Bluespec-2: Designing with
Rules

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc,
January 2005

February 25, 2005 L08-1

Bluespec: State and Rules
organized into modules

module =
[] %74
interface :| / /
/
1 /

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.

Behavior is expressed in terms of atomic actions on the state:

J—

Rule: condition = action

Rules can manipulate state in other modules only via their

interfaces.
February 22, 2005 LO7-2

Courtesy of BlueSpec Inc. Used with permission.

Rules

#® A rule is declarative specification of a
state transition
= An action guarded by a Boolean condition

rule ruleName (<predicate>);
<action>
endrule

February 22, 2005 LO7-3

Example 1:
simple binary multiplication

1001 // multiplicand (d) = 9
x 0101 // multiplier (r) =5
1001 // d << 0 (since r[0] == 1)
0000 // 0 << 1 (since r[1] == 0)
1001 // d << 2 (since r[2] == 1)
0000 // 0 << 3 (since r[3] == 0)
0101101 // product (sum of above) = 45

(Note: this is just a basic example; there are many sophisticated
algorithms for multiplication in the literature)

February 22, 2005 LO7-4

Example 1:
simple binary multiplication

“typedef bit[15:0] Tin;
typedef bit[31:0] Tout;

module mkMultO ();
Tin d_init = 9, r_init = 5; // compile-time constants

Reg#(Tout) d <- mkReg ({167h0000, d_init});~ (module
Reg#(Tin) r <- mkReg (r_init); instantiation)

Reg#(Tout) product <- mkReg (0); }> State—registers

rule cycle (r 1= 0);
if (r[0] == 1) product <= product + d;
d-<=-d-<<-1;
r <=r > 1;

endrule: cycle Behavior

rule done (r == 0);
$display (“Product = %d”, product);
endrule: done

endmodule: mkMultO
February 22, 2005 LO7-5

Module Syntax

#Module declaration

module name
module mkMult0 Q;

enamodule: mkMu lt0
Module instantiation
s short form

interface interface type’s interface module module’s
type parameter(s) instance name parameter(s)
eg#(Tout) product <- mkReg (0);
= long form
Reg#(Tout) product(); // interface
mkReg#(0) the_product(product);

// the instance

February 22, 2005 LO7-6

Variables

Variables have a type and name values
Tin d_init = 9, r_init = 5;

Variables never represent state
s l.e., they do not remember values over time

» They are always like wires, i.e., a variable
just represents the value it is assigned

State is obtained only by module
instantiation

February 22, 2005 LO7-7

The module hierarchy

instance of mkMultO

product d r
\ | \ \ [] »instances of mkReg

As in Verilog, module instances can be nested,
i.e., the tree can be deeper.

All state elements are at the leaves

February 22, 2005 LO7-8

Example 1 in Verilog RTL

7 module mkMultO (CLK, RST_N):
input CLK;
input RST_N; \
e
reg [31:0] product = O; oV
reg [31:0] d = 9; .qeﬁﬂ
reg [15:0] r = 5;
always @ (posedge CLK)
if (r '= 0) begin
if (r[0] == 1) product <= product + d;
d <=d << 1;
r <=r >>1;
end
else
$display (“Product = %d”, product);
endmodule: mkMultO
February 22, 2005 LO7-9

Over-simplified
analogy with Verilog process

In this simple example, a rule is reminiscent of
an “always” block:

rule rname (<cond>); <action> endrule

always@(posedge CLK)
it (<cond>) begin: rname
<action>
end

But this is not true in general:

= Rules have interlocks—becomes important when
rules share resources, to avoid race conditions

= Rules can contain method calls, invoking actions in
other modules

February 22, 2005 LO7-10

Rule semantics
Given a set of rules and an initial state

while (some rules are applicable*
in the current state)

= choose one applicable rule

= apply that rule to the current state to
produce the next state of the system>*

(*) “applicable” = a rule’s condition is true in current state

(**) These rule semantics are “untimed” — the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.

