
1

March 2, 2005 L10-1

Bluespec-4: Rule Scheduling
and Synthesis

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc,
January 2005

March 2, 2005 L10-2

Synthesis: From State & Rules
into Synchronous FSMs

interface

module

Transition
Logic

I OS“Next” S
Collection

of
State

Elements

2

March 2, 2005 L10-3

Hardware Elements
Combinational circuits

Mux, Demux, ALU, ...

Synchronous state elements
Flipflop, Register, Register file, SRAM, DRAM

Sel

O
I0
I1

In

Mux...

Sel

I De-
Mux ...

O0
O1

On

OpSelect
- Add, Sub, AddU, ...
- And, Or, Not, ...
- GT, LT, EQ, ...
- SL, SR, SRA, ...

Result

NCVZ

A

B
ALU

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

QQQQQQQQ

D

Clk

En
register

March 2, 2005 L10-4

Flip-flops with Write Enables

ff Q
D

C

EN
C

D

Q

EN

ff QD
C

EN

0
1

ff Q
D

C
EN

dangerous!

Edge-triggered: Data is sampled at the rising edge

3

March 2, 2005 L10-5

Semantics and synthesis

Rules
Semantics: “Untimed” (one rule at a time)

Verilog RTL
Semantics: clocked synchronous HW

(multiple rules per clock)

Scheduling
and

Synthesis
by the BSV compiler

Using Rule Semantics,
establish functional
correctness

Using Schedules,
establish performance
correctness

Verification activities

March 2, 2005 L10-6

Rule semantics
Given a set of rules and an initial state

while (some rules are applicable*
in the current state)

choose one applicable rule
apply that rule to the current state to
produce the next state of the system**

(*) “applicable” = a rule’s condition is true in current state

(**) These rule semantics are “untimed” – the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.

4

March 2, 2005 L10-7

Why are these
rule semantics useful?

Much easier to reason about correctness of a
system when you consider just one rule at a
time
No problems with concurrency (e.g., race
conditions, mis-timing, inconsistent states)

We also say that rules are “interlocked”

Major impact on design entry time and
on verification time

March 2, 2005 L10-8

Extensive
supporting theory

Term Rewriting Systems, Terese, Cambridge Univ. Press,
2003, 884 pp.
Parallel Program Design: A Foundation, K. Mani Chandy and
Jayadev Misra, Addison Wesley, 1988
Using Term Rewriting Systems to Design and Verify
Processors, Arvind and Xiaowei Shen, IEEE Micro 19:3, 1998,
p36-46
Proofs of Correctness of Cache-Coherence Protocols, Stoy et
al, in Formal Methods for Increasing Software Productivity,
Berlin, Germany, 2001, Springer-Verlag LNCS 2021
Superscalar Processors via Automatic Microarchitecture
Transformation, Mieszko Lis, Masters thesis, Dept. of Electrical
Eng. and Computer Science, MIT, 2000
… and more …

The intuitions underlying this theory
are easy to use in practice

5

March 2, 2005 L10-9

Bluespec’s synthesis
introduces concurrency

Synthesis is all about executing multiple
rules “simultaneously” (in the same clock
cycle)

A. When executing a set of rules in a clock cycle in
hardware, each rule reads state from the leading
clock edge and sets state at the trailing clock edge
⇒ none of the rules in the set can see the effects of any

of the other rules in the set

B. However, in one-rule-at-a-time semantics , each
rule sees the effects of all previous rule executions

Thus, a set of rules can be safely executed
together in a clock cycle only if A and B
produce the same net state change

March 2, 2005 L10-10

Pictorially

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• There are more intermediate states in the rule
semantics (a state after each rule step)

• In the HW, states change only at clock edges

• In each clock, a different number of rules may fire

6

March 2, 2005 L10-11

Parallel execution
reorders reads and writes

Rules

HW
clocks

rule

steps

• In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules

• In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks

reads writes reads writes reads writesreads writesreads writes

reads writes reads writes

March 2, 2005 L10-12

Correctness

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

• Rules are allowed to fire in parallel only if the net
state change is equivalent to sequential rule
exeuction

