Annotation-less Unit Type Inference for C

Philip Guo and Stephen McCamant
Final Project, 6.883: Program Analysis

December 14, 2005

1 Introduction

Types in programming languages are crucial for catching errors at compile-time. Similarly, in scientific
applications, the units system forms a type discipline because a correct equation must necessarily include
terms with units that are equivalent on both sides. Many scientific and numerically-oriented programs are
written in C, but the language provides no support for attaching units to variables. Thus, programmers
cannot easily tell whether the units for variables in their programs are consistent. We propose to create an
analysis that can infer the unit types of variables in C programs such that the units type discipline holds
across all expressions in the program. Unlike previous work which relies on the user to annotate some types
and then checks the rest for consistency, we propose to infer types with no user annotations at all. This
completely automatic analysis produces a most-general system of units for a program, which include any
consistent unit system the programmer may have intended as a special case. This most-general solution can
then be specialized interactively by the programmer to give human-readable names to units, a process which
requires much less programmer interaction than specifying each variable’s units one by one. Our analysis
can be used by programmers to find bugs as indicated by the inferred unit types not matching up with their
intuition and as a starting point for annotating their code with units using an annotation framework.

The correct use of physical units and dimensions is an important aspect of correctness for many computer
programs. On one hand, many programming errors lead to programs whose results do not have the expected
units, analogously to the common experience of students in introductory physics courses. For instance, an
experiment performed by Brown [Bro0O1] showed that checking the units in a short procedure written to
calculate a function used in particle physics revealed three separate errors. Conversely, programs with unit
errors can harbor subtle bugs. To cite a particularly costly error, an on-ground system used in the navigation
of the NASA Mars Climate Orbiter spacecraft failed to convert between pound-seconds and newton-seconds
in calculating the impulse produced by thruster firings, due to a programmer error when updating a program
used for a previous spacecraft to include the specification of a new model of thruster [EJC01]. This root
cause, along with inadequate testing, operational failures, and bad luck, eventually led to the loss of the
spacecraft as it was destroyed in the Mars atmosphere on September 23rd, 1999 [Mar99]. As these examples
indicate, more careful attention to physical units could improve software quality, and because the rules
governing unit correctness are simple, much of such checking can be performed automatically.

In fact, extensions exist for many languages allowing programmers to specify the units of variables and
constants so that they can be checked by a compiler. However, though many of the potential benefits of unit
annotations would be realized in the maintenance of existing systems, adding unit annotations by hand to
large existing programs would be very expensive. Instead of requiring a developer to specify each unit type
individually, we believe that a better approach is to automatically infer a general set of unit types based only
on the assumption that a program’s use of units is consistent. Such inferred types could be useful for many
kinds of automatic checking, such as warning a programmer when a change to one function is inconsistent
with the units of variables in another one. Such a most-general unit system also provides a more efficient
way for a developer to add human-readable units to a program: he or she must only specify a few of the
unit types in a program, and the rest can be automatically assigned to be consistent.

2 The Units Inference Problem

This section provides some additional details about the problem of units inference as we approach it, and
defines terminology that will be used in the rest of the paper.

A first important distinction is between the concepts of dimension and unit. A dimension is an attribute
that can be measured: for instance, length or mass. A wnit is a standard amount of some dimension, in
which other measurements of that dimension can be expressed: for instance, inches or kilograms. Every
physical quantity has an associated unit and dimension: the dimension is determined by the unit, but there
can be multiple units that correspond to the same dimension. For instance, meters per second and miles per
hour both measure speed. Dimensions and units obey the same algebraic rules: for instance, the product
of two values must have the product of their dimensions, and also the product of their units. Because of
this similarity, the techniques we discuss are generally applicable to checking either the dimensions or the
units in a program. For instance, in the statement lenl = 2.54 * len2, one might either assign lenl and
len2 the dimension length, so that 2.54 is dimensionless, or one might assign lenl the units of centimeters,
len?2 the units of inches, and 2.54 the units centimeters per inch. However, because a program with the
correct units will necessarily have the correct dimensions, we will generally speak simply of “units”. As an
exception, we refer to quantities with no units as “dimensionless” rather than “unitless”, since the former
term is standard.

Units inference is the problem of assigning a unit type (or just a “unit” for short) to all of the program
variables in a piece of code such that the algebraic rules of units are satisfied. Among the program variables
we count both true variables and numeric literals. Because unit correctness applies to operations between
variables, the units for a single variable cannot be defined in isolation: rather one should consider a unit
system in which all of a program’s units are expressed. A unit system is distinguished by its set of basic
units, those in which every other unit can be expressed. For instance, in the standard SI (metric system),
the basic units include the kilogram, second, meter, and ampere, and the derived unit volt can be expressed
as kg -m?2/(A-s3).

In considering different unit systems for a single program, it can be helpful to partially order them
according to a relation we call subsumption. A unit system Sy subsumes a unit system Si, written S; C So,
if every basic unit of S7 can be expressed in terms of basic units of S5. Intuitively, S; is ‘more expressive’
than S;. As an extreme case, the unit system with no basic units (in which every quantity is dimensionless)
is subsumed by any unit system. If two unit systems are each subsumed by the other, we say they are
equivalent.

3 Annotation-less Unit Type Inference

We present a technique that first automatically infers unit types from the source code of C programs and
then allows a user to annotate program variables with named units. The goal of our annotation-less unit type
inference technique is to construct a unit system for a program which is general enough to cover whatever
consistent system the programmer might have intended. To be precise, the goal is to find a unit system with
the minimum number of basic units that subsumes any correct unit system for a program. There may be
many equivalent unit systems with this property: the choice between them is arbitrary.