February 22, 2005 LO7-11

Example 2:
Concurrent Updates

Process O increments register X;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

AP

This is an abstraction of some real applications:

= Bank account: O = deposit to checking, 1 = transfer from
checking to savings, 2 = withdraw from savings

= Packet processor: O = packet arrives, 1 = packet is
processed, 2 = packet departs

February 22, 2005 LO7-12

Concurrency in Example 2

DD

Process j (= 0,1,2) only updates under
condition condj

Only one process at a time can update a
register. Note:

= Process O and 2 can run concurrently if process 1 is
not running

= Both of process 1's updates must happen
“indivisibly” (else inconsistent state)
Suppose we want to prioritize process 2 over
process 1 over process O

February 22, 2005 L07-13

Example 2 Using Rules

(* descending_urgency = “proc2, procl, proc0” *)

rule procO (cond0);
X <= X + 1;
endrule

rule procl (condl); .
P () Functional correctness follows

y <=y + 1; X .
X <= x — 1; directly from rule semantics
endrule X
Related actions are grouped
rule proc2 (cond2); naturally with their conditions—
y <=y-1; easy to change
endrule

Interactions between rules are
managed by the compiler
(scheduling, muxing, control)

February 22, 2005 LO7-14

Example 2 in Verilog:
Explicit concurrency control

always @(posedge C // process 0
if ((‘condl && cond0)
X <= X + 13— L
will make it incorrect

always @(posedge CLK) // process 1
if (Icond2 && condl) begin

always @(posedge CLK) begin
if (Icond2 && condl)
X <= xX — 1;
else if (cond0)
X <= X + 1;

y <=y +1; if (cond2)
X <= X — 1; y <=y -1; (ﬁiﬁ
end else if (condl) 6605
y <=y + 1; V«ﬁ
always @(posedge CLK) // process 2 end <@§'
if (cond2) P
y <=y-1;
Are these solutions correct?
How to verify that they’re correct?
What needs to change if the conds change?
What if the processes are in different modules?
February 22, 2005 LO7-15
A FIFO interface
interface FIFO #(type t);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty
endinterface: FIFO
n —
enab® g
not full +£gy—————;94 o
engb o Q3
notempty <4 18| T :
4+ng
notempty «fdy ||
enab §
|G|
February 22, 2005 LO7-16

Actions that return Values:
Another FIFO interface

interface FIFO #(type t);

method Action push(t); // engqueue an item
method ActionValue#(t) pop(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

N
enab

~llay |

not full Jdy
<+n

mnemMy+ﬁ&~—%f

n

‘AF
not empty «fdy — |

FIFO
module

enab

~llat)]

]deaﬂ “Hsﬂ [pop| [push]

February 22, 2005 LO7-17

Example 3:
A 2x2 switch, with stats

Packets arrive on g \
two input FIFOs, and i1} CJES N
must be switched to 5§ N ol

two output FIFOs
s dest(pkt) € {1,2} j

Certain “interesting o
packets” must be s
counted

= interesting(pkt) e
{True, False}

Determine
Queue

-

Count
certain packets

February 22, 2005 LO7-18

|nput FIFOs can be empty
Output FIFOs can be full

Example 3: Specifications

Shared resource collision on counter:

Shared resource collision on an output FIFO:

= if packets available on both input FIFOs, both have same
destination, and destination FIFO is not full

= if packets available on both input FIFOs, each has different
destination, both output FIFOs are not full, and both

packets are “interesting”

Resolve collisions in favor of packets from the first input

FIFO

Must have maximum throughput: a packet must move if

it can, modulo the above rules

February 22, 2005

LO7-19

Rules for Example 3

(* descending_urgency = "'r1, r2" *)
// Moving packets from input FIFO i1l
rule ri;

Tin x = 1l1.Ffirst();
if (dest(x)== 1) ol.enq(xX);

else o02.enq(xX);

il.deqQ;

if (interesting(x)) ¢ <= c + 1;
endrule

// Moving packets from input FIFO i2
rule r2;

