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Hardware Design Abstraction Levels
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Unit-Transaction Level (UTL) Model 

Gates 

Physics 

Register-Transfer Level (Verilog RTL) 

Today’s 

Lecture
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Application to RTL in One Step?

Modern hardware systems have complex functionality

(graphics chips, video encoders, wireless communication
channels), but sometimes designers try to map directly to 
an RTL cycle-level microarchitecture in one step 

�	 Requires detailed cycle-level design of each sub-unit 
–	 Significant design effort required before clear if design will

meet goals 
�	 Interactions between units becomes unclear if arbitrary

circuit connections allowed between units, with possible
cycle-level timing dependencies 
– Increases complexity of unit specifications 

� Removes degrees of freedom for unit designers 
–	 Reduces possible space for architecture exploration 

�	 Difficult to document intended operation, therefore
difficult to verify 
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Transaction-Level Design


Arch. 

Arch. State State


Arch. State 
Unit 1 

Unit 2 Unit 
3 

Shared Memory Unit 

�	 Model design as messages flowing through FIFO buffers between 
units containing architectural state 

�	 Each unit can independently perform an operation, or

transaction, that may consume messages, update local state, 

and send further messages 


�	 Transaction and/or communication might take many cycles (i.e., 
not necessarily a single Bluespec rule) 
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6.884 UTL Discipline

�	 Various forms of transaction-level model are becoming 

increasingly used in commercial designs 
�	 UTL (Unit-Transaction Level) models are the variant we’ll use 

in 6.884 
�	 UTL forces a discipline on top-level design structure that will

result in clean hardware designs that are easier to document
and verify, and which should lead to better physical designs 
–	 A discipline restricts hardware designs, with the goal of

avoiding bad choices 
�	 UTL specs are not directly executable (yet), but could be

easily implemented in C/C++/Java/SystemC to give a golden 
model for design verification 
–	 Bluespec will often, but not always, be sufficient for UTL model 

�	 You’re required to give an initial UTL description (in English 
text) of your project design by April 1 project milestone 
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UTL Overview


Unit comprises: 

Transactions 

Scheduler 

Input 
queues 

Output 
queues 

Arch. 
State 

Unit 

� Architectural state (registers + RAMs)

� Input queues and output queues connected to other units

� Transactions (atomic operations on state and queues)

� Scheduler (combinational function to pick next transaction to run)
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Unit Architectural State

Arch. 

State


�	 Architectural state is any state that is visible to an 
external agent 
–	 i.e, architectural state can be observed by sending strings 

of packets into input queues and looking at values returned 
at outputs. 

�	 High-level specification of a unit only refers to 
architectural state 

� Detailed implementation of a unit may have additional 
microarchitectural state that is not visible externally 
–	 Intra-transaction sequencing logic 
–	 Pipeline registers 
–	 Caches/buffers 
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Queues


� Queues expose communication latency and decouple units’ execution 
� Queues are point-to-point channels only 

–	 No fanout, a unit must replicate messages on multiple queues 
–	 No buses in a UTL design (though implementation may use them) 

�	 Transactions can only pop head of input queues and push at most 
one element onto each output queue 
–	 Avoids exposing size of buffers in queues 
–	 Also avoids synchronization inherent in waiting for multiple elements 
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Transactions


�	 Transaction is a guarded atomic action on local state and 
input and output queues 
–	 Similar to Bluespec rule except a transaction might take a 

variable number of cycles 
�	 Guard is a predicate that specifies when transaction can 

execute 
–	 Predicate is over architectural state and heads of input 

queues 
–	 Implicit conditions on input queues (data available) and

output queues (space available) that transaction accesses 
�	 Transaction can only pop up to one record from an input 

queue and push up to one record on each output queue 

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL9 



Scheduler


Transactions 

Scheduler 

Input 
queues 

Output 
queues 

Arch. 
State 

Unit 

�	 Scheduling function decides on transaction priority based on local 
state and state of input queues 
– Simplest scheduler picks arbitrarily among ready transactions 

�	 Transactions may have additional predicates which indicate when 
they can fire 
– E.g., implicit condition on all necessary output queues being ready 
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UTL Example: IP Lookup


Packet 
Input 

Packet 
Output 
Queues 

Lookup 
Table 

(Based on Lab 3 example) 

Table 
Access 

Table 
Replies 

Transactions in decreasing scheduler priority 
� Table_Write (request on table access queue) 

– Writes a given 12-bit value to a given 12-bit address 
� Table_Read (request on table access queue) 

– Reads a 12-bit value given a 12-bit address, puts response on reply queue 
� Packet_Process (request on packet input queue) 

– Looks up header in table and places routed packet on correct output queue 
This level of detail is all the information we really need to understand what 

the unit is supposed to do! Everything else is implementation. 