Our tool builds up constraints over variables and units based on a static source code analysis and solves
the constraints to find the minimum number of inferred basic units of a unit system that subsumes the
correct unit system. After constraint solving, each variable’s units are expressed in terms of the inferred
basic units. The user can then interactively annotate variables with user-defined units (whose components
are user-defined basic units) to specify a subsumed (more specific) unit system.

As a running example, consider the following program that calculates the total kinetic and potential
energy of a moving mass:

int main() {
double mass, velocity, height, kinetic, potential;
/* ... initialize relevant variables ... */

kinetic = 0.5 * mass * velocity * velocity;
potential = mass * height * 9.8;

printf("Total energy is: %g J\n", kinetic + potential);
return O;

Our tool first generates constraints over the units of program variables based on operations between them
such as addition and multiplication (Section 4.1). For instance, one constraint over the units of the variables
potential, mass, height, and the constant 9.8 is that the units of potential must be the product of the
units of mass, height, and 9.8. We then simplify the constraints (Section 4.2) in various ways, including
merging together variables that must have the same units into one set (e.g., kinetic and potential, which
must have the same units because they are added together within the printf statement). We then solve
the constraints (Section 4.3) to determine the minimum number of basic units (4 in this example) and each
variable’s units expressed in terms of those inferred basic units. The basic units have no names, so we will
refer to them by the numbers 1-4. Here are the results from solving the constraints on our example:

Variables:
1: velocity Units: (unit 1)
2: mass Units: (unit 2)
3: constant 0.5 Units: (unit 3)
4: constant 9.8 Units: (unit 4)
5: height Units: (unit 1)°2 * (unit 3) * (unit 4)°-1
6: kinetic, potential Units: (unit 1)°2 * (unit 2) * (unit 3)

This solution provides the most general set of units that are consistent with the constraints imposed by
operations within the program. However, these units will likely be meaningless to the user, whose notion of
units includes physics terms such as meter and second, not the unnamed basic units presented above. Our
tool includes an interactive user interface that allows the user to assign named user-defined units to variables
(Section 4.4). For this example, the user can annotate velocity with the units meter/second, height with
the units meter, and so forth. Our tool combines the named units that the user provides with the inferred
basic units from the constraint solver to assist the user in two main ways: First, it can automatically fill in
the units of certain variables after the user enters in units for other ones, thus lessening the user’s annotation
burden. Second, such inferred units can alert the user to annotation mistakes or program bugs when the
units of a variable do not match expectations.

Variables:
1: velocity Units: meter second”-1
2: mass Units: kilogram
3: constant 0.5 Units: dimensionless
4: constant 9.8 Units: meter second™-2
5: height Units: meter
6: kinetic, potential Units: kilogram meter”2 second”™-2

The above snapshot shows a completed session of our tool on this example. The user only needs to
annotate 4 out of the 6 variables (because there are 4 inferred basic units) and the tool infers the units for
the rest of the variables.

4 Technique and Implementation
Here are the four stages of our inference system:

1. Constraint generation - Analyzes the program’s source code and produces constraints that must
hold between the units of different variables (Section 4.1).

2. Constraint simplification - Simplifies the constraints by applying both meaning-preserving trans-
formations and heuristics which lose information but make sense in practice (Section 4.2).

3. Constraint solving - Solves constraints using linear algebra techniques and outputs a minimal set of
inferred basic units (Section 4.3).

4. User interface for guided annotations - Allows the user to provide user-defined units for variables
interactively while being guided by the solved constraints (Section 4.4).

4.1 Constraint generation

The input to this stage is C source code, and the output is a set of constraints on the unit types of variables.
This stage is implemented as OCaml code which is compiled with the CIL analysis framework [NMRWO02].
CIL pre-processes and parses C code to produce an abstract syntax tree; our code then walks through each
expression in the program, outputting constraints along the way. A fresh unit type variable is created for
each variable and numeric literal in the original program, and for each subexpression. (In the rest of this
paper, we will often use the term “variable” as an abbreviation for “unit type variable”.) Then, certain
kinds of expressions produce constraints between the type variables. Our tool operates on unit exponents,
so that unit multiplication is represented by addition and unit exponentiation by scalar multiplication; this
allows us to use the usual terminology of linear algebra. In the rules that follow, we use z. to represent the
unit type for an expression e:

e Addition (+), subtraction (-), assignment (=) and comparison (==, !'=, <, > <= >=) operators give
equality constraints between unit variables. For instance, from a = b + c, the tool generates the
constraints z, = z. and T, = Typ.

e A multiplication (*) operator gives a sum constraint between unit variables. For instance, from the
code a = b * c, the tool generates the constraint x, = x, + ..

e A division (/) operator gives a difference constraint between unit variables. For instance, from the
code a = b / c, the tool generates the constraint x, = x, — .

e The square-root function sqrt gives a sum constraint according to the multiplicative relationship
Vx\/r = z. For instance, from a = sqrt(b), the tool generates the constraint x, = x, + x,. (This
constraint is equivalent to the more obvious x, = %xb, but has the advantage of not requiring extra
constraint syntax beyond that required for multiplication above. We have also considered giving a
special treatment to the pow function when its second argument is a constant, but the need did not

arise in our case studies.)

