Safe Test Case Reduction

Brad Howes

Abstract

Some object-oriented test cases are inefficient: they per-
form computation that is unnecessary for producing the fi-
nal, tested result. This is especially true of automatically-
generated test cases. Reducing the size of a test case can
improve test runtime and simplify debugging when an error
is found. Published techniques for detecting inefficient or
redundant test cases are unsafe: they rely on assumptions
about ways the tested code will not change.

However, developers do intentionally or unintentionally
break these assumptions: they introduce additional data
dependencies, or make pure methods impure. We present
a safe test case reduction technique that produces statically
verifiable guards which encode the assumptions introduced
during reduction. If these guards are violated, the original
test case can be run for a safe result. The guarded tests
should combine complete soundness with a faster expected
runtime and reduced debugging effort.

1. Introduction

For object-oriented systems, the input for a test is a se-
ries of method calls, including arguments, against a set of
objects, and the oracle is a set of assertions about the ob-
jects’ behavior in response. For a given implementation of
a system, such a test may be inefficient — it may call meth-
ods that have no effect on the objects’ tested behavior. The
same behavior could be tested by a reduced test, which is-
sues only a subset of the method calls of the inefficient test.
For example, one simple reduction technique would be to
remove all calls to pure methods from a test; by definition,
they have no effect on the tested outcome.

There are many benefits to running the reduced test in-
stead of the inefficient test. The reduced test may be signifi-
cantly faster. It may be easier to determine that the reduced
test is redundant with a test already in the test suite, ob-
viating the need to run the reduced test at all [12]. If the
reduced test fails, it may be easier for a developer to un-
derstand the failure if unimportant method calls have been
removed.

However, given any test and a reduction of that test, it is
always possible to find an implementation of the tested sys-
tem on which the two tests produce different results. Thus,
any reduction of a test implicitly assumes certain ways in
which the tested system will not change. If all pure method
calls are removed, this assumes that no pure method will
ever be changed, intentionally or not, to be impure. Thus,
the reduced test is unsafe; certain faults that would have
been caught by the inefficient test will not be caught by the

Anonymous

reduced test.

We wish, then, to minimize the time required to safely
guarantee that a new version of a program still passes a
given test. We propose to do so by producing both a reduced
version of the original test, and a set of static guards that
are sufficient to guarantee that the reduction is safe. We call
the combination of dynamic test and static guards a guarded
test. A traditional test case can be seen as a guarded test
but with no guards. Using guarded reduced tests should
significantly reduce test case complexity and test running
time and improve developer understanding with no loss in
fault-finding capability.

The paper continues with a motivating example in the fol-
lowing section, followed by a discussion of where inefficient
tests come from (Section 3). We then detail our technique
(Section 4), and give preliminary results (Section 5) and an
evaluation plan (Section 6). Finally, we present future work
(Section 7) and conclude (Section 8).

2. Example

For our initial study, we make several simplifying assump-
tions about tests throughout:

1. Tests can be represented as a single-method straight-
line sequence of statements, without loops, branches,
or meaningful exceptional control flow (except assert-
ing that an exception was thrown or not thrown). This
is true of all automated test generation techniques we
know of, and is often true of human-generated tests
(eg. JUnit tests [3])

2. There is no aliasing between variables within the test.

3. There is only one method call per statement in the
generated test scenario. This can be achieved by intro-
ducing fresh temporary variables for any intermediate
results.

4. The last operation in each test is the assertion of a
single equality comparison between an expected value
supplied by the test, and a value provided by the ob-
ject under test. This is not always the case, but our
techniques are easily generalized to multiple or more
complex assertions.

As an example of guarded test minimization, consider a
simple point class:

class Point {
private int _x, _y;

Point(int x, int y) {_x = x; _y = y;}

int getX() { return _x;
int getY() { return _y;
void setX(int x) { _x = x; }
void setY(int y) { _y = y; }
void translate(int x, int y){
X += x5 _y +=y;
}
public String toString() {
return _x + "," + _y;

Mo

}
}

Next we have a test case which exercises this class.

Point p = new Point(3, 5);
.getX();

.getY();

.setX(4);

.setY(6);

.setX(0);

.getY();

.translate(1, 1);
assertEquals("1,7", p.toString());

o llse Mo B Bl o B o Bl o}

If a static analysis uncovers the fact that Point.getX() and
Point.getY() are pure, then the test case could reduce to the
following shortened test code plus two guard checks:

Guard: Point.getX writes nothing.
Guard: Point.getY writes nothing.

