Bluespec-3: Modules &
Interfaces

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

/

Based on material prepared by Bluespec Inc,
January 2005

February 28, 2005 L09-1

Bluespec: State and Rules
organized into modules

module =
[%74
interface :| / /
/
1 /

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.

Behavior is expressed in terms of atomic actions on the state:

Rule: condition = action
Rules can manipulate state in other modules only via their

interfaces.
February 22, 2005 LO7-2

J—

Courtesy of BlueSpec Inc. Used with permission.

Example 1:
simple binary multiplication

“typedef bit[15:0] Tin;
typedef bit[31:0] Tout; Replace it by a
f' “start” method

modulle mkMultO (Empty);

‘ Tin d_init = 9, r_init = 5; // compile-time constants ‘
Reg#(Tout) product <- mkReg (0); State
Reg#(Tout) d <- mkReg ({167h0000, d_init});
Reg#(Tin) r <- mkReg (r_init);

rule cycle (r 1= 0);
if (r[0] == 1) product <= product + d;
d<=d << 1;
Replace it by a

r.s=.r.2z4; Behavior o .
endrule: cycle ﬁ “result” method 2° o \‘

o)

A
N 0y
rule done (r == 0); Oe((\e\.\ee,
$display (“Product = %d”, product); \© 27\ 0
endrule: done 43\‘25& e

A
endmodule: mkMultO \
February 22, 2005 9"

LO7-3

Example 1: Modularized

interface Mult_ifc;
method Action start (Tin, X, Tin y);
method Tout result ;
endinterface

module mkMultl (Mult_ifc);

Reg#(Tout) product <- mkReg (0);
Reg#(Tout) d <- mkReg (0); State
Reg#(Tin) r <- mkReg (0);

rule cycle (r '= 0);
if (r[0] == 1) product <= product + d;
d<=d << 1;
r <=r >>1;

endrule: cycle

Behavior

d <= d_init; r <= r_init;
endmethod
method result () if (r == 0);
return product;
endmethod
Februagndaodd=: mkMultl

method Action start (d_init, r_init) if (r == 0);\L
Interface

LO7-4

Interfaces

| interface Muft_ifc;

[method Action start (Tin x, Tin y);
method Tout result(Q);

\ endinterface

~
<
module mkMultl (Mult_ifc);

endmodule

An interface declaration defines an interface type
= Corresponds, roughly, to the port list of an RTL module

= Contains prototypes of methods, which are “transactions”
that can be invoked on the module

A module declaration specifies the interface that it
implements (a.k.a. provides)

February 22, 2005 LO7-5

A Test bench for Example 1

module mkTest (Empty);

Reg#(int) state <- mkReg(0); ‘/////"“‘ Instantiating the
Mult_ifc m <- mkMult1lQ; mkMult module

rule go (state == 0);
m.start (9, 5);
state <= 1;

endrule

Invoking mkMult’s
methods

rule finish (state == 1);
$display (“Product ="%d”,
m.resul€(Q));
state <= 2;
endrule
endmodule: mkTest

February 22, 2005 LO7-6

Module and interface

INstantiation
module mkTest (Empty) ; {4 module mkMultl (Mult_ifc);
Reg#(int) state <- mkReg(0); || .
Mult_ifc m <- mkMultl1Q;| | ..
endmodule
eHdmodule

Modules instantiate other modules
= Just like instantiating primitive state elements like
registers

Standard module-instantiation shorthand:
s This:

‘Mult_ifc m <- mkMultliQ);

= is shorthand for:

Mult_ifc mQ; (interface instantiation)
mkMultl mult_inst(m); | (module instantiation)
February 22, 2005 LO7-7

Methods are invoked from rules

module mkTest (Empty) ; module mkMultl (Mult_ifc);

Mult_ifc m <- mkMultliQ);

rule go (state==0); S » method Action start (x, y)

AN
m.start(9,5); —— D if (r == 0);
state <= 1; d <=X; r <=y;
endrule endmethod
endmodule endmodule

Rule condition: state==0 && r==
= Conjunction of explicit (state==0) and implicit
(r==0) conditions
Rule actions: state<=1, d<=9 and r<=5

s Thus, a part of the rule’s action is in a different
module, behind a method invocation

February 22, 2005 LO7-8

Three Method Forms

BSV method calls look like function and procedure calls:

\alue methods: Functions which take O or more

arguments and return a value
X = m.resultQ)

