

Checking Outputs

� Use separate checker program to compare outputs

–	 Can be complicated to compare outputs in some cases (e.g., if
output messages can be reordered)

DUT

Test
Inputs Checker

Test
Pass/Fail

DUT
Outputs

� Can use UTL model to generate reference output stream. This
can be simpler than building all intelligence into output checker.

DUT Test

Optional

DUT
Outputs

Checker
Pass/FailTest

Inputs

UTL Golden
Golden Output
Model

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 7

Types of Test

� Directed: Hand-crafted test of a feature

– Guarantees coverage of targeted feature
– Labor intensive

� Random: Machine-generated random inputs
– Random inputs find cases that designers didn’t consider
– Easy to write!
– Wastes simulation time on uninteresting cases

� Constrained Random: Randomized, but targeted
– Can quickly generate many interesting cases
– Still difficult to hit all interesting cases

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 8

Recommended Approach

�	 Hand-write a directed test for every isolated
featured in your design

�	 Use constrained random to cover interactions
among features

�	 Algorithm for generating constrained random
tests:
–	 Build a pool of sequence generators that each know how

to generate a random instance of a single directed test
–	 Select some sequence generators randomly and ask each

to generate a random directed test
–	 Randomly interleave the directed tests to give final test
–	 Must take care over how individual sequences interact

6.884 – Spring 2005 Krste, 3/16/05	 L15 – Testing 9

Verification Example: Non-Blocking Cache

DRAM

Cache
State

� Test input contains sequence of
load/store requests,
timestamped with arrival time,
plus initial state of cache and
memory system

�	 Test output contains sequence
of timestamped responses plus
final cache and memory state

6.884 – Spring 2005	 Krste, 3/16/05 L15 – Testing 10

Non-Blocking Cache Test Generation

� Hand-write directed tests for corner cases
� Black-box directed tests only test architectural level interface

– E.g., generate write to an address followed by load to same
address

� White-box directed tests aim to exercise microarchitecture
–	 E.g., generate primary miss followed by secondary misses to same

cache line

�	 Constrained random generator randomly interleaves multiple
randomly generated individual tests:

#1 Write/read test: Store 0x10; Load 0x10;

#2 Secondary miss test: Load 0x2c; Load 0x28; Store 0x28

Final sequence:

Load 0x2c; Store 0x10; Load 0x28; Load 0x10; Store 0x28

6.884 – Spring 2005	 Krste, 3/16/05 L15 – Testing 11

Non-Blocking Cache: Checking Outputs

� Checker program ignores
order of output messages,
but ensures that each tagged
value matches that in golden

Memory

Test
Inputs

Golden
Output

DUT
Outputs

DRAM

Cache

� Use top-level UTL model to

Checker
Test Pass/Fail

process inputs and generate
golden reference output

output, and that every
output message is present
(and no others)

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 12

Test Coverage

�	 Important to quantify effectiveness of the verification

strategy. Simply running lots of cycles isn’t enough.
�	 Simulator can help by determining how much of the design

is exercised when running test suite
–	 Have all wires been toggled?
–	 Have all state machine transitions occurred?
–	 Have all Bluespec rules fired? All lines of Verilog executed?

�	 Bare minimum is that all parts of design have been
exercised, but this is not enough
–	 Would an error be observed in test output if this logic

didn’t respond correctly?
–	 Can inject faults into design to test verification suite, but

this is computationally expensive
–	 Many industry teams plot bugs found over time then tapeout

when rate of finding bugs slows down (doesn’t mean there
aren’t lots of bugs left, might be they’re not being found!)

6.884 – Spring 2005	 Krste, 3/16/05 L15 – Testing 13

PC

Refrigerator

MD2.002

Wafers

Manufacturing Defects

Goal: verify every gate is operating as expected

Defects from misalignment, dust and other particles, “stacking” faults,
pinholes in dielectrics, mask scratches & dirt, thickness variations,
layer-to-layer shorts, discontinuous wires (“opens”), circuit sensitivities
(VTH, LCHANNEL). Find during wafer probe of test structures.

Defects from scratching in handling, damage during bonding to lead
frame, mfg defects undetected during wafer probe (particularly
speed-related problems). Find during testing of packaged parts.

Defects from damage during board insertion (thermal, ESD), infant
mortality (mfg defects that show up after a few hours of use). Also
noise problems, susceptibility to latch-up, ...
Find during testing/burn-in of boards.

Defects that only appear after months or years of use (metal
migration, oxide damage during manufacture, impurities).
Found by customer (oops!).

Figures by MIT OCW.
manufacture.