Point p = new Point(3, 5);
p.setX(4);

p.setY(6);

p.setX(0);

p.translate(1, 1);
assertEquals("1,7", p.toString());

Now, when the guarded test is run, the first step is to
evaluate if the guards still hold. If so, this reduced test is
guaranteed to catch any error caught by the original test. If
not, the original test must be run to maintain safety. See
Figure 1.

Analysis of the behavior of the method Point.setX() re-
veals that this method affects (mutates) the state of the
Point._x attribute. Since the terminal statement of the test
case relies on the value of this attribute, one might assume
that all places where this method is invoked must remain.
However, note that in the reduced form above there are two
locations where Point.setX() is called, but with no interven-
ing assert check. Thus, the first invocation is superfluous,
and may be removed:

Guard: getX writes nothing.
Guard: getY writes nothing.
Guard: setX reads nothing.
Guard: setX writes at least this._x.
Guard: setY reads nothing.

Point p = new Point(3, 5);
p.setY(6);

\ Original test

Guarded
reduction

run reduced test

‘ run original test

Figure 1: A schematic of the guarded test reduction proce-
dure. The original test is augmented with a faster reduced
test, and a set of guards that determine if the reduced test
is safe.

p.setX(0);
p.translate(l, 1);
assertEquals("1,7", p.toString());

The final result is a test case that is smaller and therefore
likely to take less time to execute. Furthermore, we have
acquired some facts about the underlying behavior of the
code under test, which will be used by the testing framework
to help determine if and when future code changes invalidate
the test case reduction that took place.

3. Sources of Inefficient Test Cases

Developers may manually create tests that appear ineffi-
cient. These may be tests of the purity of some method, or
they may be actual mistakes. However, it is rare for manu-
ally created test to have a significant degree of inefficiency.
Automatically-generated tests are another matter.

When automatically generating object-oriented regression
tests, the oracle is formed by recording some subset of the
behavior of the working system when a method sequence
is applied. Regressions are found by comparing the behav-
ior of a new version of the system against that previously
recorded. The behavior of a tested object can include both
return values from method calls and method calls made to
environmental objects; for simplicity, we focus here on re-
turn values. Generation techniques fall into two broad cat-
egories, which differ in how input sequences of method calls
are generated.

Various test construction techniques, such as Eclat [§],
JCrasher [5], or the commercial tool Agitator [2], gener-
ate method sequences one call at a time, using a search
algorithm that attempts to produce a suite that maximizes
coverage of code, or corner cases, or bugs found. In most
cases, the search algorithm is guided by static features of
the classes being tested; for example, tests that inefficiently
call a currently-pure method will simply not be generated.
An implicit assumption of this guided search is that these
features are stable.

A capture/replay technique, such as test factoring [9],
SCARPE [7], or DejaVu [4], captures each input method

sequence from an execution of the system, whether manu-
ally or automatically driven. Existing capture/replay tech-
niques capture every call made to the tested objects during
an execution, and replay them all. The advantage of this
completeness is that generated tests are guaranteed to be
safe — any breaking change in the implementation of any
method in the tested classes will be detected by these tests.
However, these tests can be inefficient, consisting of millions
of method calls, and failures can be difficult to debug.

It is possible to trade safety for efficiency in capture/replay
tests by eliminating method calls that can be proven to have
no effect on the final, tested behavior of the tested compo-
nent: statically determined pure methods, or method calls
that can be dynamically shown not to change the tested
state. This is the approach taken by Xie, Marinov, and
Notkin in Rostra [12]. However, the safety tradeoff is un-
necessary — it is possible to have both efficiency and safety,
using the technique presented here, which remembers the
static guards required for safe reduction, and verifies them
incrementally and quickly in new versions.

Our technique focuses on safe reduction of tests generated
through capture/replay techniques. However, it may be pos-
sible to apply similar techniques to tests generated through
test construction, by remembering the static guards that
guided the initial test search, and recommending a repeat
search if these are violated.

