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Bluespec: State and Rules
organized into modules

module =
[ ] %74
interface :| / /
/
1 /

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.

Behavior is expressed in terms of atomic actions on the state:

J—

Rule: condition = action

Rules can manipulate state in other modules only via their

interfaces.
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Rules

#® A rule is declarative specification of a
state transition
= An action guarded by a Boolean condition

rule ruleName (<predicate>);
<action>
endrule

February 22, 2005 LO7-3

Example 1:
simple binary multiplication

1001 // multiplicand (d) = 9
x 0101 // multiplier (r) =5
1001 // d << 0 (since r[0] == 1)
0000 // 0 << 1 (since r[1] == 0)
1001 // d << 2 (since r[2] == 1)
0000 // 0 << 3 (since r[3] == 0)
0101101 // product (sum of above) = 45

(Note: this is just a basic example; there are many sophisticated
algorithms for multiplication in the literature)
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Example 1:
simple binary multiplication

“typedef bit[15:0] Tin;
typedef bit[31:0] Tout;

module mkMultO ();
Tin d_init = 9, r_init = 5; // compile-time constants

Reg#(Tout) d <- mkReg ({167h0000, d_init});~ (module
Reg#(Tin) r <- mkReg (r_init); instantiation)

Reg#(Tout) product <- mkReg (0); }> State—registers

rule cycle (r 1= 0);
if (r[0] == 1) product <= product + d;
d-<=-d-<<-1;
r <=r > 1;

endrule: cycle Behavior

rule done (r == 0);
$display (“Product = %d”, product);
endrule: done

endmodule: mkMultO
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Module Syntax

#Module declaration

module name
module mkMult0 Q;

enamodule: mkMu lt0
# Module instantiation
s short form

interface interface type’s interface module module’s
type parameter(s) instance name parameter(s)
eg#(Tout) product <- mkReg (0);
= long form
Reg#(Tout) product(); // interface
mkReg#(0) the_product(product);

// the instance

February 22, 2005 LO7-6




Variables

# Variables have a type and name values
Tin d_init = 9, r_init = 5;

# Variables never represent state
s l.e., they do not remember values over time

» They are always like wires, i.e., a variable
just represents the value it is assigned

# State is obtained only by module
instantiation
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The module hierarchy

instance of mkMultO

product d r
\ | \ \ [ ] »instances of mkReg

As in Verilog, module instances can be nested,
i.e., the tree can be deeper.

All state elements are at the leaves
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Example 1 in Verilog RTL

7 module mkMultO (CLK, RST_N):
input CLK;
input RST_N; \
e
reg [31:0] product = O; oV
reg [31:0] d = 9; .qeﬁﬂ
reg [15:0] r = 5;
always @ (posedge CLK)
if (r '= 0) begin
if (r[0] == 1) product <= product + d;
d <=d << 1;
r <=r >>1;
end
else
$display (“Product = %d”, product);
endmodule: mkMultO
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Over-simplified
analogy with Verilog process

# In this simple example, a rule is reminiscent of
an “always” block:

rule rname (<cond>); <action> endrule

always@(posedge CLK)
it (<cond>) begin: rname
<action>
end

# But this is not true in general:

= Rules have interlocks—becomes important when
rules share resources, to avoid race conditions

= Rules can contain method calls, invoking actions in
other modules
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Rule semantics
Given a set of rules and an initial state

while ( some rules are applicable*
in the current state )

= choose one applicable rule

= apply that rule to the current state to
produce the next state of the system>*

(*) “applicable” = a rule’s condition is true in current state

(**) These rule semantics are “untimed” — the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.
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Example 2:
Concurrent Updates

# Process O increments register X;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

AP

# This is an abstraction of some real applications:

= Bank account: O = deposit to checking, 1 = transfer from
checking to savings, 2 = withdraw from savings

= Packet processor: O = packet arrives, 1 = packet is
processed, 2 = packet departs
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Concurrency in Example 2

DD

# Process j (= 0,1,2) only updates under
condition condj

# Only one process at a time can update a
register. Note:

= Process O and 2 can run concurrently if process 1 is
not running

= Both of process 1's updates must happen
“indivisibly” (else inconsistent state)
# Suppose we want to prioritize process 2 over
process 1 over process O
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Example 2 Using Rules

(* descending_urgency = “proc2, procl, proc0” *)

rule procO (cond0);
X <= X + 1;
endrule

rule procl (condl); .
P ( ) Functional correctness follows

y <=y + 1; X .
X <= x — 1; directly from rule semantics
endrule X
Related actions are grouped
rule proc2 (cond2); naturally with their conditions—
y <=y-1; easy to change
endrule