Cost of replacing defective component increases
by an order of magnitude with each stage of

Krste, 3/16/05 L15 – Testing 146.884 – Spring 2005

The device under test

TestIers

non-return-to-zero (NRZ)

return-to-zero (RTZ)

(DUT) can be a site on
a wafer or a packaged Images removed due to copyright restrictions.

part.

Each pin on the chip is driven/observed by a separate set of circuitry which
typically can drive the pin to one data value per cycle or observe (“strobe”)
the value of the pin at a particular point in a clock cycle. Timing of input
transitions and sampling of outputs is controlled by a small (<< # of pins)
number of high-resolution timing generators. To increase the number of
possible input patterns, different data “formats” are provided:

tCYCLE

)

data

data

data

data ~data ~data

return-to-one (RTO

surround-by-complement (SBC)

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 15

Testing Approaches

Plan: supply a set of test vectors that specify an input or output value
for every pin on every cycle. Tester will load the program into the pin
cards, run it and report any miscompares between an observed output
value and the expected value.

0000 1 10 0000 XXXX input to chip = {0, 1}0001 1 10 0000 LLLL output from chip = {L, H}0002 1 01 1111 LLLL
0003 1 00 1011 HLHL tristate/no compare = { X }

cycle # program for 11 pins

How many vectors do we need?
Exhaustive testingn

logic

n

2n inputs required to
exhaustively test circuit

logicm mcombinational combinational
is not only
impractical, it’s
unnecessary!
Instead we only
need to verify that
no faults are
present which may

exhaustively test circuitIf n=25, m=50, 1us/test 2n+m inputs required to take many fewer
then test time > 109 years vectors.

Courtesy of Teradyne, Inc. Used with permission.
6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 16

Toggle Testing

Minimal criteria for a sequence of input values purported to test a
circuit: the sequence should cause each node in the circuit to
“toggle”, i.e., cause each node to make both a 0→1 and a 1 →0
transition.
Unless one can observe the toggled values in some way, the “toggle
test” doesn’t really tell you much about the presence of faults in your
circuit. But it’s easy to compute the toggle coverage during regular
logic-level simulation and that measure does give some insight into a
circuit’s testability.

Watchdog circuit: assert ALERT if OKAY
hasn’t been asserted in the past 24
hours.

OKAY
43-bit counter =0

CLK

PRESET

100Mhz CLK
ALERT

How long will it take to test whether ALERT has a stuck-at-0 fault?

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 17

Fault Models

Traditional model, first developed for board-level tests, assumes
that a node gets “stuck” at a “0” or “1”, presumably by shorting to
GND or VDD.

stuck at “0” = S-A-0 = node@0
stuck at “1” = S-A-1 = node@1

A Z = ABCD Two faults are equivalent if
B X ZB@1 = ACD their effects on the circuit areC

D
 ZB@0 = 0 = Z@0 indistinguishable.

One can fault an entire node or just a single connection (which
would correspond to a transistor stuck-on or stuck-off).

B

In CMOS, stuck-on and

stuck-off faults can

X

F = AB
have interesting
FX=OPEN=_______consequences... A

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 18

A

B

BA

DC

D

C
X

More Fault Models

F

F = (A+C)(B+D)

X=OPEN = __________

Short-circuit/Bridging/Coupling faults: unintended connection between nodes.

Open-circuit faults: lack of a connection where one was intended.

Transition delay/path delay faults: speed-related faults

It’s hard to know where/how many faults to introduce! Simple stuck-at faults
are easy to model with original logic and faulty values, other faults change logic
function implemented by circuit. Bottom line: fault testing a circuit with even a
simple model can result in better test vectors and, if the circuit is modified to
promote testability, better fault coverage with fewer vectors.

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 19

Path Sensitization

XA
B
C

D

Z

S-A-1

Step 1: Sensitize circuit. Find input values that produce a value
on the faulty node that’s different from the value forced by
the fault. For our S-A-1 fault above, want output of OR gate
to be 0.

�	 Is this always possible? What would it mean if no such input
values exist?

�	 Is the set of sensitizing input values unique? If not, which
should one choose?

�	 What’s left to do?

6.884 – Spring 2005	 Krste, 3/16/05 L15 – Testing 20

Error Propagation

XA = 0
B = 0

C

D

Z

S-A-1

Step 2: Fault propagation. Select a path that propagates the
faulty value to an observed output (Z in our example).

Step 3: Backtracking. Find a set of input values that enables
the selected path.

� Is this always possible? What would it mean if no such input
values exist?

� Is the set of enabling input values unique? If not, which should
one choose?

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 21

Redundancy & Testability

If a fault in a circuit is redundant there is no test for it:

Replace signal on which fault resides with a constant:

A prime and irredundant cover for a single-output function represents a
two-level circuit that is fully testable for all single stuck-at faults.