4. Approach

In order to safely reduce a test case, we need to know
what method calls are extraneous to the tested result, and
we must be able to recognize when a reduction no longer ap-
plies due to code changes. To satisfy these needs, we propose
a technique that augments a test case with guards, which are
statically evaluated prior to running the reduced test case to
verify that the conditions under which the reduction origi-
nally took place still hold. To produce the reduced test and
the guards, we use a simplified slicing algorithm that makes
explicit which properties of which methods are necessary to
justify each statement that is removed.

We perform a static analysis of the code under test in
order to obtain the set of data elements (class fields and
method arguments) that a method reads from and writes to
when it executes. Collectively, these data sets are known
as method summaries. The elements of the summary sets
uniquely name the field or argument used or manipulated
within the method or within any call chain started from the
method. Section 4.1 discusses in detail how we generate
method summaries and manage name conflicts.

Once we have the method summaries for the code under
test, we can then proceed to reduce the test case. Our ap-
proach is to use a backwards static slicing of the test case
in order to determine whether a method has the potential
to influence the outcome of the test case. If the method
summaries of a method call indicate that it cannot affect
any of the data elements used by subsequent method calls,
including the terminating test assertion, then the method is
removed from the test case. Section 4.2 describes the slicing
and reduction steps in detail.

Regardless whether the method call is kept or not, we
annotate the test case with a set of static guards gener-
ated from the call’s method summary. For removed method
calls, the guards determine when the removal is potentially
no longer safe, while guards for kept calls identify potential

added dependencies on earlier statements. Details of guard
generation are covered in Section 4.3.

4.1 Generating Method Summaries

Method summaries are the result of a static analysis per-
formed on the code under test. The analysis determines
which fields and method arguments the method reads from
or writes to. This information will be used during the slic-
ing of the test case (Section 4.2) and during static guard
generation (Section 4.3).

Our approach for generating the summaries is to execute
a points-to analysis over the code under test to precisely
identify the set of objects a method method may encounter
during its execution. We next execute a intra-procedural
side-effect analysis of the method using the points-to graph,
and statically evaluate each statement in the method to see
if it reads from or writes to an object field or method argu-
ment. If the statement is a method invocation (call-site), the
analysis will proceed to analyze the called method, with any
attributes found within the call-chain for the call-site propa-
gated back up to the calling method. Finally, the individual
statement read/write attributes are collected together to be-
come the method summary.

For example, given the Point class show in Section 2,
the extracted method summaries for the class methods are
shown in Table 1.

Table 1: Point Method Summaries

Key Reads | Writes
Point X, -y
setX X
getX X

setY y
getY y

move X, -y
xlate X, .y X, .y

toString | x, -y

The propagation of read/write attributes presents a nam-
ing issue. Consider the following class:

class PointPair {
private Point _a;
private Point _b;
PointPair(Point a, Point b) {
_a=a, _b=Db;

}

void setX(int x) {
_a.setX(x);
_b.setX(x);

}

}

Within the method PointPair.setX, there are two invoca-
tions of Point.setX applied to two different objects. The
analysis of Point.setX reveals that it writes to Point. x,
but when this fact is propagated up to the call-sites in
PointPair.setX, they appear the same. Our solution is to
transform, if possible, the names of propagated attributes
with the class and field the attribute actually refers to. For
the example above, the write attribute Point._x becomes

toString()

Xy

[getx() | | xiate() | | getv(|

[sex() | [setv(|

Figure 2: Data-dependency graph for test case from Section
2. The root of the graph is toStriing().

PointPair._a. x and PointPair. b._x for the respective call-
sites, resulting in two distinct write attributes in the method
summary for PointPair.setX.

4.2 Test Case Slicing and Reduction

To identify which statements may be removed from a test
case, we need to understand which statements are required
to satisfy the data needs of the test’s final assertion. Intu-
itively, one needs to build a data-dependency graph starting
with the method call in the assertion statement of the test
case, where the graph nodes are the method calls in the test
case, and the presence of a directed edge between two nodes
indicates that a child writes to one or more fields used by
the parent it is connected to. Once the graph is complete,
any nodes that do not have a path from the root (the asser-
tion statement) by definition have no effect on the behavior
of the method in the assertion statement, and thus no affect
on the assertion itself.

Figure 2 shows a data-dependency graph for the exam-
ple test case in Section 2. Note that the top-down graph
flow is opposite of the top-down linear flow of the test case.
There is no directed path from the root of the graph to the
routines Point.getX() and Point.getY(), indicating no data-
dependencies between them.

