Bluespec-4: Rule Scheduling
and Synthesis

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

/

Based on material prepared by Bluespec Inc,
January 2005

March 2, 2005 L10-1

Synthesis: From State & Rules
into Synchronous FSMs

module
[]

interface| | /‘ =

e

=

I» . S“Nexl"
Transition

—>_ Logic

March 2, 2005 L10-2

Hardware Elements

Combinational circuits
s Mux, Demux, ALU, ...

Sel Sel
A
|g—>] — O, I
I, — [¢) | De- > Oy
= |Mux Y -
. ux . B
(LA L, 0, —

OpSelect

- Add, Sub, AddU, ...
- And, Or, Not, ...

- GT, LT, EQ, ...

- SL, SR, SRA, ...

Result
NCvZ

Synchronous state elements
= Flipflop, Register, Register file, SRAM, DRAM

D D D D D D D D
FSTVRREN NG R O LA L register

I A

Q Q Q Q@ Q@ Q Q Q

March 2, 2005

L10-3

Flip-flops with Write Enables

EN

|

D—.,

c—p

ff |—Q

C [1 L1 1

EN 7] —

D_/ | W I S

Q—/

Edge-triggered: Data is sampled at the rising edge

ff

dangerous!

March 2, 2005

L10-4

Semantics and synthesis

Verification activities

Rules
Semantics: “Untimed” (one rule at a time)

Using Rule Semantics,
establish functional
correctness

Scheduling
and
Synthesis

by the BSV compiler)
Using Schedules,
establish performance
correctness

Verilog RTL
Semantics: clocked synchronous HW
(multiple rules per clock)

March 2, 2005 L10-5

Rule semantics
Given a set of rules and an initial state

while (some rules are applicable*
In the current state)

m choose one applicable rule

= apply that rule to the current state to
produce the next state of the system>*

(*) “applicable” = a rule’s condition is true in current state

(**) These rule semantics are “untimed” — the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.

March 2, 2005 L10-6

Why are these
rule semantics useful?

Much easier to reason about correctness of a
system when you consider just one rule at a
time

No problems with concurrency (e.g., race
conditions, mis-timing, inconsistent states)

= We also say that rules are “interlocked”

= Major impact on design entry time and
on verification time

March 2, 2005

L10-7

Extensive
supporting theory

Term Rewriting Systems, Terese, Cambridge Univ. Press,
2003, 884 pp.

Parallel Program Design: A Foundation, K. Mani Chandy and
Jayadev Misra, Addison Wesley, 1988

Using Term Rewriting Systems to Design and Verify
Processors, Arvind and Xiaowei Shen, IEEE Micro 19:3, 1998,
p36-46

Proofs of Correctness of Cache-Coherence Protocols, Stoy et
al, in Formal Methods for Increasing Software Productivity,
Berlin, Germany, 2001, Springer-Verlag LNCS 2021

Superscalar Processors via Automatic Microarchitecture
Transformation, Mieszko Lis, Masters thesis, Dept. of Electrical
Eng. and Computer Science, MIT, 2000

. and more ...

The intuitions underlying this theory
are easy to use in practice

March 2, 2005

L10-8

Bluespec’s synthesis
Introduces concurrency

B.

together in a clock cycle only if A and B
produce the same net state change

Synthesis is all about executing multiple
rules “simultaneously” (in the same clock
cycle)

A. When executing a set of rules in a clock cycle in

hardware, each rule reads state from the leading
clock edge and sets state at the trailing clock edge
= none of the rules in the set can see the effects of any

of the other rules in the set
However, in one-rule-at-a-time semantics , each

rule sees the effects of all previous rule executions
Thus, a set of rules can be safely executed

March 2, 2005 L10-9
Pictorially
% Ri Ri K ; rule
Rules uu-l -luu-l .I 4 I'I J.I...|R * .I .l pl...l PI PI >|--- l St’éps
awo re | | | .
I oo | | clocks
Ri g
e There are more intermediate states in the rule
semantics (a state after each rule step)
< In the HW, states change only at clock edges
< In each clock, a different number of rules may fire
March 2, 2005 L10-10

Parallel execution
reorders reads and writes
Rules rule
Ireads Write§|reads Writeglmglreads writeslreads Writesl ste
R \, - ps
Py / — /\\
y T VoA \\‘\1\\
reads writeg]reads writes
HW ! *|clocks
< In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules
* In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks
March 2, 2005 L10-11
Correctness
| ; f ; | rule
RUIES weel Aol A AT A goeelFG o g ool 4 A oo | A
) Steps
Rk
HW I oo | I clocks
Ri R

state change is equivalent to sequential rule
exeuction

e Consequence: the HW can never reach a state
unexpected in the rule semantics

= Therefore, correctness is preserved

e Rules are allowed to fire in parallel only if the net

March 2, 2005

L10-12

Scheduling

The tool schedules as many rules in a clock
cycle as it can prove are safe

» Generates interlock hardware to prevent execution of
unsafe combinations

Scheduling is the tool’s best attempt at the
fastest possible correct and safe hardware