This constraint collection can be viewed as a very simple static analysis. It is flow-insensitive, because
the desired result of our tool is a single unit type for each program variable. Our analysis is currently also
context-insensitive. For most functions, a context-insensitive analysis is sufficient, but some functions are
used with arguments of more than one unit type. Such functions are most common in the standard library:

for instance, generic math functions like pow, memory allocators like malloc, and input-output routines
like printf. Since such functions are not defined in the source code available to our tool, it generates no
constraints for them. However, if such a wunit polymorphic function is defined, the results of our tool suffer:
usually the only consistent typing makes the arguments to such a function dimensionless. In considering
examples, we have found cases where a number of other kinds of sensitivity might improve our tool’s results:
field sensitivity (giving different units to different fields of a structure), distinguishing different definitions of
a single variable (as by SSA conversion), and giving different unit types to different elements of statically-
sized arrays. However, it is unclear whether the benefit of such changes would be worth the effort in both
tool implementation and analysis runtime, and many would also require adding a cast-like mechanism to the
target unit annotation system.

Our implementation takes a very conservative approach to pointers and aliasing: all of the values accessed
via a pointer must have the same units. A natural implementation of this approach would be to create a
family of pointer types for each unit type: for instance, besides a type for “meters”, there would also be a type
“pointer to meters”, another “pointer to pointer to meters”, and so on. However, because it does not seem
possible to represent pointer types in linear algebra, our analysis takes a simpler approach of not recording
the information about which level of pointer a value contains: the pointer generated by taking a reference
to a meters value is again simply labelled “meters”. We believe this is reasonable because the program has
already been checked under the C type system, which distinguishes levels of pointers. A confusing result
might still be produced if a program, say, casts a pointer to an integer value and then multiplies this integer
by another dimensioned value, but such situations seem unlikely in practice.

Our analysis is interprocedural: it simply creates constraints requiring that the arguments to a function
have the same unit types as the function’s formal parameters, and similarly for the function’s return value.
To conservatively estimate which functions might be called by code that uses a function pointer, we use a
pointer analysis that is supplied with CIL. Though few of the programs we have considered make extensive
use of function pointers, this analysis might also be a source of imprecision for programs that do.

The following figure shows the relevant constraints produced in the energy example, to the right of the
lines of code that produce them. Note the unnamed intermediate variables x11, x12, x13, x17, and x18,
which correspond to non-atomic expressions: for instance, x11 is the unit type of the expression 0.5 * mass.

int main() {
double mass, velocity, height, kinetic, potential;

/* ... initialize relevant variables ... */

kinetic = 0.5 * mass * velocity * velocity; // variable velocity is x8
// variable mass is x9
// constant 0.5 is x10
// x11 = x10 + x9
// x12 = x11 + x8
// x13 = x12 + x8
// variable kinetic is x14
// x14 = x13

potential = mass * height * 9.8; // constant 9.8 is x15
// variable height is x16
// x17 = x9 + x16
// x18 = x17 + x15
// variable potential is x19
// x19 = x18

printf("Total energy is: %g J\n", kinetic + potential); // x14 = x19

return O;

4.2 Constraint simplification

It would be perfectly correct to take the constraints directly as extracted from the program, convert them
into matrix form, and solve them as we will describe in Section 4.3. However, the linear algebra constraint
solving technique requires time and space that grow more than linearly in the number of unit type variables,
and are significant in practice even for relatively small programs. Our constraint generation stage usually
produces on the order of as many constraints and unit type variables as there are lines of source code, and
the matrices used in the constraint solving stage will have at least as many rows and columns as there are
constraints and variables, respectively. Thus, it is important in practice to simplify the unit constraints
before solving them.

To allow the most freedom in the implementation of the constraint generation stage, constraint simplifi-
cation is performed by a separate program (a Perl script). The simplification has three parts:

e First, the constraint equations are simplified algebraically, removing intermediate variables by replacing
the variable from the left hand side of a constraint, wherever it appears, with the right-hand side of
the constraint, and then removing the constraint. In the example, the constraints x11 = x10 + x9
and x12 = x11 + x8 can be replaced by a single constraint x12 = x10 + x9 + x8.

e Second, program variables and constants whose type variables are transitively constrained to be equal
are merged into a single set; they are then considered together for the rest of the analysis. In the
example, the type variables x14, x18, and x19, which correspond to the program variable kinetic, a
sub-expression, and the program variable potential, can be grouped together in this way.

e Finally, the type variables are partitioned into sets whose unit types can be inferred independently:
i.e., if one considers a graph in which type variables are nodes and edges connect variables that appear
together in a constraint, each connected component of the graph is completely independent. Each
subset of this partition can then be processed separately for the rest of the analysis. (It is often the
case, including in our running example, that all of the variables with meaningful physical units lie in
one connected component.)