Interactions between rules are
managed by the compiler
(scheduling, muxing, control)
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Example 2 in Verilog:
Explicit concurrency control

always @(posedge C // process 0
if ((‘condl && cond0)
X <= X + 13— L
will make it incorrect

always @(posedge CLK) // process 1
if (Icond2 && condl) begin

always @(posedge CLK) begin
if (Icond2 && condl)
X <= xX — 1;
else if (cond0)
X <= X + 1;

y <=y +1; if (cond2)
X <= X — 1; y <=y -1; (ﬁiﬁ
end else if (condl) 6605
y <=y + 1; V«ﬁ
always @(posedge CLK) // process 2 end <@§'
if (cond2) P
y <=y-1;
Are these solutions correct?
How to verify that they’re correct?
What needs to change if the conds change?
What if the processes are in different modules?
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A FIFO interface
interface FIFO #(type t);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty
endinterface: FIFO
n —
enab® g
not full +£gy—————;94 o
engb o Q3
notempty <4 18| T :
4+ng
notempty «fdy ||
enab §
|G|
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Actions that return Values:
Another FIFO interface

interface FIFO #(type t);

method Action push(t); // engqueue an item
method ActionValue#(t) pop(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

N
enab

~llay |

not full Jdy
<+n

mnemMy+ﬁ&~—%f

n

‘AF
not empty «fdy — |

FIFO
module

enab

~llat) ]

]deaﬂ “Hsﬂ [pop| [push]
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Example 3:
A 2x2 switch, with stats

# Packets arrive on g \
two input FIFOs, and i1} CJES N
must be switched to 5§ N ol

two output FIFOs
s dest(pkt) € {1,2} j

# Certain “interesting o
packets” must be s
counted

= interesting(pkt) e
{True, False}

Determine
Queue

-

Count
certain packets
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# |nput FIFOs can be empty
# Output FIFOs can be full

Example 3: Specifications

# Shared resource collision on counter:

# Shared resource collision on an output FIFO:

= if packets available on both input FIFOs, both have same
destination, and destination FIFO is not full

= if packets available on both input FIFOs, each has different
destination, both output FIFOs are not full, and both

packets are “interesting”

# Resolve collisions in favor of packets from the first input

FIFO

# Must have maximum throughput: a packet must move if

it can, modulo the above rules

February 22, 2005
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Rules for Example 3

(* descending_urgency = "'r1, r2" *)
// Moving packets from input FIFO i1l
rule ri;

Tin x = 1l1.Ffirst();
if (dest(x)== 1) ol.enq(xX);

else o02.enq(xX);

il.deqQ;

if (interesting(x)) ¢ <= c + 1;
endrule

// Moving packets from input FIFO i2
rule r2;

Tin x = 12.First(Q);

if (dest(x)== 1) ol.enq(X);

else 02.enq(x);

i2.deq();

if (interesting(xX)) c <= c + 1;
endrule
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etermine
Queue

)
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etermine
Queue
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Count

certain packets

Notice, the rules
have no explicit
predicates, only
actions
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Example 3: Commentary

# Muxes and their control for output FIFOs and
Counter are generated automatically
# FIFO emptiness and fullness are handled
automatically
= Rule and interface method semantics make it
+ Impossible to read a junk value from an empty FIFO
+ Impossible to enqueue into a full FIFO
+ Impossible to race for multiple enqueues onto a FIFO
= No magic -- equally available for user-written
module interfaces
# All control for resource sharing handled
automatically
= Rule atomicity ensures consistency

s The “descending_urgency” attribute resolves
collisions in favor of rule r1
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Example 3: Changing Specs

# Now imagine the following changes to the
existing code:
= Some packets are multicast (go to both FIFOs)
= Some packets are dropped (go to no FIFO)
= More complex arbitration
* FIFO collision: in favor of rl1
+ Counter collision: in favor of r2
+ Fair scheduling
= Several counters for several kinds of interesting
packets
= Non-exclusive counters (e.g., TCP = IP)
= M input FIFOs, N output FIFOs (parameterized)
# Suppose these changes are required 6 months
after original coding

= Rules based designs provide flexibility, robustness,

correctness, ...
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Example 4: Shifter

# Goal: implement: y = shift (x,s)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

# Strategy:

s Shift by s =
shift by 4 (=22) if s[2] is set,
and by 2 (=21) if s[1] is set,
and by 1(=29) if s[0] is set

with wires

IR I SR AR AR

VA

vy vy v v ey

= A shift by 2i is trivial: it's just a “lane change” made purely
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Cascaded Combinational
Shifter
]
3
So S, szl
n \ 3 3 3
Ll sh, &) %o L>sh2 glxy 4 sh, p1%J X2
bS] function Pair step_ j (Pair sx); where k=2i
25 return ((sx.s[j]==0) ? sx
£ Pair{s: sx.s,x:sh_k(sx.-x)});
<2 |endfunction

function int shifter (int s,iInt X);
Pair sx0, sx1, sx2;

sx0 = step_O(Pair{s:s, x:x}):
sx1l = step_1(sx0); typedef struct
sx2 = step_2(sx1);

return (sx2.x);

Pair;

{int x; int s;}

February Zgrgagé'jn(:tl L
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Asynchronous pipeline
with FIFOs (regs with interlocks)

s 3

x D
fifo,

rule stage 1;
Pair sx0 <- fifoO.pop(); TFifol.push(step_0(sx0));
endrule

rule stage 2;
Pair sxl1 <- fifol._pop(); Fifo2.push(step_1(sx1));
endrule

rule stage_3;
Pair sx2 <- fifo2.pop(); TFifo3.push(step_2(sx2));
endrule
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Required simultaneity