Because we have restricted our approach to linear test
cases, we can do the data-dependency analysis and method
culling in one iteration over the test case, starting at the
final assertion and working backwards. We manage a set of
active reads (A) that reflect the unconnected or unsatisfied
data elements forward of the current analysis point. If the
method summary of the method call at the current analysis
point does not match any of the elements in A, then the
method will not have any affect on the behavior of succeed-
ing methods, and it may be removed from the test case. In
short, we perform a backwards static slice of the test case,
and our abstract state is the contents of A.

A brief outline of the steps involved in our test case slicing
and reduction is as follows:

1. Obtain the method summary of the current method.

2. Determine whether the method satisfies any data de-
pendencies

3. Update propagated data dependency set A

4. Install any guards for the method

5. Move to previous method call, or stop when done

Again, the method summaries tell us whether a method
may read (R), may write (M), or must write (W) zero or
more fields. For the slicing algorithm, we are interested in
the contents of R and W, and whether the set M is empty.

We start the slicing with the A set containing the may
read R values from the method call in the assertion state-
ment:

Ao := R, (1)

where n is the number of method calls executed within
the test case. For each preceding method call C,,—; | i €
{1,...,n}, we calculate the intersection of the method’s W
attribute set and the A set:

Ai_1N (ani U Mnfi) (2)

To determine whether a W attriibute satisfies an entry
in A, we iterate over the values of A, looking for an exact
match in W, or an element in W that is an effective match:
the effect of the write is the same as if the attribute had
completely matched the read attribute in A. For instance,
in the PointPair example of Section 4.1, a W attribute of
PointPair._a would satisfy the attribute PointPair. a. _x.

If the resulting intersection set is empty and the method
has an empty M set, then we may safely remove the method
call from the test case. Otherwise, we keep the method call,
and update the A set by first removing from it the result of
the intersection calculated above, followed by a union of A
with the method’s R set:

A, =R,_; U (Ai_1 — (Ai_1 n Wn_z)) (3)

In other words, we remove all fields guaranteed to be sat-
isfied by the method call and add in any fields the method
itself may be dependent on. Note that the contents of M
has no affect on A; it only inhibits a method from being
removed when it is not empty.

If at any time the A set becomes empty, we stop the slic-
ing, since there is no possibility that any preceding method
calls would affect the test case assertion. This constraint
should be satisfied even if we work through the entire test
case (I = n), since the test case begins by creating the ob-
ject under test, and the constructor for the test object would
have initialized the field, even if only to a default value.

4.3 Guard Generation

As our algorithm visits each method call in the test case,
we annotate the call with one or more guards. The set of
guards for the test case is the union of the guards for each
of the method calls in the unreduced test case. Prior to
executing the test case, the test case’s guards are evaluated
to see if the property they represent still holds. If all guards
pass, then the reduced test case is executed; otherwise, the
original, unreduced, test case runs. In short, guards protect
the test case from future code changes, signaling the fact
that the conditions under which a test case was previously
reduced no longer apply.

We have identified the following set of guards in our ap-
proach:

1. reads at most - the contents of the R set from the
method summary

2. writes at least - the contents of the W set from the
method summary

3. writes at most - the contents of the M + W sets

The first guard states that the method does not rely on
any more data than found in the R set. If a code change
were to result in an R’ C R, then the reduced test case is still
safe and should be run. The next time the test is reduced,
it may now prove possible to reduce it even further.

The second and third guards state the minimum and max-
imum set of fields that the method may change. The mini-
mum set contains the fields that the method always writes
to when it is invoked, whereas the latter is the set of fields
that the method may write to. If either or both of these
bounds change, then the dependency graph generated for
test case is no longer valid and the original test case is run.

Intuitively, the relative sizes of the M; and W, sets for
method call C; may provide a measure of how likely the
call would be removed. The more elements there are in M,
the greater the likelihood that one of the elements will be
a member of the propagated A set, in which case the call
must remain in the test case since the M set only indicates
potential writes, and not the guaranteed writes of W. Fur-
thermore, for each method C; kept in a test case, one could
reasonably expect A to grow as it is joined with the call’s
R; set, thus increasing the potential to keep methods Cj; |
j€{o0,...,i}.

