
RTL Model of a Two-Stage MIPS Processor

6.884 Laboratory 1
February 4, 2005 - Version 20040215

1 Introduction

For the first lab assignment, you are to write an RTL model of a two-stage pipelined MIPS
processor using Verilog. The lab assignment is due at the start of class on Friday, February
18. You are free to discuss the design with others in the class, but you must turn in your
own solution.

The two-stage pipeline should perform instruction fetch in the first stage, while the second
pipeline stage should do everything else including data memory access. The 32-bit instruction
register should be the only connection from the first stage to the second stage of the pipeline.
You should find that the two-stage pipeline makes it easy to implement the MIPS branch
delay slot.

If you need to refresh your memory about pipelining and the MIPS instruction set, we rec­
ommend “Computer Organization and Design: The Hardware/Software Interface”, Second
Edition, by Patterson and Hennessey.

For this assignment, you should focus on writing clean synthesizable code that follows the
coding guidelines discussed in lecture. In particular, place logic only in leaf modules and
use pure structural code to connect the leaf modules in a hierarchy. Avoid tricky hardware
optimizations at this stage, but make sure to separate out datapath and memory components
from control circuitry.

The datapath diagram in Figure 5 can be used as an intial template for your SMIPS cpu
implementation, but please treat it as a suggestion. Your objective in this lab is to implement
the SMIPS ISA subset, not to implement the datapath diagram so feel free to add new control
signals, merge modules, or make any other modification to the datapath diagram.

2 CPU Interface

Your processor model should be in a module named mips cpu, and must have the interface
shown in Figure 1. We will provide a test rig that will drive the inputs and check the
outputs of your design, and that will also provide the data and instruction memory. We
have provided separate instruction and data memory ports to simplify the construction of

1

2 6.884 Lab Assignment 1, Spring 2005

the two stage pipeline, but both ports access the same memory space. The memory ports
can only access 32-bit words, and so the lowest two bits of the addresses are ignored (i.e.,
only addr[31:2] and iaddr[31:2] are significant). Notice that the data write bus is a
separate unidirectional bus from the data read bus. Bidirectional tri-state buses are usually
avoided on chip in ASIC designs.

module mips_cpu
(

input clk, // Clock input
input reset, // Reset input
input int_ext, // External interrupt input

input [7:0] fromhost, // Value from test rig
output [7:0] tohost, // Output to test rig

output [31:0] addr,
output wen,
output [31:0] write_data,
input [31:0] read_data,

// Data memory address
// Data memory write enable
// Data to write to memory
// Data read back from memory

output [31:0] iaddr, // Instruction address
input [31:0] inst // Instruction bits

);

Figure 1: Interface to SMIPS CPU.

3 Implemented Instructions

The SMIS instruction set is a simplified version of the full MIPS instruction set. Consult
the “SMIPS Processor Specification” for more details about the SMIPS architecture. For
this first lab assignment, you will only be implementing a subset of the SMIPS specification.
Figures 2 and 3 show the instructions that you must support.

For this first assignment there are only 35 distinct instructions to implement. The instruc­
tions we have removed from the SMIPS specification for this lab are: byte and halfword
loads and stores, all multiply and divide instructions (you do not need to implement the hi
and lo registers), the branch likely instructions, the branch and link instructions (BLTZAL,
BGEZAL), the instructions that can cause arithmetic overflows (ADD, SUB, ADDI), and
other instructions related to trap handling (SYSCALL, BREAK).

� � �

�
�

�
�

�
�

�
�

3 6.884 Lab Assignment 1, Spring 2005

You do not need to support any exceptions or interrupt handling (apart from reset). The
only piece of the system coprocessor 0 you have to implement are the tohost and fromhost
registers, and the MTC0 and MFC0 instructions that access these registers. These registers
are used to communicate with the test rig. The test rig drives fromhost, while you should

tohost[7:0] mips cpuimplement an 8-bit register in COP0 which drives the port on the
module interface.

28...26 Opcode
31...29

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

* ADDIU SLTI SLTIU ANDI ORI XORI LUI
COP0 * * * *

* * * * * * * *
* * LW * * * *
* * * * * *
* *

SW
�
�* *

�
*
�
�

2...0 SPECIAL function
5...3 0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR * * * * * *
2 * * * * * * * *
3 * * * * * * * *
4 * ADDU * SUBU AND OR XOR NOR
5 * * SLT SLTU * * * *
6 * * * * * * * *
7 * * * * * * * *

18...16 REGIMM rt
20...19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ * * * * * *
1 * * * * * * * *
2 * * * * * * * *
3 * * * * * * * *

Figure 2: SMIPS CPU Instruction Subset for Lab 1.

23...21 COP0 rs
1 2 3 4 6 75

0
1
2
3

0
�
�

�
�

�
�

MTC0
�

MFC0
�

�
�

�
�

�
�

25...24

CO0

Figure 3: SMIPS CP0 Instruction Subset for Lab 1.