• Consequence: the HW can never reach a state
unexpected in the rule semantics

• Therefore, correctness is preserved

7

March 2, 2005 L10-13

Scheduling
The tool schedules as many rules in a clock
cycle as it can prove are safe

Generates interlock hardware to prevent execution of
unsafe combinations

Scheduling is the tool’s best attempt at the
fastest possible correct and safe hardware

Delayed rule execution is a consequence of safety
checking, i.e., a rule “conflicts” with another rule in
the same clock, the tool may delay its execution to a
later clock

March 2, 2005 L10-14

Obviously safe to execute
simultaneously

always @(posedge CLK)
x <= x + 1;

always @(posedge CLK)
y <= y + 2;

rule r1; x <= x + 1; endrule
rule r2; y <= y + 2; endrule

Simultaneous execution is equivalent to r1
followed by r2
And also to r2 followed by r1

always @(posedge CLK) begin
x <= x + 1;
y <= y + 2;

end

8

March 2, 2005 L10-15

Safe to execute simultaneously

always @(posedge CLK)
x <= y + 1;

always @(posedge CLK)
y <= y + 2;

rule r1; x <= y + 1; endrule
rule r2; y <= y + 2; endrule

Simultaneous execution is equivalent to r1
followed by r2
Not equivalent to r2 followed by r1

But that’s ok; just need equivalence to some rule
sequence

March 2, 2005 L10-16

Actions within a single rule

always @(posedge CLK)
x <= y + 1;

always @(posedge CLK)
y <= x + 2;

rule r1;
x <= y + 1;
y <= x + 2;

endrule

Actions within a single rule are simultaneous

(The above translation is ok assuming no interlocks
needed with any other rules involving x and y)

9

March 2, 2005 L10-17

Not safe to execute
simultaneously

always @(posedge CLK)
x <= y + 1;

always @(posedge CLK)
y <= x + 2;

rule r1;
x <= y + 1;

endrule
rule r2;

y <= x + 2;
endrule

Simultaneous execution
is not equivalent to r1 followed by r2
nor to r2 followed by r1

A rule is not a Verilog “always” block!
Interlocks will prevent these firing together
(by delaying one of them)

March 2, 2005 L10-18

Rule: As a State Transformer
A rule may be decomposed into two parts
π(s) and δ(s) such that

snext = if π(s) then δ(s) else s

π(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule.

(conjunction of explicit and implicit conditions)

δ(s) is the “state transformation” function,
i.e., computes the next-state value in terms
of the current state values.

10

March 2, 2005 L10-19

Compiling a Rule

f

x

current
state

next
state
values

δ

π

enable

f

x

rule r (f.first() > 0) ;
x <= x + 1 ; f.deq ();

endrule

π = enabling condition
δ = action signals & values

rdy signals
read methods

enable signals
action
parameters

March 2, 2005 L10-20

Combining State Updates:
strawman

next state
value

latch
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R

What if more than one rule is enabled?

11

March 2, 2005 L10-21

Combining State Updates

next state
value

latch
enable

R

Scheduler:
Priority
Encoder

OR

φ1

φn

π1

πn

δ1,R

δn,R

OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all
the rules

March 2, 2005 L10-22

One-rule-at-a-time Scheduler

Scheduler:
Priority

Encoder

π1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. One rewrite at a time
i.e. at most one φi is true

Very co
nservative

way of guaranteeing

corre
ctn

ess

12

March 2, 2005 L10-23

Executing Multiple Rules
Per Cycle

Can these rules be executed
simultaneously?

These rules are “conflict free”
because they manipulate
different parts of the state

rule ra (z > 10);
x <= x + 1;

endrule

rule rb (z > 20);
y <= y + 2;

endrule

Rulea and Ruleb are conflict-free if
∀s . πa(s) ∧ πb(s) ⇒

1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s))

March 2, 2005 L10-24

Executing Multiple Rules
Per Cycle

Can these rules be executed
simultaneously?

