
Javarifier: Inferring Reference Immutability for Java ∗

6.883: Program Analysis ­ Course Project

Vineet Sinha Matthew Tschantz Chen Xiao

ABSTRACT
Reference immutability constraints restrict certain references
in a program from modifying objects. These constraints,
such as those provided by the Javari programming language,
have been shown to increase the expressiveness of a language
and to prevent and detect errors. Unfortunately, annotating
existing code, including libraries, with reference immutabil­
ity constraints is a tedious and error prone task.

We propose an algorithm for inferring the references in a pro­
gram that can be declared as read­only (or romaybe). Addi­
tionally, to gain additional precision, we introduce heuristics
that suggest assignable and mutable fields.

To evaluate our algorithm, we have implemented a tool,
Javarifier, to aid programmers in converting Java programs
to Javari. We also demonstrate the practicality of our algo­
rithm by using Javarifier to annotate an existing program.

1. INTRODUCTION
Immutable, or read­only, reference constraints prevent re­
stricted references from being used to modify the objects
(including transitive state) to which they refer. Using such
immutability constraints can have many benefits: program­
mers can write more expressive code; program understand­
ing and reasoning is enhanced by providing explicit, machine­
checked documentation; errors can be detected and pre­
vented; and analyses and transformations depending on com­
piler verified properties can be enabled. In practice, im­
mutability constraints have been shown to be practical and
to find errors in software [2].

For a programmer to gain the benefits of reference immutabil­
ity constraints, he must annotate his code with the appropri­
ate immutability constraints. For existing code, this can be
a tedious and error prone task. Even worse, a programmer
wishing to use reference immutability constraints, must first

∗Authors in alphabetical order

1

annotate the libraries he plans to use. Otherwise, a reference
immutability type checker would be forced to assume that
all methods may modify their arguments. Therefore, the
programmer would be unable to invoke any of the library’s
methods on immutable references even if the method, if fact,
does not modify its arguments.

To aid programmers with adding reference immutability con­
straints to Java programs, we have created an algorithm to
soundly infer immutable references from Java code. For con­
creteness, we use the reference immutability constraints of
Javari [13] (described in section 2).

Given a program, our algorithm calculates all the references,
including local variables, method parameters, static and in­
stance fields, that may have Javari’s readonly or romaybe
keywords added to their declarations. readonly references
cannot be used to modify the abstract state of the object to
which it refers (see section 2). romaybe references are used
reduce method duplication and cannot be used to modify
their referents, but can be passed, via a method’s return
value, to the client as a mutable reference (see section 2.3).
Using this algorithm, programmers can convert Java pro­
grams, including libraries, to Javari.

Javari’s other annotations, assignable and mutable, exclude
parts of the concrete representation from the abstract state.
Thus, they cannot be soundly inferred because they require
knowing the intent of the programmer. However, without
inferring this annotations, the precision of our algorithm
would suffer. This problem can occur when a reference is
used to modify a part of an object’s concrete state that was
not intended to be a part of the object’s abstract state. Such
a reference would be inferred to be mutable when in reality,
it should be read­only. Therefore, to improve the results
of our algorithm, we have created heuristics to recommend
fields that should be declared assignable or mutable.

We have implemented our algorithm and heuristics in the
form of the Javarifier tool. Given a Java program in class­
file format, Javarifier first recommends fields that should be
declared assignable or mutable. After the user has selected
the fields to declare assignable or mutable, Javarifier calcu­
lates and returns to the user the references that may be de­
clared readonly or romaybe. 1 It is important that Javarifier is

1As future work, Javarifier will be able to automatically in­
sert the correct readonly and romaybe annotations into source
and class files.

// Java

class Event {

Date date;

Date getDate() {

return Date;

}

void setDate(Date d) {

this.date = d;

}

int hc = 0;

int hashCode() {

if (hc == 0) {

hc = ...;

}

return hc;

}

}

// Javari

class Event {

/*this­mutable*/ Date date;

romaybe Date getDate() romaybe {

return Date;

}

void setDate(/*mutable*/ Date d) /*mutable*/ {
this.date = d;

}

assignable int hc = 0;

int hashCode() readonly {

if (hc == 0) {

hc = ...;

}

return hc;

}

}

Figure 1: A Java program (above) and the corre­
sponding inferred Javari program (below).

able to operate on classfiles because programmers may wish
convert library code that they only have in classfile format.

An example Java program and the corresponding Javari pro­
gram is shown in figure 1.