6.884 Lab Assignment 1, Spring 2005 4

4 Test Rig

We are providing a test rig to connect to your CPU model. The test rig loads in a hex
memory dump of instructions to fill the memory. You should use the smips-gcc toolchain to
build verilog memory dump versions of your SMIPS assembly test programs. The test rig
will clock the simulation until it sees a non-zero value coming back on the tohost register,
signifying that your CPU has completed a test program.

The simplest test program is shown in Figure 4.

0x1000: Reset vector.
addiu r2, r0, 1 # Load constant 1 into register r2
mtc0 r2, r21 # Write tohost register in COP0

loop: beq r0, r0, loop # Loop forever
nop # Branch delay slot

Figure 4: Simple test program.

5

Register
File

bn
eq

lo
gi

c_
fu

nc

sh
ift

_f
un

c

al
u_

fu
nc

w
b_

se
l

A
dd

/S
ub

S
hi

ft
er

Lo
gi

c
U

ni
t

2’b0

Instruction
Memory

iaddr inst

inst_x[15:0]
si

gn
ex

t_
se

l

im
m

_s
el

rd
1[

31
] (

bs
ig

n)

16

shamt

a_
se

l

store_data

w
en

ra
2

ra
1

rd1

rd2

wd

w
a

[2
5:

21
]

Decoder

[2
0:

16
]

wen

wen

wen

wdata

addr

rdata

fromhost[7:0]

Data
Memory

tohost[7:0]

inst_x[25:0]

pc_f[31:28]

inst_x[15:0]

{14(inst_x[15])} pc_branch

except_vec

reset_vec

pc_jump

pc_jr

2’b0

4 pc_seq

pc_sel

inst_x[15]

inst_x[10:6]

[1
5:

11
]

[2
0:

16
]

31

de
st

_s
el

pc_next

inst_x

Fetch Stage

System Coprocessor 0

Execute Stage

pc_f

6
.8

8
4 L

a
b A

ssig
n
m

en
t 1

, S
p
rin

g 2
0
0
5

F
igu

re 5: S
M

IP
S 2-S

tage P
ip

elin
e D

atap
ath for L

ab 1.

6

31

6.884 Lab Assignment 1, Spring 2005

26 25 21 20 16 15 11 10 6 5 0

rs rt rd funct
rs rt immediate

target

opcode shamt R-type
opcode I-type
opcode J-type

Load and Store Instructions
100011 base dest
101011 base dest

signed offset LW rt, offset(rs)
signed offset SW rt, offset(rs)

I-Type Computational Instructions
src dest

001010 src dest
001011 src dest
001100 src dest
001101 src dest
001110 src dest
001111 00000 dest

signed immediate
signed immediate
signed immediate

zero-ext. immediate
zero-ext. immediate
zero-ext. immediate
zero-ext. immediate

001001	 ADDIU rt, rs, signed-imm.
SLTI rt, rs, signed-imm.
SLTIU rt, rs, signed-imm.
ANDI rt, rs, zero-ext-imm.
ORI rt, rs, zero-ext-imm.
XORI rt, rs, zero-ext-imm.
LUI rt, zero-ext-imm.

R-Type Computational Instructions
SLL rd, rt, shamt
SRL rd, rt, shamt
SRA rd, rt, shamt
SLLV rd, rt, rs
SRLV rd, rt, rs
SRAV rd, rt, rs
ADDU rd, rs, rt
SUBU rd, rs, rt
AND rd, rs, rt
OR rd, rs, rt
XOR rd, rs, rt
NOR rd, rs, rt
SLT rd, rs, rt
SLTU rd, rs, rt

000000 00000 src dest 000000
000000 00000 src dest 000010
000000 00000 src dest 000011
000000 src dest 00000 000100
000000 src dest 00000 000110
000000 src dest 00000 000111
000000 src1 src2 dest 00000 100001
000000 src1 src2 dest 00000 100011
000000 src1 src2 dest 00000 100100
000000 src1 src2 dest 00000 100101
000000 src1 src2 dest 00000 100110
000000 src1 src2 dest 00000 100111
000000 src1 src2 dest 00000 101010
000000 src1 src2 dest 00000 101011

shamt
shamt
shamt

rshamt
rshamt
rshamt

Jump and Branch Instructions
J target
JAL target
JR rs
JALR rd, rs
BEQ rs, rt, offset
BNE rs, rt, offset
BLEZ rs, offset
BGTZ rs, offset
BLTZ rs, offset
BGEZ rs, offset

System Coprocessor (COP0) Instructions

000010 target
000011 target
000000 src 00000 00000 00000 001000
000000 src 00000 dest 00000 001001
000100 src1 src2
000101 src1 src2
000110 src 00000
000111 src 00000
000001 src 00000
000001 src 00001

signed offset
signed offset
signed offset
signed offset
signed offset
signed offset

010000 00000 dest cop0src 00000 000000
010000 00100 src cop0dest 00000 000000

MFC0 rt, rd
MTC0 rt, rd

Table 1: SMIPS instruction subset for Lab 1.

