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Standard Projects


�	 Two basic design projects 
–	 Processor variants (based on lab1&2 testrigs) 
–	 Non-blocking caches and memory system 
–	 Possible project ideas on web site 

�	 Must hand in proposal before quiz on March 
18th, including: 
–	 Team members (2 or 3 per team) 
–	 Description of project, including the architecture 

exploration you will attempt 
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Non-Standard Projects


�	 Must hand in proposal early by class on March 
14th, describing: 
–	 Team members (2 or 3) 
–	 The chip you want to design 
–	 The existing reference code you will use to build a 

test rig, and the test strategy you will use 
–	 The architectural exploration you will attempt 
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Power Trends
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Figure by MIT OCW. Adapted from Intel. Used with permission. 

�	 CMOS originally used for very low-power circuitry such as
wristwatches 

�	 Now some CPUs have power dissipation >100W 
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Power Concerns


�	 Power dissipation is limiting factor in many systems

–	 battery weight and life for portable devices 
–	 packaging and cooling costs for tethered systems 
–	 case temperature for laptop/wearable computers 
– fan noise not acceptable in some settings 

� Internet data center, ~8,000 servers,~2MW 
–	 25% of running cost is in electricity supply for supplying 

power and running air-conditioning to remove heat 
�	 Environmental concerns 

–	 ~2005, 1 billion PCs, 100W each => 100 GW 
–	 100 GW = 40 Hoover Dams 
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On-Chip Power Distribution
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Routed power distribution on two stacked
layers of metal (one for VDD, one for GND).
OK for low-cost, low-power designs with few 
layers of metal. 

Power Grid. Interconnected vertical and 
horizontal power bars. Common on most high-
performance designs. Often well over half of
total metal on upper thicker layers used for
VDD/GND. 

Via 

Dedicated VDD/GND planes. Very expensive.
Only used on Alpha 21264. Simplified circuit
analysis. Dropped on subsequent Alphas. 
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Power Dissipation in CMOS
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Primary Components: 
� Capacitor charging, energy is 1/2 CV2 per transition 

� the dominant source of power dissipation today 
� Short-circuit current, PMOS & NMOS both on during transition 

� kept to <10% of capacitor charging current by making edges fast 
� Subthreshold leakage, transistors don’t turn off completely 

� approaching 10-40% of active power in <180nm technologies 
� Diode leakage from parasitic source and drain diodes 

� usually negligible 
� Gate leakage from electrons tunneling across gate oxide 

� was negligible, increasing due to very thin gate oxides 
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Energy to Charge Capacitor


CL 

VDD Isupply	
T T 

E0	 → 1 = ∫ dt P(t) = VDD Isupply dt (t) ∫ 
0	 0Vout 

VDD 

= VDD ∫ dV C out = V C DD
2

L	 L 

0 

�	 During 0->1 transition, energy CLVDD
2 removed from 

power supply 
�	 After transition, 1/2 CLVDD

2 stored in capacitor, the
other 1/2 CLVDD

2 was dissipated as heat in pullup
resistance 

�	 The 1/2 CLVDD
2 energy stored in capacitor is dissipated

in the pulldown resistance on next 1->0 transition 
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Power Formula


2 +
Power = activity * frequency * (1/2 CVDD
)VDDISC

+ VDDISubthreshold 

+ VDDIDiode 

+ VDDIGate 

�	 Activity is average number of transitions per 
clock cycle (clock has two) 
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Switching Power


Power ∝ activity * 1/2 CV2 * frequency


� Reduce activity 
� Reduce switched capacitance C 
� Reduce supply voltage V 
� Reduce frequency 
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Reducing Activity with Clock Gating


Global Enable 
Latch (transparentClock Gating	 Clock 

on clock low)–	 don’t clock flip-flop if not needed 
–	 avoids transitioning downstream logic 
–	 enable adds to control logic complexity Gated Local 

Clock–	 Pentium-4 has hundreds of gated clock 

domains D
 Q 

Clock 

Enable 

Latched Enable 

Gated Clock 
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Reducing Activity with Data Gating

Avoid data toggling in unused unit by gating off inputs 

Shifter 
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of transitions, but 

slower. 

6.884 – Spring 2005 3/7/05 L11 – Power  13 



Other Ways to Reduce Activity


Bus Encodings 
–	 choose encodings that minimize transitions on average (e.g., Gray

code for address bus) 
–	 compression schemes (move fewer bits) 

Freeze “Don’t Cares” 
–	 If a signal is a don’t’ care, then freeze last dynamic value (using a 

latch) rather than always forcing to a fixed 1 or 0. 
–	 E.g., 1, X, 1, 0, X, 0  ===> 1, X=1, 1, 0, X=0, 0 

Remove Glitches 
–	 balance logic paths to avoid glitches during settling 

6.884 – Spring 2005 3/7/05	 L11 – Power  14 



Reducing Switched Capacitance

Reduce switched capacitance C 

– Careful transistor sizing (small transistors off critical path) 
– Tighter layout (good floorplanning) 
– Segmented structures (avoid switching long nets) 

A B C 

Bus 

A B C 

Shared bus driven by A 
or B when sending values 

to C 

Insert switch to isolate 
bus segment when B 

sending to C 
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Reducing Frequency


Doesn’t save energy, just reduces rate at which 
it is consumed (lower power, but must run 
longer) 
– Get some saving in battery life from 

reduction in rate of discharge
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Reducing Supply Voltage

Quadratic savings in energy per transition (1/2 CVDD

2)


� Circuit speed is reduced

� Must lower clock frequency to maintain correctness


CVDD=Td k(V -Vth )
α 

DD 

α = 1− 2 

Delay rises sharply as
supply voltage approaches
threshold voltages 

Courtesy of Mark Horowitz and Stanford University. Used with permission. 
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Voltage Scaling for Reduced Energy


