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Synthesis: From State & Rules
into Synchronous FSMs
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Hardware Elements

# Combinational circuits
s Mux, Demux, ALU, ...
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- Add, Sub, AddU, ...
- And, Or, Not, ...

- GT, LT, EQ, ...

- SL, SR, SRA, ...
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# Synchronous state elements
= Flipflop, Register, Register file, SRAM, DRAM

D D D D D D D D
FSTVRREN NG R O LA L register

I A

Q Q Q Q@ Q@ Q Q Q

March 2, 2005

L10-3

Flip-flops with Write Enables
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Edge-triggered: Data is sampled at the rising edge
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Semantics and synthesis

Verification activities

Rules
Semantics: “Untimed” (one rule at a time)

Using Rule Semantics,
establish functional
correctness

Scheduling
and
Synthesis

by the BSV compiler )
Using Schedules,
establish performance
correctness

Verilog RTL
Semantics: clocked synchronous HW
(multiple rules per clock)

March 2, 2005 L10-5

Rule semantics
Given a set of rules and an initial state

while ( some rules are applicable*
In the current state )

m choose one applicable rule

= apply that rule to the current state to
produce the next state of the system>*

(*) “applicable” = a rule’s condition is true in current state

(**) These rule semantics are “untimed” — the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.
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Why are these
rule semantics useful?

# Much easier to reason about correctness of a
system when you consider just one rule at a
time

# No problems with concurrency (e.g., race
conditions, mis-timing, inconsistent states)

= We also say that rules are “interlocked”

= Major impact on design entry time and
on verification time
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Extensive
supporting theory

# Term Rewriting Systems, Terese, Cambridge Univ. Press,
2003, 884 pp.

# Parallel Program Design: A Foundation, K. Mani Chandy and
Jayadev Misra, Addison Wesley, 1988

# Using Term Rewriting Systems to Design and Verify
Processors, Arvind and Xiaowei Shen, IEEE Micro 19:3, 1998,
p36-46

# Proofs of Correctness of Cache-Coherence Protocols, Stoy et
al, in Formal Methods for Increasing Software Productivity,
Berlin, Germany, 2001, Springer-Verlag LNCS 2021

# Superscalar Processors via Automatic Microarchitecture
Transformation, Mieszko Lis, Masters thesis, Dept. of Electrical
Eng. and Computer Science, MIT, 2000

# . and more ...

The intuitions underlying this theory
are easy to use in practice
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Bluespec’s synthesis
Introduces concurrency

B.

together in a clock cycle only if A and B
produce the same net state change

# Synthesis is all about executing multiple
rules “simultaneously” (in the same clock
cycle)

A. When executing a set of rules in a clock cycle in

hardware, each rule reads state from the leading
clock edge and sets state at the trailing clock edge
= none of the rules in the set can see the effects of any

of the other rules in the set
However, in one-rule-at-a-time semantics , each

rule sees the effects of all previous rule executions
# Thus, a set of rules can be safely executed
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Pictorially
% Ri Ri K ; rule
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Ri g
e There are more intermediate states in the rule
semantics (a state after each rule step)
< In the HW, states change only at clock edges
< In each clock, a different number of rules may fire
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Parallel execution
reorders reads and writes
Rules rule
Ireads Write§|reads Writeglmglreads writeslreads Writesl ste
R \, - ps
Py / — /\\
y T VoA \\‘\1\\
reads writeg]reads writes
HW ! *|clocks
< In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules
* In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks
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Correctness
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state change is equivalent to sequential rule
exeuction

e Consequence: the HW can never reach a state
unexpected in the rule semantics

= Therefore, correctness is preserved

e Rules are allowed to fire in parallel only if the net
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Scheduling