Primality ⇔ s-a-1 faults on AND gate inputs
Irredundancy ⇔ s-a-0 faults on OR gate inputs

Theorem: the set of tests detecting all single faults in a prime and
irredundant single-output two-level circuit will detect all multi-faults.
Unfortunately, the theorem doesn’t generalize to multi-output circuits.

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 22

Observability & Controllability

When propagating faulty values to observed outputs we are often
are faced with several choices for which should be the next gate in
our path.

X
?

?

We’d like to have a way to measure the observability of a node,
i.e., some indication of how hard it is to observe the node at the
outputs of the chip. During fault propagation we could choose the
gate whose output was easiest to observe.

Similarly, during backtracking we need a way to choose between
alternative ways of forcing a particular value:

which input should
want 0 herewe try to set to 0?

In this case, we’d like to have a way to measure the controllability
of a node, i.e., some indication of how easy it is to force the node
to 0 or 1. During backtracking we could choose the input that was
easiest to control.

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 23

There are systematic
techniques:

� scan-based approaches
� built-in self-test (BIST)

Design For Test

What can we do to increase testability?

� increase observability
ð add more pins (?!)
ð add small “probe” bus, selectively enable different values onto bus
ð use a hash function to “compress” a sequence of values (e.g., the
values of a bus over many clock cycles) into a small number of bits
for later read-out
ð cheap read-out of all state information

� increase controllability
ð use muxes to isolate submodules and select sources of test data

as inputs
ð provide easy setup of internal state

� signature analysis

There are systematic
techniques:

� scan-based approaches
� built-in self-test (BIST)
� signature analysis

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 24

CLK

shift in
normal/test

shift out

1
0

normal/test

shift in

1
0

normal/test

...
Scan

Idea: have a mode in which all registers are chained into one giant shift
register which can be loaded/ read-out bit serially. Test remaining
(combinational) logic by
(1) 	 in “test” mode, shift in new values for all register bits thus setting

up the inputs to the combinational logic
(2) 	 clock the circuit once in “normal” mode, latching the outputs of the

combinational logic back into the registers
(3) 	 in “test” mode, shift out the values of all register bits and compare

against expected results. One can shift in new test values at the
same time (i.e., combine steps 1 and 3).

6.884 – Spring 2005	 Krste, 3/16/05 L15 – Testing 25

Automatic Test Program Generation

�	 Hook scan path up to JTAG debug circuitry. With just a few
I/O’s, JTAG can help test for board-level faults (using
boundary scan to set and read pin values) and internal faults
(using internal scan path to set and read internal state values).

�	 Using sophisticated algorithms and scan registers for all state
information, ATPG programs can generate very high coverage
tests. Modern ATPG programs can determine where to insert
scan registers into circuits to increase observability and
controllability.

�	 Critical Path Analysis: generate sequential patterns to launch
and capture events along a design’s most critical timing paths.

�	 Failure Analysis: Once a fault has been detected (ie, the
observed output differs from what was expected), figure out
what piece of circuitry actually failed.

6.884 – Spring 2005	 Krste, 3/16/05 L15 – Testing 26

Built-In Self-Test

Problem: Scan-based approach is great for testing combinational
logic but can be impractical when trying to test memory blocks, etc.
because of the number of separate test values required to get
adequate fault coverage.

Solution: use on-chip circuitry to generate test data and check the
results. Can be used at every power-on to verify correct operation!

normal/test

1

0

FSM
A

FSM
B

okay

circuit
under
test

Generate pseudo-random data for most For pseudo-random input data simply
compute some hash of output values andcircuits by using, e.g., a linear

feedback shift register (LFSR). Memory compare against expected value
tests use more systematic FSMs to (“signature”) at end of test. Memory
create ADDR and DATA patterns. data can be checked cycle-by-cycle.

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 27

LFSRs If Ci’s are not programmable,
can eliminate AND gates and

C0 C1 CN-2 CN-1

...

...

Q

some XOR gates...

� With a small number of XOR gates the cycle time is very fast

� Cycle through fixed sequence of states (can be as long as 2N-1 for

some N’s). Handy for large modulo-N counters.

� Different responses for different C ,, many well-known CRC
i

polynomials correspond to a specific choice of C ’s.
i

� Different responses for different initial states

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 28

IDDQ Testing

Ammeter (measures IDD)

VDD

GND

Idea: CMOS logic should draw no current when it’s not switching. So
after initializing circuit to eliminate tristate fights, etc., the power-
supply current should be zero after all signals have settled.

Good for detecting bridging faults (shorts). May try several different
circuit states to ensure all parts of the chip have been observed.

Increasing leakage currents and variability making this much harder to
use.

6.884 – Spring 2005 Krste, 3/16/05 L15 – Testing 29