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL11 



UTL & Architectural-Level Verification


�	 Can easily develop a sequential golden model of a UTL 
description (pick a unit with a ready transaction and 
execute that sequentially) 

�	 This is not straightforward if design does not obey UTL 
discipline 
–	 Much more difficult if units not decoupled by point-to-point 

queues, or semantics of multiple operations depends on which other 
operations run concurrently 

�	 Golden model is important component in verification 
strategy 
–	 e.g., can generate random tests and compare candidate design’s 

output against architectural golden model’s output 
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UTL Helps Physical Design


�	 Restricting inter-unit communication to point-
to-point queues simplifies physical layout of 
units 
–	 Can add latency on link to accommodate wire delay 

without changing control logic 
�	 Queues also decouple control logic


–	 No interaction between schedulers in different units 
except via queue full/empty status 

–	 Bluespec methods can cause arbitrarily deep chain of 
control logic if units not decoupled correctly 

�	 Units can run at different rates

– E.g., use more time-multiplexing in unit with lower 

throughput requirements or use different clock 
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Refining IP Lookup to RTL


Packet 
Output 
QueuesLookup 

RAM 

(See also Lab 3 handout) Table 
RepliesCompletion 

Buffer 

Recirculation 
PipelinePacket 

Input 

Table 
Access 

�	 The recirculation pipeline registers and the completion buffer 
are microarchitectural state that should be invisible to 
external units. 

�	 Implementation must ensure atomicity of transactions: 
–	 Completion buffer ensures packets flow through unit in order 
–	 Must also ensure table write doesn’t appear to happen in middle

of packet lookup, e.g., wait for pipeline to drain before
performing write 
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Non-Blocking Cache Example


CPU 

Memory 

Memory unit transactions: 

Load<address, tag>
returns Reply<tag, data> 

Store<address,data> modifies memory 

Load replies can be out-of-order 
–	 Spec should strictly split load transaction

in two and include additional architectural 
state in memory unit as otherwise no way
for loads to get reordered. Omitted 
here for clarity. 
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Refining UTL Design


DRAM 

CPU 

Cache 
State 

�	 Memory unit implemented as 
two communicating units, 
Cache and DRAM 

�	 CPU’s view of Memory unit 
unchanged 
– i.e., the cache state should 

not be visible to the CPU 
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A DRAM Unit


DRAM 

DRAM Unit reads and writes whole 
cache lines (four words) in order 

Transactions: 
� LoadLine<addr> returns 
RepLine<dataline> from DRAM 

� StoreLine<addr,dataline>
updates DRAM 
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Non-Blocking Cache Unit


DataTags 

Miss 
Tags 

Replay 
Queues 

Replay 
State 

Victim 
Buffer 

Victim Buffer holds evicted dirty 
line awaiting writeback to 
DRAM (writeback cache) 

Miss Tags hold address of all 
cache miss requests pending in 
DRAM unit 

Replay Queues hold secondary 
misses for each miss tag 
already requested from DRAM 

Replay State holds state of any 
active replay of a returned 
cache line 
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CPU Load Transaction

Load<addr,tag> (if miss tag and replay queue free) 

if (cache hit on addr) then

update replacement policy state bits

return Reply<tag,data> to CPU


else 
if (hit in miss tags) then 
append request <R,tag,addr[1:0]> to associated Replay Queue 

else 
allocate new miss tag and append <R,tag,addr[1:0]> to Replay

Queue

send LoadLine<addr> to DRAM unit

select victim line according to replacement policy

if victim dirty then copy to victim buffer

invalidate victim’s in-cache tag


Replay Queue holds entries with tag and offset of requested word within 
cache line (addr<1:0>) 
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CPU Store Transaction