These rules are
“sequentially composable”,
parallel execution behaves
like ra < rb

rule ra (z > 10);
x <= y + 1;

endrule

rule rb (z > 20);
y <= y + 2;

endrule

Rulea and Ruleb are sequentially composable if
∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

13

March 2, 2005 L10-25

Multiple-Rules-per-Cycle
Scheduler

Schedulerπ1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. Multiple operations such that
φi ∧ φj ⇒ Ri and Rj are conflict-free or

sequentially composable

Scheduler

Scheduler

March 2, 2005 L10-26

Scheduling and control logic
Modules

(Current state) Rules

δ1

π1
Scheduler

φ1

φn

π1

πn

Muxing

δ1

δn
δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

14

March 2, 2005 L10-27

Synthesis Summary
Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)
Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order

Since multiple rules can write to a common
piece of state, the compiler introduces suitable
muxing and mux control logic

This is very simple logic: the compiler will not
introduce long paths on its own (details later)

March 2, 2005 L10-28

Conditionals and rule-spliting
In Rule Semantics this rule:

Is equivalent to the following two rules:

rule r1 (p1);
if (q1) f.enq(x);
else g.enq(y);

endrule

rule r1a (p1 && q1);
f.enq(x);

endrule

rule r1b (p1 && ! q1);
g.enq(y);

endrule

but not quite because

of th
e compiler tr

eats

implicit
 conditio

ns

conservatively

rule r1 won’t fi
re

unless b
oth f a

nf g

queues are not fu
ll!

15

March 2, 2005 L10-29

Rules for Example 3
(* descending_urgency = "r1, r2" *)
// Moving packets from input FIFO i1
rule r1;

Tin x = i1.first();
if (dest(x)== 1) o1.enq(x);
else o2.enq(x);
i1.deq();
if (interesting(x)) c <= c + 1;

endrule

// Moving packets from input FIFO i2
rule r2;

Tin x = i2.first();
if (dest(x)== 1) o1.enq(x);
else o2.enq(x);
i2.deq();
if (interesting(x)) c <= c + 1;

endrule

D
et

er
m

in
e

Q
u
eu

e
D

et
er

m
in

e
Q

u
eu

e

+1
Count

certain packets

This e
xample won’t

work properly

without ru
le sp

litin
g

March 2, 2005 L10-30

Conditionals & Concurrency

Suppose there is another rule r2
Rule r2 cannot be executed simultaneously with r1

(conflict on f)
But rule r2 may be executed simultaneously with r1b

(provided p1, !q1 and p2 so permit)
Thus, splitting a rule can allow more concurrency
because of fewer resource conflicts

rule r2 (p2);
f.enq(z);

endrule

rule r1 (p1);
if (q1) f.enq(x);
else g.enq(y);

endrule

rule r1a (p1 && q1);
f.enq(x);

endrule

rule r1b (p1 && ! q1);
g.enq(y);

endrule

16

March 2, 2005 L10-31

Scheduling conflicting rules

When two rules conflict on a shared
resource, they cannot both execute in
the same clock
The compiler produces logic that
ensures that, when both rules are
enabled, only one will fire

Which one?
The compiler chooses

(and informs you, during compilation)
The “descending_urgency” attribute allows
the designer to control the choice

March 2, 2005 L10-32

Example 2:
Concurrent Updates

Process 0 increments register x;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

0 1 2
x y

+1 -1 +1 -1

rule proc2 (cond2);
y <= y – 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc0 (cond0);
x <= x + 1;

endrule

(* descending_urgency = “proc2, proc1, proc0” *)

17

March 2, 2005 L10-33

Functionality and performance
It is often possible to separate the
concerns of functionality and
performance

First, use Rules to achieve correct
functionality
If necessary, adjust scheduling to achieve
application performance goals (latency and
bandwidth)*

*I.e., # clocks per datum and # data per clock.
Technology performance (clock speed) is a separate issue.

March 2, 2005 L10-34

Improving performance via
scheduling

Latency and bandwidth can be improved by
performing more operations in each clock cycle

That is, by firing more rules per cycle

Bluespec schedules all applicable rules in a cycle
to execute, except when there are resource
conflicts

Therefore: Improving performance is often
about resolving conflicts found by the scheduler

18

March 2, 2005 L10-35

Viewing the schedule
The command-line flag -show-schedule can
be used to dump the schedule
Three groups of information:

method scheduling information

rule scheduling information

the static execution order of rules and methods

more on this and other rule and method
attributes to be discussed in the Friday
tutorial ...

March 2, 2005 L10-36

End