# The tool schedules as many rules in a clock
cycle as it can prove are safe

» Generates interlock hardware to prevent execution of
unsafe combinations

# Scheduling is the tool’s best attempt at the
fastest possible correct and safe hardware

= Delayed rule execution is a consequence of safety
checking, i.e., a rule “conflicts” with another rule in
the same clock, the tool may delay its execution to a
later clock
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Obviously safe to execute
simultaneously

always @(posedge CLK)
X <= X + 1;

always @(posedge CLK)
y <=y + 2;

rule r1; x <= x + 1; endrule
rule r2; y <=y + 2; endrule

always @(posedge CLK) begin
X <= X + 1;
y <=y +2;

end

# Simultaneous execution is equivalent to rl
followed by r2

# And also to r2 followed by ri1
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Safe to execute simultaneously

rule rl; x <=y + 1; endrule always @(posedge CLK)
rule r2; y <=y + 2; endrule X <=y + 1;
always @(posedge CLK)
y <=y +2;

# Simultaneous execution is equivalent to rl1
followed by r2
# Not equivalent to r2 followed by ri1

= But that’s ok; just need equivalence to some rule
sequence
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Actions within a single rule

rule ri; \y/’//, always @(posedge CLK)
X <=y + 1; X <=y + 1;
y <= X + 2; [::::::::::i::> always @(posedge CLK)
endrule y <= X + 2;

# Actions within a single rule are simultaneous

(The above translation is ok assuming no interlocks
needed with any other rules involving x and y)
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Not safe to execute
simultaneously

rule ri; always @(posedge CLK)

X <=y + 1; X <=y + 1;
endrule [% always @(posedge CLK)
rule r2; y <= X + 2;

y <= X + 2;
endrule

#® Simultaneous execution
= iS not equivalent to rl1 followed by r2
= nor to r2 followed by rl

A rule is not a Verilog “always” block!
Interlocks will prevent these firing together
(by delaying one of them)
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Rule: As a State Transformer

A rule may be decomposed into two parts
n(s) and 3(s) such that

S = if n(s) then 8(s) else s

next

n(s) is the condition (predicate) of the rule,

a.k.a. the “CAN_FIRE” signal of the rule.
(conjunction of explicit and implicit conditions)

d(s) is the “state transformation” function,
i.e., computes the next-state value in terms
of the current state values.

March 2, 2005 L10-18




current
sState
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rule r (f.first() >

0) ;

X<=x+1;

endrule

—

rdy signals
read method

Compiling a Rule

f.deq Q;

enable signals

action

parameters

n = enabling condition
8 = action signals & values

— enable

next
state
values
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Combining State Updates:

strawman

Uz

7's from the rules
that update R
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that update R
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one rule is enabled?
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T
7’s from all .
the rules °

Ty ’

o's from the rules
that update R
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Combining State Updates

¢y

Scheduler: .
Priority
Encoder

dn

latch
enable

next state .

value

Scheduler ensures that at most one ¢ is true
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One-rule-at-a-time Scheduler
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3. One rewrite at a time WO et

i.e. at most one ¢
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Executing Multiple Rules

Per Cycle

rule ra (z > 10);
X <= X + 1;
endrule

rule rb (z > 20);
y <=y + 2;
endrule

Can these rules be executed
simultaneously?

These rules are “conflict free”
because they manipulate
different parts of the state

Rule, and Rule, are conflict-free if
Vs . m,(S) A mp(S) =
1. 13(8p(8)) A mp(3a(S))
2. 8,4(8p(8)) == 8p(3a(S))

March 2, 2005

L10-23

Executing Multiple Rules

Per Cycle

rule ra (z > 10);
X <=y + 1;
endrule

rule rb (z > 20);
y <=y + 2;
endrule

Can these rules be executed
simultaneously?