5. Preliminary Results

We have created a simple test bed to exercise the indi-
vidual components of our approach. The test scenario uses
class Point:

public class Point {
private int _x;
private int _y;

public Point(int x, int y) {
X =X, Y=Y
}
public int getX() {
return _x;
}
public int getY() {
return _y;
}
public void moveBy(int x, int y) {
X += x;
_y =y
}
public void moveHorizontally(int x) {
X = x;
}
public void moveVertically(int y) {
_y =y
}
public String toString() {

return Il(ll + _x + ||,|| + _y + II)II;

There exist two hand-crafted driver programs, one for
each of the above classes. These driver programs exist to
simulate the running of a test scenario, but outside of a
testing infrastructure. First, the driver for testing the Point
class:

public class TestPoint {
static public void
assertEqual(boolean condition) {
System.out.println(
"test case returned " + condition);
}
public static void main(String[] args) {
Point p =
new Point(10, 20);
.moveBy(4, 4);
.getX(;
.getY();
.moveBy(3, 8);
.getX(0);
.getY(;
.setX(5);
.getY();
.getX();
.setY(10);
.moveHorizontally(1);
.moveVertically(2);
.getX(;
.getY();
System.out.println(p.toString());
assertEqual(
p.toString() .equals("(6,12)"));

helloBe B Bie B el o lololse Mo el el

o)

The test case simply exercises the Point API, with a final
assertEqual to check that the previous calls produced the
expected final state of the Point object.

When processing is done, the following attributes are re-
vealed:

Point: int getY()
<Read Point:_y>
Point: void setX(int)
<Write Point:_x>
Point: int getX()
<Read Point:_x>
java.lang.String: boolean equals(java.lang.0Object)
<Read java.lang.String:offset>
<Read java.lang.String:value>
<Read java.lang.String:count>
Point: void setY(int)
<Write Point:_y>
Point: void moveHorizontally(int)
<Read Point:_x>
<Write Point:_x>
Point: void moveBy(int,int)
<Write Point:_y>
<Read Point:_y>
<Read Point:_x>

<Write Point:_x>

Point: void moveVertically(int)
<Write Point:_y>
<Read Point:_y>

5.1 Performance

Rather discouragingly, our implementation of summariza-
tion takes 2.25 minutes to run on an Apple PowerBook
1.5GHz with 1GB of RAM (the Java VM is limited to a
maximum 400MB heap with the -Xmx400m option). En-
abling verbose logging reveals that a majority of the time
is spent generating Soot Jimple representations for the Java
runtime and support classes. Using a combination of Soot
options, we were able to obtain a set of Jimple files for all
of the runtime classes reached by the call graph rooted by
our TestPoint class. We then tried to have Soot use these
files instead of dynamic Jimple generation, we encountered
errors in the Jimple processing. Apparently, there are dis-
crepancies (bugs) between what Soot writes out in its Jimple
representation and what it reads in.

We also submitted the TestPoint class to a Purity Analysis
Kit [10]. Interestingly, we obtained similar timing results.

We have briefly investigated generating the call graph it-
eratively. Previous work by Souter, Pollock [11] showed
promising results using enhancements to the Flex Compiler
Infrastructure [6]. Their call graph generation algorithm is
based on the Cartisian Product Algorithm of Agesen [1],
with modifications to support reanalysis of only the code
that changed.

6. Evaluation

Our evaluation is based on monitoring actual developer
activity without the benefit of automatically generated and
reduced tests, and then simulating the impact of introducing
test reduction into the development process. This allows us
to get an idea of the benefits of our approach before a full-
fledged tool has been built. We can also simulate scenarios
that real developers would not stand for, such as using an
inefficient test generation technique without reduction.

We have monitored a single developer performing devel-
opment and maintenance on fdanalysis, a Java program of
about 9000 lines of code. fdanalysis is a package for an-
alyzing data collected during development and debugging
sessions. It performs mainly text processing and time calcu-
lation. We have captured 1600 snapshots of the state of the
program during development, which include the introduc-
tion and fixing of 12 regression errors. Most of the running
time of the existing test suite operates on the high-level API
of the package, sending in text files and making assertions
on text output.