Action methods: Procedures which take O or more

arguments and perform an action
m.start(x)

Actionvalue methods: Procedures which take O or more
arguments, perform an action, and return a result.
X <= m.popQ

Value methods can be called from any expression but action
or actionvalue methods can be called only from a rule or a
method body (not from a rule or method predicate)

February 22, 2005 LO7-9

Methods as ports

#Interface method types can be
interpreted directly as 1/0 wires of
a module:
= Arguments are input signals
= Return values are output signals

= An implicit condition is an output
“ready” signal

= An Action type (side-effect) indicates
an incoming “enable” signal

February 22, 2005 LO7-10

Methods as ports: Mult_ifc

interface Mult_ifc;
method Action start (Tin x, Tin y);
method Tout result ;

endinterface
start: Awr.—
. 6
- 16-bit arguments v g
H . - " ©
* has side effect (action 7l Lo
() i==0 rdy i 't|5
+ O
S O
result: | S E
e no argument —32 s
. (%]
« 32-bit result j==0 Ay |©
< no side effect |
February 22, 2005 LO7-11

Methods as ports: FIFO interface

interface FIFO #(type t);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty
endinterface: FIFO

\n
enab

~lal))

not full Jdy

enab ||
not empty <T4¥_|

n

4+
notempty «fdy

FIFO
module

enab

~a

]deaﬂ “ksﬂ [deq]| |enq |

February 22, 2005 LO7-12

Methods as ports: summary

Methods can be viewed as a higher-level

description of ports:
= A method groups related ports together
* e.g., data_in, RDY and ENABLE
= Enforces the “micro-protocol”
+ Called only when ready
+ Strobes data at the right time
¢ ... and more ...

It is easy to relate the generated Verilog to

the BSV source:
= Transparent translation from methods to ports

February 22, 2005

LO7-13

Syntax note: “<-”

#“<-" is used in two ways:
= Module instantiation shorthand
= Invoking an ActionValue method

Queue#(int) g <- mkQueue;

.ll'.ule rl (.);
X <= q.popQ);

endrule

These two uses are distinguished by
context

February 22, 2005

LO7-14

Two uses of “<-”

In both uses, the operator

= Has a side-effect
+ “instantiate a module”
+ “discard an element from the FIFO”

= And returns a value
* “return the interface”
+ “return the discarded FIFO element”
In one case these happen during static
elaboration

In the other case these happen
dynamically (during HW execution)

February 22, 2005 LO7-15

Sharing methods

February 22, 2005 LO7-16

A method can be invoked
from more than one rule

module mkTest (..); interface FIFO#(type t);
Action eng (t n);

FIFO#(int) f <- mkFIFOQ; i
- endinterface
rule r1 (. condl .);
S module mkFIFO (.);
f.enqg (. exprl .); —l i
e T * method enq (x) if (. notFull .);
endrule v

endmethod
rule r2 (.. cond2 .); {

\ endmodule: mkFIFO

%.enq C.expr2 .);

endrule
endmodule: mkTest

(In general the two invoking rules could be in different modules)

February 22, 2005 LO7-17

Sharing methods

|n software, to call a function/procedure from two
processes just means:
= Create two instances (usually on two stacks)

A BSV method represents real hardware
= There is only one instance (per instantiated module)
= It is a shared resource
= Parallel accesses must be scheduled (controlled)
= Data inputs and outputs must be muxed/ distributed

The BSV compiler inserts logic to accomplish this
sharing
= This logic is not an artifact of using BSV—it is logic that the
designer would otherwse have to design manually

February 22, 2005 LO7-18

Sharing a method

The compiler inserts logic for sharing a method

not full W

ENAB
not empty

RDY

DATA_oi }nT

not empty W

FIFO

February 22, 2005 LO7-19

Important special cases

Value methods without arguments need no muxing or
control, since they have no inputs into the module
= Examples:
¢ r._read for a register
« F.first for a FIFO

= Note: these methods are combinational functions, but they
depend on the module’s internal state

(Advanced topic) BSV primitives can specify a
replication factor for certain methods, so two calls to
the “same” method actually get connected
(automatically) to different replicas of the method

= E.g., a read method of a multi-ported register file

February 22, 2005 LO7-20

10

Interface variations

@It is the designer’s choice how to
expose the functionality of a
module using interface methods