In addition to the meaning-preserving simplifications described above, it is also helpful to perform some
heuristic simplifications with respect to the type variables for constants. In theory, these changes might rule
out some otherwise legal unit typings, but in practice we can be relatively confident that they will not rule
out any desired ones, and they make later stages of inference easier for both the tool and the programmer
who must eventually annotate variables with units. Our technique’s default treatment of numeric constants
is that each occurrence of a constant might have a different unit type, and this is clearly the best behavior
for some values; for instance, one occurrence of 0 might represent the net weight of an empty bucket,
while another might be the velocity of a stationary bicycle. On the other hand, floating point constants
with a precise but random (in the Chaitin-Kolmogorov sense) value are likely to have only one unit type
in all the places where they occur. For instance, 745.7 and 2.99792 - 10® are likely always the conversion
factor between horsepower and watts, and the speed of light in meters per second, respectively. To avoid
introducing superfluous degrees of freedom (leading to additional inferred basic units, and therefore to a need
for redundant programmer annotations), our simplification stage gives all occurrences of such a value the
same unit type. The only unit typings that would be ruled out by such a modification are those in which the
correct units for two occurrences of, say, 745.7 were different. This merging is particularly significant when
a constant is specified in the original program with #define; because CIL operates after the C preprocessor,
our tool would not otherwise be able to link the occurrences of the constant. Similarly, certain well-known
values (such as 2.71828) can be reasonably presumed to be dimensionless.

In our running example, no merging of constants occurs because no constant appears more than once,
but our tool’s heuristics would merge additional occurrences of 9.8 if they appeared elsewhere. Though 0.5
is dimensionless in this case, we were not confident that every occurrence of that value would be, so our
heuristics do not constrain its type variable. Algebraic simplification reduces the constraints to two:

x19 2*x8 + x9 + x10
x19 = x9 + x15 + x16

In this example, the two constraints produced by simplification are linearly independent, but in general
the simplification algorithm is not powerful enough to remove all redundant constraints.

4.3 Constraint solving

This stage solves a set of constraints produced by the constraint generation and simplification stages to
find the minimum number of inferred basic units such that any consistent unit system can be expressed in
terms of those basic units. It is implemented as a MATLAB script that accepts the constraints in a matrix,
uses linear algebra to solve the matrix, and outputs a solution matrix that contains the basic units and the
exponent power of each basic unit assigned to each unit type variable.

We will demonstrate the constraint solving algorithm using our energy example. Here are the constraints
in matrix form after simplification:

Constraints: x19 = 2*xx8 + x9 + x10
x19 = x9 + x15 + x16
Matrix: # x8 x9 x10 x15 x16 x19

[2 1 1 0 o -1
0 1 0 1 1 -11]

Names: x8: {velocity} x9: {mass} x10: {constant 0.5}
x15: {constant 9.8} x16: {height} x19: {kinetic, potentiall}

Observe that the constraints will always be homogeneous (i.e., there will never be any constant terms),
so they can be represented in a single matrix by putting all the variables in each equation on one side and
placing their coefficients into the matrix (the other side of the equation is zero). There is one row for each
constraint and one column for each unit type variable. The Names array provides the names of the program
variables that are associated with each unit type variable (notice that, due to constraint simplification, two
program variables, kinetic and potential, are associated with the 6th unit type variable, x19).

We want to find the maximum number of basic units that can be assigned so that all the constraints are
satisfied, to give the most general unit system, subject to the constraint that the basic units are independent:
none can be expressed in terms of the others. (Recall that our tool can only find inferred basic units, not the
basic units of a real-world units system such as SI. However, we will use the term basic units for brevity.)
That number is equal to the number of columns in the matrix minus the rank of the matrix. The number of
columns represents the number of unit type variables, and the rank represents the number of independent
constraints.

To get some intuition for this formula (num. basic units = num. columns — rank), suppose that there were
no constraints (rank = 0). Then the number of basic units equals the number of variables, because the most
general system of units allows each variable to have its own unique basic unit. Adding a constraint allows
the units of one variable to be expressed in terms of the units of all the other variables, thus reducing the
number of required basic units by one. Every subsequent independent constraint added reduces the number
of basic units by one. If the number of independent constraints equals the number of variables, no basic
units are required and the only valid solution is to assign all variables the special null unit dimensionless (e.g.,
in a one-line program consisting of the statement a = a?, the only solution is that a is dimensionless). The
number of independent constraints cannot exceed the number of variables (a theorem from linear algebra).
In practice, the rank of the constraint matrix is usually slightly less than the number of rows, because the
simplification process of Section 4.2 removes many but not all redundant constraints.

We have developed a greedy constraint solving algorithm that attempts to pick basic units from among
the unit type variables:

e Place constraints in matrix M
o j=1
e for 4 = 1 to num. variables:

1. Save M, then augment it with a new column for the j** basic unit and a new row for the assignment
of the i*" unit type variable to the ;' basic unit

2. Transform the matrix to express all variables in terms of the j basic units and check for linear
dependence among the basic units (can some be expressed purely in terms of the others?)

3. If so, undo assignment by restoring M
4. Else, j++ for successful assignment

5. If (j == num. basic units), break

The algorithm iterates through the list of variables and tries to assign each of them to a new basic unit.
Each assignment is made by augmenting the matrix by one column to represent the newly-added basic unit
and one row to represent the newly-added constraint that a particular variable is assigned to that basic unit.
If the assignment is successful, then it moves on to assign the next variable to a new basic unit. Otherwise,
it tries to assign the next variable to the current basic unit. The algorithm terminates when the necessary
number of basic units (as previously computed) have been assigned to variables.