�	 Reducing supply voltage by 0.5 improves energy 
per transition by ~0.25 

�	 Performance is reduced – need to use slower 
clock 

�	 Can regain performance with parallel 
architecture 

�	 Alternatively, can trade surplus performance for 
lower energy by reducing supply voltage until 
“just enough” performance 

Dynamic Voltage Scaling
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Parallel Architectures Reduce 

Energy at Constant Throughput

� 8-bit adder/comparator 

40MHz at 5V, area = 530 kµ2 
Base power Pref 

� Two parallel interleaved adder/compare units 
20MHz at 2.9V, area = 1,800 kµ2 (3.4x) 
Power = 0.36 Pref 

� One pipelined adder/compare unit 
40MHz at 2.9V, area = 690 kµ2 (1.3x) 
Power = 0.39 Pref 

� Pipelined and parallel 
20MHz at 2.0V, area = 1,961 kµ2 (3.7x) 
Power = 0.2 Pref 

Chandrakasan et. al. “Low-Power CMOS Digital Design”, 
IEEE JSSC 27(4), April 1992 
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“Just Enough” Performance


t=0 t=deadlineTime 

Fr
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Run slower and just 
meet deadline 

Run fast then stop 

� Save energy by reducing frequency and
voltage to minimum necessary 
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Voltage Scaling on 

Transmeta Crusoe TM5400


Frequency 
(MHz) 

Relative 
Performance 

(%) 

Voltage 
(V) 

Relative 
Energy 

(%) 

Relative 
Power 
(%) 

700 100.0 1.65 100.0 100.0 

600 85.7 1.60 94.0 80.6 

500 71.4 1.50 82.6 59.0 

400 57.1 1.40 72.0 41.4 

300 42.9 1.25 57.4 24.6 

200 28.6 1.10 44.4 12.7 
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Leakage Power

�	 Under ideal scaling, want to reduce threshold voltage as 

fast as supply voltage 
�	 But subthreshold leakage is an exponential function of

threshold voltage and temperature
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Rise in Leakage Power
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Design-Time Leakage Reduction


Use slow, low-leakage transistors off critical path 
�	 leakage proportional to device width, so use smallest 

devices off critical path 
�	 leakage drops greatly with stacked devices (acts as drain 

voltage divider), so use more highly stacked gates off 
critical path 

�	 leakage drops with increasing channel length, so slightly 
increase length off critical path 

�	 dual VT - process engineers can provide two thresholds 
(at extra cost) use high VT off critical path (modern cell 
libraries often have multiple VT) 
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Critical Path Leakage


Critical paths dominate leakage after applying design-
time leakage reduction techniques 

Example: PowerPC 750 
5% of transistor width is low Vt, but these account for >50% 

of total leakage 

Possible approach, run-time leakage reduction 
– switch off critical path transistors when not needed 
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Run-Time Leakage Reduction


SourceDrain 

Body

Gate Vbody > Vdd 

� Body Biasing 
Vt increase by 

reverse-biased body effect


Large transition time and wakeup latency due to


well cap and resistance


� Power Gating 
Sleep transistor between 

supply and virtual supply lines Sleep signal
Virtual Vdd

Vdd

Logic cells

0
0 

Increased delay due to sleep transistor 
� Sleep Vector 

Input vector which minimizes leakage 
Increased delay due to mux and active energy due to 

spurious toggles after applying sleep vector 
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Power Reduction for Cell-Based 

Designs


�	 Minimize activity 
–	 Use clock gating to avoid toggling flip-flops 
–	 Partition designs so minimal number of components

activated to perform each operation 
–	 Floorplan units to reduce length of most active wires 

� Use lowest voltage and slowest frequency

necessary to reach target performance

–	 Use pipelined architectures to allow fewer gates to

reach target performance (reduces leakage) 
–	 After pipelining, use parallelism to further reduce 

needed frequency and voltage if possible 
�	 Always use energy-delay plots to understand

power tradeoffs 
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Energy versus Delay

Energy 

A 

B C D Constant 
Energy-Delay

Product 

Delay 
�	 Can try to compress this 2D information into single number 

–	 Energy*Delay product 
–	 Energy*Delay2 – gives more weight to speed, mostly insensitive to supply 

voltage 
� Many techniques can exchange energy for delay 
� Single number (ED, ED2) often misleading for real designs 

–	 usually want minimum energy for given delay or minimum delay for given 
power budget 

–	 can’t scale all techniques across range of interest 
�	 To fully compare alternatives, should plot E-D curve for each

solution 
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Energy versus Delay


Delay (1/performance) 

Energy 

Architecture B 

Architecture A 

A better B better 

�	 Should always compare architectures at the same
performance level or at the same energy 

�	 Can always trade performance for energy using
voltage/frequency scaling 

�	 Other techniques can trade performance for
energy consumption (e.g., less pipelining, fewer
parallel execution units, smaller caches, etc) 
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Temperature Hot Spots


�	 Not just total power, but power density is a problem for 
modern high-performance chips 

�	 Some parts of the chip get much hotter than others 
–	 Transistors get slower when hotter 
–	 Leakage gets exponentially worse (can get thermal runaway 

with positive feedback between temperature and leakage 
power) 

– Chip reliability suffers 
� Few good solutions as yet 

–	 Better floorplanning to spread hot units across chip 
–	 Activity migration, to move computation from hot units to 

cold units 
–	 More expensive packaging (liquid cooling) 
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Itanium Temperature Plot


Image removed due to copyright restrictions.

Please see: 
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