4@E.g., a FIFO can have several
Interfaces

February 22, 2005 LO7-21

A FIFO interface

interface FIFO #(type t);

method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item

method Action clear(); // make FIFO empty
endinterface: FIFO

enab ||
not empty <T4¥_|

FIFO
module

n

4+
notempty «fdy

enab

~a

]deaﬂ “ksﬂ [deq]| |enq |

February 22, 2005 LO7-22

11

Another FIFO interface:
Combine first & deq

endinterface: FIFO

interface FIFO #(type t);
method Action push(t);
method ActionValue#(t) popQ);
method t first();
method Action clear();

// engqueue an item
// remove oldest entry
// inspect oldest item
// make FIFO empty

enab

~lla |

not full Jdy
<+n

notQNMy¢ﬁ£L—~—

n

‘AF
not empty «rdy |

enab

~llat)]

—n

FIFO
module

]deaﬂ Hhsﬂ [pop| [push]

February 22, 2005

may or may not provide
“first” method

LO7-23

FIFOF:

signals:

method Bool notEmpty();

endinterface

Explicit ready signals

The designer might want to expose the implicit
ready signals—the notFull and notEmpty

..enqg .. First ..

interface FIFOF#(type aType);
.. clear

method Bool notFull();

The original eng/deg/first methods may or
may not be protected by implicit conditions,
depending on the module implementation

February 22, 2005

LO7-24

Modularizing your design

Consider a speculative, Register
out-of-order File
microachitecture -
3 ALU
n i Unit
Fetch g~ Decode 3
T
\ J| MEM
Branch L Unit
O]
FIFO | FIFO
Suppose we want to
Instruction focus on the ROB Data
Memory module Memory
February 22, 2005 LO7-25

ROB actions

R Reg_ister Empty[E_]
File Waiting NNl
Get operands Writeback Dispatched
for instr e Killed Kl
Re-Order Buffer Done -
State Instruction Operand 1 Operand 2 Result
(e][nsr - | [V [[T
(£ Cnse | [V (WA =T
vead > [l [mstr_ | [V (WA [Get a ready

ALU instr ALU

Insert an Put ALU instr Unlt(S)
instr into Tail ([] Cinstr_ | [V [[] results in ROB
ROB I8 | v | v | |

Get a ready
MEM instr MEM
Resolve U nit(s)
branches Put MEM instr

results in ROB

February 22, 2005 LO7-26

A natural organization for two modules
be “recursive”.

Modularizing your design

a

Module A Module B

v

may

but unfortunately BSV does not handle recursive

module calls ...

February 22, 2005

LO7-27

A rule that calls a method

module moduleA (InterfaceA);

can be turned into a method

rule foo(True);
MsgTypeB msg <-
modB.getMessage();
<use msg>

Module A

endrule
endmodulle: moduleA

module ModuleA (InterfaceA); m

method foo(MsgTypeB msg);

<use msg>
endmethod _’D

endmodulle: moduleA

Module A

February 22, 2005

LO7-28

14

Alternative Modularization

Put one module inside the other

Module A
D Module B

Create a new module and put both modules

inside it. Provide rules to pass values inbetween

Module C

Module A [:E] Module B

February 22, 2005

LO7-29

Glue module code ...

module mkTest (Empty);

InterfaceA modA <- mkModuleA(Q);
InterfaceB modB <- mkModuleB();

rule messagefromAtoB (True);
MsgTypeA msg <- modA.getMessageToB();
modB . handleMessageFromA(msg) ;

endrule

rule messagefromBtoA (True);
MsgTypeB msg <- modB.getMessageToA();
modA . handleMessageFromB(msg) ;

endrule

endmodulle: mkTest

February 22, 2005

LO7-30

15

Modular organization:
Two Stage Pipeline

iM@m F”Te;d | \FI\FO\bu\ | UMTU

A

»

hawuop
NN
haunsp
haunsp

fetch & decode < execute

N aa .

--------- » Read method call

—) Action method call
February 22, 2005

LO7-31

Summary

An interface type (e.g., Mult_ifc) specifies the prototypes
of the methods in such an interface

= The same interface can be provided by many modules

Module definition:

= A module header specifies the interface type provided (or
implemented) by the module
= Inside a module, each method is defined
+ Can contain implicit conditions, actions and returned values
= Many module definitions can provide the same interface

Module use:
= An interface and a module are instantiated

= Interface methods can be invoked from rules and other
methods

+ Method implicit conditions contribute to rule conditions
+ Method actions contribute to rule actions

= rule semantics extends smoothly across module boundaries

February 22, 2005 L07-32

16