Store<addr,data> (if miss tag and replay queue free) 

if (cache hit on addr) then


update replacement policy state bits


update cache data and set dirty bit on line


else 
if (hit in miss tags) then 
append request <W,addr[1:0],data> to associated Replay Queue 

else 
allocate new miss tag and append <W,addr[1:0],data> to Replay 

Queue


send LoadLine<addr> to DRAM unit


select victim line according to replacement policy


if victim dirty then copy to victim buffer


invalidate victim’s in-cache tag
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Victim Writeback Transaction


(if buffered victim) 
send StoreLine<victim.addr,victim.dataline> to DRAM unit 
clear victim buffer 

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL21 



DRAM Response Transactions


RepLine <dataline> /* Receive DRAM Response Transaction */ 
locate associated miss tag (allocated in circular order) 
locate invalid line in destination cache set 
overwrite victim tag and data with new line 
initialize replay state with new line and replay queue 

(if replay state valid) /* Replay Transaction */ 
read next replay queue entry 
if <R,addr,tag>, read from line and send Reply<tag,data> to 
CPU

if <W,addr,data> write data to line and set its dirty bit

if no more reply queue entries then


clear replay state 
deallocate miss tags and replay queue (circular buffer) 
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Cache Scheduler


Descending Priority 
� Replay 
� DRAM Response 
� Victim Writeback 
� CPU Load or Store 
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Design Template for Pipelined Unit 

scheduler 

Arch. 
State 1 

Arch. 
State 2 

�	 Scheduler only fires transaction when it can complete without stalls 
–	 Avoids driving heavily loaded stall signals 

�	 Architectural state (and outputs) only written in one stage of pipeline, 
only read in same or earlier stages 
–	 Simplifies hazard detection/prevention 

�	 Have different transaction types access expensive units (RAM read 
ports, shifters, multiply units) in same pipeline stage to reduce area 
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Skid Buffering


Sched. Tags Data 

Sched. Tags Data 

Sched. Tags DataStop further
loads/stores 

Primary Miss #1 

Primary Miss #2 

�	 Consider non-blocking cache implemented as a three stage
pipeline: (scheduler, tag access, data access) 

�	 CPU Load/Store not admitted into pipeline unless miss tag, reply
queue,and victim buffer available in case of miss 

�	 If hit/miss determined at end of Tags stage, then second miss
could enter pipeline 

�	 Solutions? 
–	 Could only allow one load/store every two cycles => low throughput 
–	 Skid buffering: Add additional victim buffer, miss tags, and replay

queues to complete following transaction if miss.  Stall scheduler 
whenever there is not enough space for two misses. 
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Implementing Communication Queues

�	 Queue can be implemented as centralized FIFO with single

control FSM if both ends are close to each other and directly
connected: 

Cntl. 

�	 In large designs, there may be several cycles of communication 
latency from one end to other. This introduces delay both in
forward data propagation and in reverse flow control 

Recv.Send 

�	 Control split into send and receive portions. A credit-based 
flow control scheme is often used to tell sender how many units
of data it can send before overflowing receivers buffer. 
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End-End Credit-Based Flow Control


Recv.Send 

�	 For one-way latency of N cycles, need 2*N buffers at 
receiver 
–	 Will take at least 2N cycles before sender can be informed 

that first unit sent was consumed (or not) by receiver 
�	 If receive buffer fills up and stalls communication, will 

take N cycles before first credit flows back to sender to 
restart flow 
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Distributed Flow Control


Cntl. Cntl. Cntl. 

�	 An alternative to end-end control is distributed 
flow control (chain of FIFOs) 

�	 Lower restart latency after stalls 
�	 Can require more circuitry and can increase 

end-end latency 
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Buses


Bus 
Cntl. 

Bus 
Wires 

� Buses were popular board-level option for implementing
communication as they saved pins and wires 

� Less attractive on-chip as wires are plentiful and buses are
slow and cumbersome with central control 

� Often used on-chip when shrinking existing legacy system design
onto single chip 

� Newer designs moving to either dedicated point-point unit
communications or an on-chip network 
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On-Chip Network


Router 

Router Router 

Router 

� On-chip network 
multiplexes long range 
wires to reduce cost 

�	 Routers use distributed 
flow control to transmit 
packets 

�	 Units usually need end-
end credit flow control 
in addition because 
intermediate buffering 
in network is shared by 
all units 

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL30 