Tin x = 12.First(Q);

if (dest(x)== 1) ol.enq(X);

else 02.enq(x);

i2.deq();

if (interesting(xX)) c <= c + 1;
endrule

February 22, 2005

v
i

etermine
Queue

)
v

etermine
Queue

\J/\-
7

E@
Count

certain packets

Notice, the rules
have no explicit
predicates, only
actions

LO7-20

10

Example 3: Commentary

Muxes and their control for output FIFOs and
Counter are generated automatically
FIFO emptiness and fullness are handled
automatically
= Rule and interface method semantics make it
+ Impossible to read a junk value from an empty FIFO
+ Impossible to enqueue into a full FIFO
+ Impossible to race for multiple enqueues onto a FIFO
= No magic -- equally available for user-written
module interfaces
All control for resource sharing handled
automatically
= Rule atomicity ensures consistency

s The “descending_urgency” attribute resolves
collisions in favor of rule r1

February 22, 2005 LO7-21

Example 3: Changing Specs

Now imagine the following changes to the
existing code:
= Some packets are multicast (go to both FIFOs)
= Some packets are dropped (go to no FIFO)
= More complex arbitration
* FIFO collision: in favor of rl1
+ Counter collision: in favor of r2
+ Fair scheduling
= Several counters for several kinds of interesting
packets
= Non-exclusive counters (e.g., TCP = IP)
= M input FIFOs, N output FIFOs (parameterized)
Suppose these changes are required 6 months
after original coding

= Rules based designs provide flexibility, robustness,

correctness, ...
February 22, 2005 LO7-22

Example 4: Shifter

Goal: implement: y = shift (x,s)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

Strategy:

s Shift by s =
shift by 4 (=22) if s[2] is set,
and by 2 (=21) if s[1] is set,
and by 1(=29) if s[0] is set

with wires

IR I SR AR AR

VA

vy vy v v ey

= A shift by 2i is trivial: it's just a “lane change” made purely

February 22, 2005 L07-23
Cascaded Combinational
Shifter
]
3
So S, szl
n \ 3 3 3
Ll sh, &) %o L>sh2 glxy 4 sh, p1%J X2
bS] function Pair step_ j (Pair sx); where k=2i
25 return ((sx.s[j]==0) ? sx
£ Pair{s: sx.s,x:sh_k(sx.-x)});
<2 |endfunction

function int shifter (int s,iInt X);
Pair sx0, sx1, sx2;

sx0 = step_O(Pair{s:s, x:x}):
sx1l = step_1(sx0); typedef struct
sx2 = step_2(sx1);

return (sx2.x);

Pair;

{int x; int s;}

February Zgrgagé'jn(:tl L

LO7-24

Asynchronous pipeline
with FIFOs (regs with interlocks)

s 3

x D
fifo,

rule stage 1;
Pair sx0 <- fifoO.pop(); TFifol.push(step_0(sx0));
endrule

rule stage 2;
Pair sxl1 <- fifol._pop(); Fifo2.push(step_1(sx1));
endrule

rule stage_3;
Pair sx2 <- fifo2.pop(); TFifo3.push(step_2(sx2));
endrule

February 22, 2005 LO7-25

Required simultaneity

If it is necessary for several
actions to happen together,
(i.e., indivisibly, atomically)

Put them in the same rule!

February 22, 2005 LO7-26

13

Synchronous pipeline
(with registers)

s 3]

X
y

~
step_1 step_2

rule sync-shifter;
sx1l <= step_0(sx0);
sx2 <= step_1(sx1);
sx3 <= step_2(sx2);
endrule

February 22, 2005

o[
[0l [1] 21
sx0 ! sx1 Sx2 2h,
N AN iy J

-

step_3

sx1, sx2 and sx3 are
registers defined
outside of the rules

LO7-27

Discussion

actions in parallel

(atomic!)

rules in parallel

In the synchronous pipeline, we compose

= All stages move data simultaneously, in lockstep

In the asynchronous pipeline, we compose

= Stages can move independently (each stage can
move when its input fifo has data and its output fifo

has room)

= If we had used parallel action composition instead,
all stages would have to move in lockstep, and could
only move when all stages were able to move
Your design goals will suggest which kind of
composition is appropriate in each situation

February 22, 2005

LO7-28

14

Summary: Design using Rules

Much easier to reason about
correctness of a system when you
consider just one rule at a time

No problems with concurrency (e.g.,
race conditions, mis-timing,
inconsistent states)
= We also say that rules are “interlocked”

= Major impact on design entry time and
on verification time

February 22, 2005

LO7-29

Types and Syntax notes

February 22, 2005

LO7-30

15

Types and type-checking

#® BSV is strongly-typed
= Every variable and expression has a type
= The Bluespec compiler performs strong type
checking to guarantee that values are

used only in places that make sense,
according to their type

This catches a huge class of design
errors and typos at compile time, i.e.,
before simulation!