If it is necessary for several
actions to happen together,
(i.e., indivisibly, atomically)

Put them in the same rule!
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Synchronous pipeline
(with registers)

s 3]

X
y

~
step_1 step_2

rule sync-shifter;
sx1l <= step_0(sx0);
sx2 <= step_1(sx1);
sx3 <= step_2(sx2);
endrule

February 22, 2005

o[
[0l [1] 21
sx0 ! sx1 Sx2 2h,
N AN iy J

-

step_3

sx1, sx2 and sx3 are
registers defined
outside of the rules
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Discussion

actions in parallel

(atomic!)

rules in parallel

# In the synchronous pipeline, we compose

= All stages move data simultaneously, in lockstep

# In the asynchronous pipeline, we compose

= Stages can move independently (each stage can
move when its input fifo has data and its output fifo

has room)

= If we had used parallel action composition instead,
all stages would have to move in lockstep, and could
only move when all stages were able to move
# Your design goals will suggest which kind of
composition is appropriate in each situation

February 22, 2005
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Summary: Design using Rules

# Much easier to reason about
correctness of a system when you
consider just one rule at a time

# No problems with concurrency (e.g.,
race conditions, mis-timing,
inconsistent states)
= We also say that rules are “interlocked”

= Major impact on design entry time and
on verification time

February 22, 2005
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Types and Syntax notes
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Types and type-checking

#® BSV is strongly-typed
= Every variable and expression has a type
= The Bluespec compiler performs strong type
checking to guarantee that values are

used only in places that make sense,
according to their type

# This catches a huge class of design
errors and typos at compile time, i.e.,
before simulation!
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SV notation for types

#Some types just have a name

int, Bool, Action, ..

#More complex types can have
parameters which are themselves

types
FI1FO#(Bool) // fifo containing Booleans
Tuple2#(int,Bool) // pair of items: an int and a Boolean

FIFO#(Tuple2#(int,Bool)) // fifo containining pairs of ints
// and Booleans
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Numeric type parameters

# BSV types also allows numeric

parameters
Bit#(16) // 16-bit wide bit-vector
Int#(29) // 29-bit wide sighed integers

Vector#(16, Int#(29)) // vector of 16 Int#(29) elements

@ These numeric types should not be
confused with numeric values, even
though they use the same number
syntax

= The distinction is always clear from context, i.e.,
type expressions and ordinary expressions are
always distinct parts of the program text
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Courtesy of BlueSpec Inc. Used with permission.

A synonym for bit-vectors:

# Standard Verilog notation for bit-
vectors is just special syntax for
the general notation

bit[15:0] is the same as Bit#(16)
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Common scalar types

#Bool

= Booleans
#Bit#(n)

= Bit vectors, with a width n bits
@ Int#(n)

= Signed integers of n bits
#UInt#(n)

= Unsigned integers of n bits
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Types of variables

# Every variable has a data type:
bit[3:0] vec; // or Bit#(4) vec;
vec = 47b1010;

Bool cond = True;
typedef struct { Bool b; bit[31:0] v; } Val;
Val x = { b: True, v: 17 };
# BSV will enforce proper usage of values
according to their types
= You can't apply “+” to a struct

= You can’t assign a boolean value to a
variable declared as a struct type
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“let” and type-inference

# Normally, every variable is introduced
in a declaration (with its type)

# The “let” notation introduces a variable
with an assignment, with the compiler
inferring its correct type

let vec = 47b1010; // bit[3:0] vec = ..

let cond = True; // Bool cond = ..;

# This is typically used only for very
“local” temporary values, where the
type is obvious from context
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Instantiating

interfaces and modules

7 ®The SV idiom is:
s Instantiate an interface

» Instantiate a module, binding the interface

+ Note: the module instance name is generally not
used, except in debuggers and in hierarchical

names
interface type’s
interface type parameters interface instance
interface instance declaration —> FIFO#(DataT) inbound1();
module instance declaration —» mkSizedFI1FO#(fifo_depth) the_inboundl(inboundl);
t t t
module name module module instance

# BSV also allows a shorthand:

FIFO#(DataT) inboundl <- mkSizedFIFO(Ffifo_depth);
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Rule predicates

# The rule predicate can be any Boolean
expression
= Including function calls and method calls

# Cannot have a side-effect
= This is enforced by the type system

# The predicate must be true for rule
execution
= But in general, this is not enough

= Sharing resources with other rules may
constrain execution
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Why not “ reg x; 7?

#® Unambiguity: In V and SV, “reg x;” is
a variable declaration which may or
may not turn into a HW register

# Uniformity: BSV uses SV’s module-
instantiation mechanism uniformly for
primitives and user-defined modules

# Strong typing: Using SV’s module-
Instantiation mechanism enables
polymorphic, strongly-typed registers
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