The indication of a successful assignment is that no linear dependencies have been introduced among the
basic units. A linear dependence occurs when an assignment is made such that a basic unit can be expressed
purely in terms of the other basic units. For example, let’s suppose that we have assigned variable 1 to basic
unit 1 and variable 2 to basic unit 2. Let’s also suppose that there is a constraint stating that variable 3
has the units of variable 1 raised to the 4" power. Thus, when we attempt to assign variable 3 to basic
unit 3, this creates a linear dependence because basic unit 3 can be expressed purely in terms of basic unit
1: (basic unit 3) =4 - (basic unit 1). Intuitively, this assignment did not add any extra information, so it is
marked as unsuccessful. The algorithm now attempts to assign variable 4 to basic unit 3. We check for linear
dependence because basic units that were not independent would be redundant, creating extra equivalent
expressions for the same unit type without increasing expressiveness.

The constraint solving algorithm is implemented as a MATLAB script that roughly follows the pseudo-
code presented above. It calls the MATLAB rref function to put the matrix in reduced row-echelon
form, which makes it efficient to check for linear dependence during each assignment. The check for linear
dependence is made by using the rank function to find the rank of a slice of the matrix that corresponds to
the basic units assigned so far expressed in terms of the variables. If the rank of the slice is less than the
number of basic units assigned so far, then there is a linear dependence among the expressions of the basic
units in terms of program variables, so the same dependence holds between those basic units.

Here are the results of the constraint solver on our energy example:

Variables:
1: velocity Units: (unit 1)
2: mass Units: (unit 2)
3: constant 0.5 Units: (unit 3)
4: constant 9.8 Units: (unit 4)
5: height Units: (unit 1)°2 * (unit 3) * (unit 4)°-1
6: kinetic, potential Units: (unit 1)°2 * (unit 2) * (unit 3)

All assignments were successful, so the first 4 variables were assigned to the 4 basic units. The solver also
calculates the units of the remaining variables in terms of the basic units so that all variables are assigned
units.

4.4 User interface for guided annotations

This final stage of our tool allows the user to interactively assign user-defined units to program variables.
The input is a solution matrix from the constraint solving stage and a list of variable names. The user is
allowed to assign user-defined units for any program variable in any order, except that no assignment can
violate the inferred constraints. A user-defined unit consists of 0 or more user-defined basic units (0 only for
the special unit dimensionless). For example, the user-defined unit meter - second ™! consists of 2 user-defined
basic units, meter and second, which belong to the SI unit system. These basic units differ from the tool’s
inferred basic units in that they have names; they form a unit system that is subsumed by the one formed
by the inferred basic units.

Each time the user assigns a user-defined unit to a variable, the tool adds an additional constraint to
equate the inferred basic units for that variable with the user-defined basic units that comprise that unit
(adding additional columns for user-defined basic units if necessary). For example, if the user assigns the
units of meter - second™! to velocity, the tool adds a new constraint that equates basic unit 1 with
meter - second”!. This is very similar to what happens in the constraint solving stage. The tool then
solves the augmented matrix, and presents the user with an updated list of variables and their user-defined
units. Solving the matrix after every assignment allows the tool to automatically infer user-defined units for
variables that the user did not manually annotate. The user only has to make a number of annotations equal
to the number of inferred basic units, which is often far less than the total number of variables. For example,
after assigning units for velocity, constant 0.5, and height, the tool inferred the units of constant 9.8
without the user having to annotate it:

Variables:
1: velocity Units: meter second”-1
2: mass [Units not yet established]
3: constant 0.5 Units: dimensionless
4: constant 9.8 Units: meter second™-2
5: height Units: meter
6: kinetic, potential [Units not yet established]

This feature is useful in two ways: First, it alleviates the burden of making the user annotate additional
variables, especially ones that have complex units consisting of many components. Second, it provides the
user with confidence that the units that he or she has been assigning thus far are correct. Conversely, it can
alert a user either to bugs in the program or to errors in the annotation if the inferred units do not match
expectations.

When this stage begins executing, all variables are expressed in terms of the inferred basic units provided
by the constraint solving stage. As the user annotates variables with user-defined units, the tool tries to
automatically annotate other variables with user-defined basic units in a way that is consistent with the
inferred basic units. Often a variable is expressed as a mixture of inferred basic units and user-defined basic
units. As soon as a variable can be expressed solely in terms of user-defined basic units, then the inference
is complete for that variable, and it is reported to the user. This stage completes when the inference is
completed for all variables, so that all can be expressed solely in terms of user-defined basic units. At this
point, the transformation from inferred basic units to user-defined basic units is complete, and there is no
more need for the inferred basic units.

5 Experimental Results

We ran our tool on C programs ranging from 50 to 50,000 lines of code and performed quantitative and qual-
itative evaluations. We found most test programs by performing a web search for programs that performed
calculations with physics units (using names for SI units and the word printf in our search string):

Program LOC Time (sec.) Number of | Program | Simplified | Basic

generate simplify solve | constraints | variables var. sets | units
energia 46 0.31 0.04 0.13 76 / 10 33 10 4
quasi 491 0.51 0.16 0.43 579 / 40 219 29 3
schd 633 0.55 0.27 5.95 1041 / 85 452 94 34
bike-power 680 0.39 0.14 5.09 544 / 76 273 72 29
demunck 1005 0.84 0.36 8.91 | 2099 /139 923 102 22
starexp 4974 0.87 1.35 100.31 | 7995 / 550 3517 543 197
oggenc 58413 51.00 3.28 168.93 | 27864 / TT7 11045 502 163

Table 1: Results gathered from running all the stages of our units inference tool except for the interactive
user interface. For the number of constraints, the value to the left of the slash is the number before constraint
simplification and the value to the right is the number after simplification.