= Delayed rule execution is a consequence of safety
checking, i.e., a rule “conflicts” with another rule in
the same clock, the tool may delay its execution to a
later clock

March 2, 2005 L10-13

Obviously safe to execute
simultaneously

always @(posedge CLK)
X <= X + 1;

always @(posedge CLK)
y <=y + 2;

rule r1; x <= x + 1; endrule
rule r2; y <=y + 2; endrule

always @(posedge CLK) begin
X <= X + 1;
y <=y +2;

end

Simultaneous execution is equivalent to rl
followed by r2

And also to r2 followed by ri1

March 2, 2005 L10-14

Safe to execute simultaneously

rule rl; x <=y + 1; endrule always @(posedge CLK)
rule r2; y <=y + 2; endrule X <=y + 1;
always @(posedge CLK)
y <=y +2;

Simultaneous execution is equivalent to rl1
followed by r2
Not equivalent to r2 followed by ri1

= But that’s ok; just need equivalence to some rule
sequence

March 2, 2005 L10-15

Actions within a single rule

rule ri; \y/’//, always @(posedge CLK)
X <=y + 1; X <=y + 1;
y <= X + 2; [::::::::::i::> always @(posedge CLK)
endrule y <= X + 2;

Actions within a single rule are simultaneous

(The above translation is ok assuming no interlocks
needed with any other rules involving x and y)

March 2, 2005 L10-16

Not safe to execute
simultaneously

rule ri; always @(posedge CLK)

X <=y + 1; X <=y + 1;
endrule [% always @(posedge CLK)
rule r2; y <= X + 2;

y <= X + 2;
endrule

#® Simultaneous execution
= iS not equivalent to rl1 followed by r2
= nor to r2 followed by rl

A rule is not a Verilog “always” block!
Interlocks will prevent these firing together
(by delaying one of them)

March 2, 2005 L10-17

Rule: As a State Transformer

A rule may be decomposed into two parts
n(s) and 3(s) such that

S = if n(s) then 8(s) else s

next

n(s) is the condition (predicate) of the rule,

a.k.a. the “CAN_FIRE” signal of the rule.
(conjunction of explicit and implicit conditions)

d(s) is the “state transformation” function,
i.e., computes the next-state value in terms
of the current state values.

March 2, 2005 L10-18

current
sState

March 2, 2005

rule r (f.first() >

0) ;

X<=x+1;

endrule

—

rdy signals
read method

Compiling a Rule

f.deq Q;

enable signals

action

parameters

n = enabling condition
8 = action signals & values

— enable

next
state
values

L10-19

March 2, 2005

Combining State Updates:

strawman

Uz

7's from the rules
that update R

B

Js from the rules
that update R

8n,R >

Ly |

What if more than

latch
enable

next state .

value

one rule is enabled?

L10-20

10

T
7’s from all .
the rules °

Ty ’

o's from the rules
that update R

6n,R

Combining State Updates

¢y

Scheduler: .
Priority
Encoder

dn

latch
enable

next state .

value

Scheduler ensures that at most one ¢ is true

March 2, 2005

L10-21

One-rule-at-a-time Scheduler

— &

"o

—— 1 Scheduler: —

) Priority | |

.

ﬂ-n —_— _— ¢n
2 O
SGN xe®
2. VIV VI, 2PV V... VP, O @
ey (o
N [e) o o]

3. One rewrite at a time WO et

i.e. at most one ¢

March 2, 2005

is true

L10-22

11

Executing Multiple Rules

Per Cycle

rule ra (z > 10);
X <= X + 1;
endrule

rule rb (z > 20);
y <=y + 2;
endrule

Can these rules be executed
simultaneously?

These rules are “conflict free”
because they manipulate
different parts of the state

Rule, and Rule, are conflict-free if
Vs . m,(S) A mp(S) =
1. 13(8p(8)) A mp(3a(S))
2. 8,4(8p(8)) == 8p(3a(S))

March 2, 2005

L10-23

Executing Multiple Rules

Per Cycle

rule ra (z > 10);
X <=y + 1;
endrule

rule rb (z > 20);
y <=y + 2;
endrule

Can these rules be executed
simultaneously?