These rules are
“sequentially composable”,
parallel execution behaves
likera<rb

Rule, and Rule, are sequentially composable if
VS . Ta(S) A mp(S) = m(84(S))
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Multiple-Rules-per-Cycle
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Scheduler

g Scheduler

7z

: — 1 Scheduler

7, Scheduler
l. g =7

2. VI, V...

#

VI, =S¢ Ve V.. VP,

3. Multiple operations such that
¢ 1 ¢ = R;and R, are conflict-free or
sequentially composable
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Scheduling and control logic
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Synthesis Summary

# Bluespec generates a combinational hardware
scheduler allowing multiple enabled rules to
execute in the same clock cycle

= The hardware makes a rule-execution decision on
every clock (i.e., it is not a static schedule)

= Among those rules that CAN_FIRE, only a subset
WILL_FIRE that is consistent with a Rule order
# Since multiple rules can write to a common
piece of state, the compiler introduces suitable
muxing and mux control logic

= This is very simple logic: the compiler will not
introduce long paths on its own (details later)
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rule r1 (pl);
it (q1) f.enq(x);
else g-enq(y);
endrule

Conditionals and rule-spliting

# In Rule Semantics this rule:
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# |Is equivalent to the following two rules:
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rule rla (pl && ql);
f.enq(x);
endrule

rule rlb (pl & ! ql);
g-ena(y);

endrule
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Rules for Example

(* descending_urgency = "'rl1, r2" *)

// Moving packets from input FIFO il &

rule ri; ) LIEY N
Tin x = il.firstQ; £ gl b
if (dest(x)== 1) ol.enq(X); N (
else o02.enq(X); 4 L,
i1.deqQ); S | ]| lE8 /\'
if (interesting(x)) ¢ <= c + 1; el

endrule N

// Moving packets from input FIFO i2 Count

rule r2; certain packets
Tin x = 12.First(); «
if (dest(x)== 1) ol.enq(x); \e o
else 02.enq(x); e#36“3696“¥&““3
i2.deqQ; < o« © \e S
if (interesting(x)) c <= c + 1; \No\)‘(\)

endrule \N'\x‘(\o
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Conditionals & Concurrency

rule rla (pl && ql);
f.enq(x);
endrule

rule rlb (pl && ! ql);

g-enq(y);
endrule

rule r1 (pl);
it (q1) f.enq(x);
else g-enq(y):
endrule

rule r2 (p2);

f.enq(2);
endrule

# Suppose there is another rule r2
# Rule r2 cannot be executed simultaneously with r1

= (conflict on f)

# But rule r2 may be executed simultaneously with rlb
= (provided p1, !ql and p2 so permit)

# Thus, splitting a rule can allow more concurrency
because of fewer resource conflicts
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Scheduling conflicting rules

# \When two rules conflict on a shared
resource, they cannot both execute in
the same clock

# The compiler produces logic that
ensures that, when both rules are
enabled, only one will fire

# \Which one?

= The compiler chooses
(and informs you, during compilation)
» The “descending_urgency” attribute allows
the designer to control the choice
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Example 2:
Concurrent Updates

# Process O increments register X;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

PP

rule procO (condO); || rule procl (condl); ||rule proc2 (cond2);
X <= X + 1; y <=y + 1; y <=y - 1;
endrule X <= X — 1; endrule
endrule
(* descending_urgency = “proc2, procl, proc0” *)
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Functionality and performance

# It is often possible to separate the
concerns of functionality and
performance

s First, use Rules to achieve correct
functionality

» If necessary, adjust scheduling to achieve
application performance goals (latency and
bandwidth)*

*|.e., # clocks per datum and # data per clock.
Technology performance (clock speed) is a separate issue.
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Improving performance via
scheduling

# | atency and bandwidth can be improved by
performing more operations in each clock cycle
= That is, by firing more rules per cycle

# Bluespec schedules all applicable rules in a cycle
to execute, except when there are resource
conflicts

# Therefore: Improving performance is often
about resolving conflicts found by the scheduler
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Viewing the schedule

# The command-line flag -show-schedule can
be used to dump the schedule

# Three groups of information:

= method scheduling information

= rule scheduling information

= the static execution order of rules and methods

more on this and other rule and method
attributes to be discussed in the Friday
tutorial ...
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End
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