February 22, 2005 LO7-31

SV notation for types

#Some types just have a name

int, Bool, Action, ..

#More complex types can have
parameters which are themselves

types
FI1FO#(Bool) // fifo containing Booleans
Tuple2#(int,Bool) // pair of items: an int and a Boolean

FIFO#(Tuple2#(int,Bool)) // fifo containining pairs of ints
// and Booleans

February 22, 2005 L07-32

16

Numeric type parameters

BSV types also allows numeric

parameters
Bit#(16) // 16-bit wide bit-vector
Int#(29) // 29-bit wide sighed integers

Vector#(16, Int#(29)) // vector of 16 Int#(29) elements

@ These numeric types should not be
confused with numeric values, even
though they use the same number
syntax

= The distinction is always clear from context, i.e.,
type expressions and ordinary expressions are
always distinct parts of the program text

February 22, 2005 L07-33

Courtesy of BlueSpec Inc. Used with permission.

A synonym for bit-vectors:

Standard Verilog notation for bit-
vectors is just special syntax for
the general notation

bit[15:0] is the same as Bit#(16)

February 22, 2005 LO7-34

17

Common scalar types

#Bool

= Booleans
#Bit#(n)

= Bit vectors, with a width n bits
@ Int#(n)

= Signed integers of n bits
#UInt#(n)

= Unsigned integers of n bits

February 22, 2005 L07-35

Types of variables

Every variable has a data type:
bit[3:0] vec; // or Bit#(4) vec;
vec = 47b1010;

Bool cond = True;
typedef struct { Bool b; bit[31:0] v; } Val;
Val x = { b: True, v: 17 };
BSV will enforce proper usage of values
according to their types
= You can't apply “+” to a struct

= You can’t assign a boolean value to a
variable declared as a struct type

February 22, 2005 LO7-36

18

“let” and type-inference

Normally, every variable is introduced
in a declaration (with its type)

The “let” notation introduces a variable
with an assignment, with the compiler
inferring its correct type

let vec = 47b1010; // bit[3:0] vec = ..

let cond = True; // Bool cond = ..;

This is typically used only for very
“local” temporary values, where the
type is obvious from context

February 22, 2005 LO7-37

Instantiating

interfaces and modules

7 ®The SV idiom is:
s Instantiate an interface

» Instantiate a module, binding the interface

+ Note: the module instance name is generally not
used, except in debuggers and in hierarchical

names
interface type’s
interface type parameters interface instance
interface instance declaration —> FIFO#(DataT) inbound1();
module instance declaration —» mkSizedFI1FO#(fifo_depth) the_inboundl(inboundl);
t t t
module name module module instance

BSV also allows a shorthand:

FIFO#(DataT) inboundl <- mkSizedFIFO(Ffifo_depth);

February 22, 2005 LO7-38

19

Rule predicates

The rule predicate can be any Boolean
expression
= Including function calls and method calls

Cannot have a side-effect
= This is enforced by the type system

The predicate must be true for rule
execution
= But in general, this is not enough

= Sharing resources with other rules may
constrain execution

February 22, 2005

LO7-39

Why not “ reg x; 7?

#® Unambiguity: In V and SV, “reg x;” is
a variable declaration which may or
may not turn into a HW register

Uniformity: BSV uses SV’s module-
instantiation mechanism uniformly for
primitives and user-defined modules

Strong typing: Using SV’s module-
Instantiation mechanism enables
polymorphic, strongly-typed registers

February 22, 2005

LO7-40

20