e energia - This small program computes the kinetic and potential energies of a mass launched from a
specified height. It is in fact quite similar to our running energy example, except that it comes from a
physics class at the University of Rome (La Sapienza), so all of the identifiers are in Italian.

e quasi - This program, originally developed for a class assignment and now maintained in the public
domain by Eric Weeks, draws a Penrose tiling of a portion of the plane (i.e., a quasicrystal) as a
Postscript file.

e schd - This program by Mike Frank of the University of Florida reversibly simulates the evolution of a
particle wavefunction according to the Schrodinger equation, and displays the results in an X window.

e bike-power - This program from Ken Roberts of Columbia University computes a table of the energy
used when riding a bicycle at various speeds, taking into account a number of other factors including
the weight of bicycle and rider, the grade of the slope, and the coefficient of friction between the tires
and the road.

e demunck - This program is a simulation of the propagation of electrical impulses through a series of
concentric spheres of various conductivities, used to approximate the processes that distort the readings
of an electroencephalogram (EEG).

e starexp - This is a relatively large program by James A. Green which computes a number of char-
acteristics of main sequence stars based on their brightness and spectral type, using models from
astrophysics.

e oggenc - This, the largest of our test programs, was not found by a web search as the others were; it is
a common Linux multimedia utility that we have worked with in previous research. It applies a lossy
psycho-acoustical algorithm to compress audio data into an MP3-like format known as Ogg Vorbis.
Unlike general purpose compression, this encoding relies on extensive signal processing. Though we
at first used it just to test our tool’s scalability, reading the code revealed a number of physical units,
including ones for sampling rates and frequencies, elapsed times, and sound intensities.

5.1 Quantitative Evaluation

Table 1 demonstrates that our tool scales well to moderate-sized programs. The bulk of the running time is
in the MATLAB constraint solving script, mostly in two calls to the rref function. We have optimized the
implementation so that rref only needs to be called twice regardless of the number of variables or constraints
(our initial implementation called rref once for every iteration of the loop, which was much slower). The
solver’s run time is proportional to the number of constraints and the square of the number of variables, or

10

roughly cubic in the size of the original program. By contrast, the constraint simplification process requires
only slightly more than linearly many steps in terms of the number of constraints, so spending time on
simplification saves time overall. In fact, the constraint simplifier is crucial for the scalability of our tool
because it greatly reduces the size of the constraint matrix, usually by several orders of magnitude.

The number of inferred basic units was always much less than the number of program variables, which
greatly lessens the annotation burden on the user during the user interface stage. Without our tool, the
user needs to annotate every program variable with units, but using our tool, the user only needs to make
a number of annotations equal to the number of basic units.

For schd and bike-power, we removed the definitions of some functions used for memory allocation
or command-line input which were unit polymorphic (see Section 5.2 for discussion), and for oggenc, we
used a previously prepared version that had been modified to compile as a single file; the other programs
were unmodified. The constraint generation stage for oggenc took an especially long time because of the
pointer analysis that CIL performs to resolve function pointer targets, which here uses the default settings
for precision. Most of the time may be saved by supplying options to perform the analysis in a less precise
manner; we have not evaluated whether doing so affects the overall results of our tool.

5.2 Qualitative Evaluation

To assess the usability and precision of our tool, we have performed qualitative evaluations on our test
programs by using our user interface to annotate program variables with units. When performing these
evaluations, we simulated the behavior of someone who is familiar with the code and tried to annotate
variables with simpler units before ones with more complex units.

We performed a fairly detailed annotation session for bike-power. We determined the correct units of
variables by inspecting the source code and comments, and we confirmed that the tool’s results matched
those units. Although there were 29 basic units in this program, we only had to make 12 annotations before
all of the interesting variables (48 out of 72) were correctly labeled with units. The remaining 17 annotations
were required to mark identical copies of a conversion factor constant defined as a C preprocessor #define
(CIL works on source code after preprocessing). From our experiences with this program and several others
(e.g., schd, demunck), we believe that it is usually possible for the user to make fewer annotations than
the required number (number of basic units) and still have the tool infer units for most of the interesting
program variables.

We began our interactive session for bike-power by annotating variables that seemed to have easy-
to-specify units such as dimensionless, kilogram, pound, and meter - second (velocity). Sometimes after
we annotated a variable, our tool was able to infer that several other variables had the exact same units.
For example, after we specified that a particular constant represented a velocity, the tool reported that
several other constants were also velocities, which we confirmed to be correct. This helps reduce the number
of variables that we had to annotate (recall that both constants and variables must be annotated since
constants may have units as well). Although this is useful, the tool’s inference functionality is more powerful
when it can infer units that are different than the units that we have entered thus far. For example, after
annotating several variables, the tool reported that the units of a variable P_t was meter? -second *- kilogram,
which happens to be watts expressed in SI basic units. This saves the user a lot of work because it is difficult
to remember such complex units and can be error-prone to enter them in manually.

In the process of annotating units for bike-power, we discovered the following bug in the comments of
its source code:

#define mOs_per_miOhr 0.44704 /* meters/second per kilometers/hour */
#define mOs_per_kmOhr (1000.0 / 3600.0) /* meters/second per miles/hour */

The comments next to these two conversion factors have been mistakenly switched. Because we relied
on the comments to determine the set of correct units for the program, we entered in incorrect units for
mOs_per_kmOhr. The tool has no way of informing the user of when an annotation is incorrect. However,

11

we suspected that there was a bug when we saw the tool inferring units for other variables that did not
match our expectations. We were able to quickly track the source of the problem back to the source code
comments.