These rules are
“sequentially composable”,
parallel execution behaves
likera<rb

Rule, and Rule, are sequentially composable if
VS . Ta(S) A mp(S) = m(84(S))

March 2, 2005

L10-24

12

Multiple-Rules-per-Cycle

March 2, 2005

Scheduler

g Scheduler

7z

: — 1 Scheduler

7, Scheduler
l. g =7

2. VI, V...

#

VI, =S¢ Ve V.. VP,

3. Multiple operations such that
¢ 1 ¢ = R;and R, are conflict-free or
sequentially composable

L10-25

Scheduling and control logic

“WModules Rules ‘CAN_FIRE' “WILL_FIRE” Modules
(Current state)] O, (Next state)
l T, . Scheduler y
Tcn ¢n ﬁ
] 51
LA |
] T A
. 8, —
cond g . i —
l action| § : Muxing : LA |
n | 5, - —
J A

March 2, 2005

L10-26

13

March 2, 2005

Synthesis Summary

Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

= The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)

= Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order
Since multiple rules can write to a common
piece of state, the compiler introduces suitable
muxing and mux control logic

= This is very simple logic: the compiler will not
introduce long paths on its own (details later)

L10-27

rule r1 (pl);
it (q1) f.enq(x);
else g-enq(y);
endrule

Conditionals and rule-spliting

In Rule Semantics this rule:

W\ (2
\)(\\e's S
cx“"’“e

O

ﬂ\\og g o
N ot

. (e
o\

A

|Is equivalent to the following two rules:

March 2, 2005

rule rla (pl && ql);
f.enq(x);
endrule

rule rlb (pl & ! ql);
g-ena(y);

endrule

L10-28

14

Rules for Example

(* descending_urgency = "'rl1, r2" *)

// Moving packets from input FIFO il &

rule ri;) LIEY N
Tin x = il.firstQ; £ gl b
if (dest(x)== 1) ol.enq(X); N (
else o02.enq(X); 4 L,
i1.deqQ); S |]| lE8 /\'
if (interesting(x)) ¢ <= c + 1; el

endrule N

// Moving packets from input FIFO i2 Count

rule r2; certain packets
Tin x = 12.First(); «
if (dest(x)== 1) ol.enq(x); \e o
else 02.enq(x); e#36“3696“¥&““3
i2.deqQ; < o« © \e S
if (interesting(x)) c <= c + 1; \No\)‘(\)

endrule \N'\x‘(\o

March 2, 2005 L10-29

Conditionals & Concurrency

rule rla (pl && ql);
f.enq(x);
endrule

rule rlb (pl && ! ql);

g-enq(y);
endrule

rule r1 (pl);
it (q1) f.enq(x);
else g-enq(y):
endrule

rule r2 (p2);

f.enq(2);
endrule

Suppose there is another rule r2
Rule r2 cannot be executed simultaneously with r1

= (conflict on f)

But rule r2 may be executed simultaneously with rlb
= (provided p1, !ql and p2 so permit)

Thus, splitting a rule can allow more concurrency
because of fewer resource conflicts

March 2, 2005

L10-30

15

Scheduling conflicting rules

\When two rules conflict on a shared
resource, they cannot both execute in
the same clock

The compiler produces logic that
ensures that, when both rules are
enabled, only one will fire

\Which one?

= The compiler chooses
(and informs you, during compilation)
» The “descending_urgency” attribute allows
the designer to control the choice

March 2, 2005 L10-31

Example 2:
Concurrent Updates

Process O increments register X;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

PP

rule procO (condO); || rule procl (condl); ||rule proc2 (cond2);
X <= X + 1; y <=y + 1; y <=y - 1;
endrule X <= X — 1; endrule
endrule
(* descending_urgency = “proc2, procl, proc0” *)
March 2, 2005 L10-32

16

March 2, 2005

Functionality and performance

It is often possible to separate the
concerns of functionality and
performance

s First, use Rules to achieve correct
functionality

» If necessary, adjust scheduling to achieve
application performance goals (latency and
bandwidth)*

*|.e., # clocks per datum and # data per clock.
Technology performance (clock speed) is a separate issue.

L10-33

March 2, 2005

Improving performance via
scheduling

| atency and bandwidth can be improved by
performing more operations in each clock cycle
= That is, by firing more rules per cycle

Bluespec schedules all applicable rules in a cycle
to execute, except when there are resource
conflicts

Therefore: Improving performance is often
about resolving conflicts found by the scheduler

L10-34

17

Viewing the schedule

The command-line flag -show-schedule can
be used to dump the schedule

Three groups of information:

= method scheduling information

= rule scheduling information

= the static execution order of rules and methods

more on this and other rule and method
attributes to be discussed in the Friday
tutorial ...

March 2, 2005

L10-35

End

March 2, 2005

L10-36

18