In our simulated scenario, the developer would like to gen-
erate unit tests for the edited component of the program by
using a capture/replay test generation technique, test fac-
toring [9], on the current suite of system tests, most of which
operate on the high-level APT of the package, sending in text
files and making assertions on text output. However, the
unit tests generated by test factoring are inefficient, and not
a significant improvement on the current tests. We would
like to evaluate whether our safe test reduction technique,
in combination with test factoring, would produce a safe,
efficient unit regression test suite.

In our simulated scenario, test factoring is run each night
overnight to produce inefficient unit tests, which are then

reduced by safe test reduction into guarded reduced tests.
For each snapshot that we have of development during the
next day, we can compare running the guarded reduced tests
with the unreduced generated tests, and the original system
tests. Our hypotheses are:

e The guarded reduced tests are an order of magnitude
smaller (in number of method calls against the tested
component) and faster than either the unreduced gen-
erated tests.

e In about 1% of the captured snapshots, a static guard
is violated. When a static guard is violated, the re-
duced test is useless, and an unreduced test must be
run to guarantee the system is correct. If this happens
very often, the overhead of evaluating the guards will
eliminate any gains from test reduction. However, if
it happens very seldom, we may have to conclude that
the danger of using unguarded reduced tests is not
very great, which reduces the value of the overhead of
generating and evaluating guards.

Unfortunately, in the time allotted for this course, we have
not been able to produce an implementation of our approach
that correctly handles all of the generated unit tests, so this
evaluation remains as future work.

7. Future Work

There are several ways that this work can be expanded
upon.

1. Our implementation must be made robust enough to
be evaluated against real-world test cases.

2. The basic slicing algorithm should be enhanced to work
correctly in the presence of aliasing.

3. A usable implementation of our technique requires an
incremental mechanism for evaluating guards. We be-
lieve that this is easily achieved, by caching in memory
or on disk the call graph required for guard genera-
tion, and propogating changes in place. However, our
current implementation must re-run the entire sum-
marization, a time requirement that overwhelms the
runtime benefits of reduction.

8. Conclusion

Automated test generation appears poised to become a
much more common development tool. It can provide a
“second opinion” on code, considering cases that the devel-
opers’ own assumptions and biases may cause them to over-
look. It can also dramatically reduce the effort and improve
the effectiveness of testing code.

We have introduced a technique for reducing the aver-
age runtime of inefficient test cases, whether automatically
or manually generated, without making any unsafe assump-
tions about the ways in which the tested code may change.
These properties should be an essential guarantee of future
test generation techniques.

References

[1] O. Agesen. The Cartesian Product Algorithm. In
ECOOP’95 Conference Proceedings, 1995.

2]
(3]

(4]

(5]

[6]

[7]

(8]

(9]

(10]

(11]

(12]

Agitar software. http://wuw.agitar.com, 2005.

M. Albrecht. Testing Java with JUnit.
http://www.ddj.com/documents/s=1679/ddj0302b/, 2003.
J.-D. Choi and H. Srinivasan. Deterministic replay of java
multithreaded applications. In SPDT ’98: Proceedings of
the SIGMETRICS symposium on Parallel and distributed
tools, pages 48-59, New York, NY, USA, 1998. ACM Press.
C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Softw. Pract. Exper.,
34(11):1025-1050, 2004.

Flex compiler infrastructure.
http://www.flex-compiler.lcs.mit.edu/.

A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. In Proceedings of the Third
International ICSE Workshop on Dynamic Analysis
(WODA 2005), pages 29-35, St. Louis, MO, USA, may
2005.

C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP 2005 —
Object-Oriented Programming, 19th Furopean Conference,
pages 504-527, Glasgow, Scotland, July 25-29, 2005.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst.
Automatic test factoring for Java. In ASE 2005:
Proceedings of the 21st Annual International Conference
on Automated Software Engineering, Long Beach, CA,
USA, November 9-11, 2005.

A. Salcianu and M. Rinard. Purity and side effect analysis
for Java programs. In Proceedings of the 6th International
Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’05), 2005.

A. Souter and L. Pollock. Incremental call graph reanalysis
for object-oriented software maintenance. In Proceedings
International Conference on Software Maintenance, pages
682-691, 2001.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. In
Proceedings of the 19th IEEE International Conference on
Automated Software Engineering (ASE 04), pages 196-205,
September 2004.

	Anonymous: Anonymous