The experience of using the tool is similar for all of the programs, and for the larger programs we did not
assign units to every variable, so we discuss the remaining programs in less detail. In the energia example,
we easily assigned units to each program variable. For the quasi program, we were able to assign the units
of centimeters to a number of variables that measured length, the most important dimension in the program.
In schd and bike-power, our initial results were unsatisfactory in that variables we expected to have a
dimensioned type were inferred to be dimensionless. This failure was caused by the context-insensitivity
of our analysis: for instance, in bike-power, a single function was used to parse numeric command line
arguments in various units. Because our analysis can currently assign only one set of units to the result of a
function, the only consistent solution was for the function to return a dimensionless value, which propagated
through much of the rest of the program. To work around this limitation, we removed the definitions of these
functions from the source code, causing our tool to generate no constraints from their use. After this change,
the results for both programs were satisfactory: bike-power is discussed above, and for schd we were able
to assign around a dozen units consistently to various variables. In addition, our tool automatically inferred
the correct units for Coulomb’s constant of electrostatic attraction, which would have been cumbersome to
compute by hand.

For the larger programs, unfortunately, our attempts to assign units revealed imprecisions of our im-
plementation that we could not easily work around. In demunck, a calculation which in the original paper
describing the technique was performed using a matrix was coded with a 2-by-2 multidimensional array;
unfortunately, the different entries in the matrix had different units, while our analysis assumes that all the
elements of an array have the same units. In starexp, a single global variable named d is used repeatedly (in
code that appears to have been cut and pasted) when reading floating-point values of a number of different
units, causing them all to be considered dimensionless. For oggenc, we attempted to assign the units of hertz
(1/sec) to the numeric literal 44100, which represents the sampling rate of CD-quality audio. Unfortunately,
because it is field insensitive, our tool’s result is that this constant must be dimensionless: a single structure
is used to include a number of parameters to the encoding library, including both the sampling rate and
some quantities measured in seconds, but our analysis can assign only one unit to all the elements of the
structure.

6 Related work

Scientists and engineers have long recognized that checking whether the results of a calculation have the
expected units is an effective practice to recognize and prevent errors, and many domain-specific systems
incorporate unit information in measurements. It should not be surprising, therefore, that adding unit infor-
mation to programming languages has been the topic of frequent research. Some languages include sufficiently
powerful extension mechanisms that systems for unit type information can be added within the language:
an example is the combination of templates and operator overloading in C++ [Bro01]. However, a more
common approach has been to consider language extensions, which can be suggested for any language, and
allow the designer freedom in the choice of syntax. It is natural to see unit information as a kind of type, so
many approaches have extended the type systems of then-common strongly-typed general purpose languages,
such as Pascal in the 1980s [Bal87] or more recently Java [vD99]. An alternative approach for a language
like Java is to treat units as a kind of class [ACLT04]. Perhaps surprisingly, research applied to languages
used specifically in the scientific community is in the minority; examples include Petty’s unit extension for
FORTRAN [Pet01], and a unit checking tool for the ‘language’ of Microsoft Excel spreadsheets [ASKT04].
To reduce the burden of adding unit annotations, several researchers have suggested embedding unit
types in a type system like that of ML that supports type inference. The earliest work to draw a connection
between unit types and ML-like typechecking was that of Wand and O’Keefe [WO91]; they suggest an
inference technique using linear algebra much like that originally suggested by Karr and Loveman [KL78].
The inference our tool performs is similar, but made more complicated by the fact that our system must

12

infer a most general set of basic units; in previous systems, the set of basic units was fixed or user-supplied.
A variant of the algebraic technique which allows only integral exponents is developed more extensively by
Kennedy [Ken94, Ken96, Ken97]. He also gives theoretical results on the expressiveness of such a system:
for instance it is impossible to implement the square-root function so as to have the correct polymorphic
type.

Such previous inference techniques differ from the problem we consider in that they presume that the set
of basic units, and the units for values such as constants, are specified by the programmer, just as in ML a
program must declare data-types and their constructors. Assuming the program is correct, this information
is enough to determine the unit type of each value in a program. By contrast, we consider programs with
no unit information, for which a large number of valid unit typings exist. Without any annotations, our
technique determines a most-general unit typing (one with the largest number of independent basic units)
that is consistent with the program’s operations. This most general typing is already suitable for many
kinds of automated checking: for instance, any modification to a program that would violate a most-general
unit typing would also violate any more specific typing. Of course, if the unit types of a program are to be
related to standard physical units, the need for some programmer annotation is unavoidable. In previous
systems, the programmer provides unit types at all of the syntactic locations required by the language, and
the inference system then checks if those annotations are consistent. In our system, a consistent typing is
automatically generated, and the programmer then assigns names to a subset of the generated types, from
which the tool infers names of the rest.

An approach like ours that performs analysis first has two major advantages: first, if the program is
correct, it allows the programmer to construct a complete unit typing with a minimal number of annotations,
one per basic unit in the most general typing. In previous systems, the annotation burden is proportional
to static size of the program, which is usually much larger. On the other hand, if the program’s unit
correctness is unknown, it is necessary for a programmer to examine each program variable and use their
domain understanding to determine what units would be correct. The difference between our approach
and previous ones is that for many such variables, a programmer using our system would simply verify
the correctness of an automatically-produced unit type, when in previous systems they would write such
a type themselves. Though conceptually the programmer’s work is the same in these cases, the increased
automation of our approach should make the programmer’s work easier in most cases.

Because previous systems have required a significant amount of program annotation, they have rarely been
evaluated on large or pre-existing programs. In particular, previous languages that have included unit type
inference [WO91, Ken97] have been based on languages not commonly used by scientists or engineers, and
have not been evaluated in realistic case-studies. Experimental results, like practical uses, have been focused
on systems that require extensive annotation. A very promising, but small and uncontrolled, case study
was performed by Brown [Bro01]: he had an independent programmer implement a simple physics function
using SIUNITS, and the unit checking led to the discovery of three separate errors. Antoniu et al. used their
spreadsheet-checking system [ASK104] to find previously unknown bugs in three published spreadsheets,
two in which results were labelled incorrectly and one involving an incorrect calculation. Because our system
does not require annotations, it can naturally be applied to pre-existing programs, and we have already
tested it on some such programs. Improving the efficiency of the tool to operate on large programs, and
devising experiments to evaluate the precision of its results without manual comparisons, are directions we
plan to investigate in the future.

7 Future Work

e Add context sensitivity /unit polymorphism - Much of our tool’s imprecision on larger programs
can be attributed to the fact that our static analysis is context-insensitive. For functions that accept
values of different units, we now constrain all values passed into that function to have the same units.
We currently have special cases for common functions such as square root (sqrt) but would like to
add unit polymorphism to avoid having to rely on special cases.

13

e Specialize for standard real-world units and constants - Our tool currently infers the most
general set of basic units without consideration of actual units that a user is likely to annotate (e.g.,
ST units). Connecting our interactive user interface to a database of units may improve the usability
of our tool and allow it to provide more accurate results with even fewer user annotations.

e Incremental constraint solving - The current performance bottleneck of our tool is the MATLAB
constraint solving script (especially the calls to rref). Instead of building up a large matrix of con-
straints and then simplifying and solving it, we want to find a way to solve the constraints as we
collect them. This could greatly improve performance and might even make a dynamic unit inference
implementation feasible.

e Produce compiler-checked annotations in source - We would like to annotate the program’s
source code with the units that our tool infers and have the compiler be able to perform type checking
based on these units. This would make a program more resilient against the introduction of new bugs.

8 Conclusion

We have developed a technique and implemented a tool for inferring unit types from the un-annotated source
code of C programs. Our tool allows the user to assign meaningful names to units of program variables with
minimal effort. It can be applied to find bugs caused by inconsistent use of units, to prevent future bugs, and
to provide documentation that can aid in code maintenance. We have evaluated our tool both quantitatively
and qualitatively on a variety of real-world programs of up to 50,000 lines of code and reported its strengths
and limitations (some of which form the motivation for our future work).

References

[ACL*T04] Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and Guy L. Steele Jr. Object-
oriented units of measurement. In Object-Oriented Programming Systems, Languages, and Ap-

plications (OOPSLA 2004), pages 384-403, Vancouver, BC, Canada, October 26-28, 2004.

[ASKT04] Tudor Antoniu, Paul Steckler, Shriram Krishnamurthi, Erich Neuwirth, and Matthias Felleisen.
Validating the unit correctness of spreadsheet programs. In ICSE’04, Proceedings of the 26th In-
ternational Conference on Software Engineering, pages 439—448, Edinburgh, Scotland, May 26—

28, 2004.

[Bal87] Geoff Baldwin. Implementation of physical units. ACM SIGPLAN Notices, 22(8):45-50, August
1987.

[Bro01] Walter E. Brown. Applied template metaprogramming in SIUNITS: the library of unit-based

computation. In Proceedings of the Second Workshop on C++ Template Programming, Tampa
Bay, FL, USA, October 14, 2001.

[EJCO01] Edward A. Euler, Steven D. Jolly, and H.H. ‘Lad’ Curtis. The failures of the Mars Climate
Orbiter and Mars Polar Lander: A perspective from the people involved. In 24th Annual AAS
Guidance and Control Conference, Breckenridge, CO, USA, January 31-February 4 2001.

[Ken94] Andrew Kennedy. Dimension types. In 5th European Symposium on Programming, Edinburgh,
UK, April 11-13, 1994.

[Ken96] Andrew Kennedy. Programming Languages and Dimensions. PhD thesis, University of Cam-
bridge, April 1996.

14

[Ken97]

[KL78]

[Mar99]
INMRW02]

[Pet01]

[vD99]

[WO91]

Andrew J. Kennedy. Relational parametricity and units of measure. In Proceedings of the 24th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Paris,
France, January 15-17, 1997.

Michael Karr and David B. Loveman III. Incorporation of units into programming langauges.
Communications of the ACM, 21(5):385-391, May 1978.

Mars Climate Orbiter Mishap Investigation Board. Phase I report, November 1999.

George C. Necula, Scott McPeak, S.P. Rahul, and Westley Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In Compiler Construction: 11th
International Conference, CC 2002, Grenoble, France, April 8-12, 2002.

Grant W. Petty. Automated computation and consistency checking of physical dimensions and
units in scientific programs. Software: Practice and Experience, 31(11):1067-1076, September
2001.

André van Delft. A Java extension with support for dimensions. Software: Practice and Fxpe-
rience, 29(7):605-616, June 1999.

Mitchell Wand and Patrick O’Keefe. Automatic dimensional inference. In Computational Logic
- Essays in Honor of Alan Robinson, pages 479-483, 1991.

15