Note that hc is heuristically recommended to—and in this
case approved by—the user to be declared assignable. Oth­
erwise, hashCode would be inferred, undesirably, to have a
mutable receiver.

The rest of this document is organized as follows. Section 2
provides background on the Javari language. Section 3 ex­
plains the algorithm which is used to soundly infer read­
only references. Section 4 discusses how our algorithm is
soundly extended to infer romaybe references. Section 5 pro­
vides heuristics that can be used to infer assignable and
mutable fields. Section 6 describes the implementation of
our algorithm and heuristics within the Javarifier tool. Sec­
tion 7 provides our experience using Javarifier on a variety

of Java programs. Section 8 discusses related work. Finally,
section 10 concludes.

2. BACKGROUND
Javari [13] extends Java’s type system to allow programmers
to specify and statically enforce reference immutability con­
straints. For every Java type T, Javari also has the type
readonly T, with T being a subtype of readonly T. A refer­
ence declared to have a readonly type cannot be used to
mutate the object it references.Mutation is any modifica­
tion to an object’s transitively reachable state, which is the
state of the object and all state reachable from it by fol­
lowing references. 2 References that are not readonly, can be
used to modify their referent and are said to be mutable. An
example of Javari code is shown below

/*mutable*/ Date date;

readonly Date rd;

date.month = "June"; // OK

rodate.month = "June"; // error

A read­only reference cannot be converted to a mutable ref­
erence through assignment or casting. Mutable references,
being subtypes of read­only references, may be assigned
(without casting) or casted to read­only references. This
behavior is demonstrated below.

/*mutable*/ Date date;

readonly Date rodate;

rodate = date; // OK

rodate = (readonly Date) date; // OK

date = rodate; // error

date = (Date) rodate; // error

In addition to local variables, the readonly keyword may
be applied to fields and method parameters including the
implicit this parameter. A readonly this parameter is de­
clared by writing readonly immediately following the pa­
rameter list. For example, an appropriate declaration for
the StringBuffer.charAt method in Javari is:

public char charAt(int index) readonly { ... }

Such a method is called a read­only method. In the context
of the method, this is readonly. Thus, it is a type error for
a read­only method to change the state of the receiver, and
it is a type error for a non­read­only method to be called
through a read­only reference.

Note that final and readonly are orthogonal notions in vari­
able declaration: final makes the variable not assignable,
but the reference may still be used to mutate the object it
references, while readonly disallows the reference from being
used to mutation its referent, but the variable may still be
reassigned.

2.1 Fields
By default, a field of an object inherits its assignability and
the mutability it is read at from the reference through which
the field is reached. This default is called this­assignability

2Section 2.1.1 discusses overriding this behavior.

2

and this­mutability. If the reference through which the field
is accessed is read­only, then the field is unassignable (final)
and read at read­only. If the reference through which the
field is accessed is mutable, then the field is assignable and
read at mutable. These defaults ensure that mutability is
transitive by default. A this­mutable field is always writ­
ten to as a mutable type regardless of the mutability of the
reference through which it was reached. The requirement
that a this­mutable field is never written to with a read­
only time is need to prevent a type loop hole which could
be used to convert a read­only reference to a mutable refer­
ence [13]. The behavior of this­assignable and this­mutable
fields is illustrated below.

class Cell {
/*this­assignable this­mutable*/ Date d;

}

/*mutable*/ Cell c; // mutable

readonly Cell rc; // read­only

c.d = new Date(); // OK: c.d is assignable

rc.d = new Date(); // error: rc.d is unassignable (final)

/*mutable*/ Date d1 = c.d; // OK: c.d is read as mutable
/*mutable*/ Date d2 = rc.d; // error: rc.d is read as read­only

Only instance fields may be this­assignable or this­muta­
ble. Other references (such as formal parameters and local
variables) do not have a this to inherit their assignability
from.

2.1.1 Assignable and mutable fields
By default, fields are this­assignable and this­mutable. Un­
der these defaults, all the fields are considered to be a part
of the object’s abstract state and, therefore, can not be
modified through a read­only reference. The assignable and
mutable keywords enable a programmer to exclude specific
fields from the object’s abstract state.

Declaring a field assignable specifies that the field may al­
ways be reassigned, even through a read­only reference.

The assignable keyword specifies that a field may be as­
signed to even when reached through a read­only reference.
Assignable fields can be used for caches as shown below.

/** Assignable Cell. */

class ACell {

assignable /*this­mutable*/ Date d;

}

/** Converts a read­only Date to a mutable date. */

static /*mutable*/ Date

convertReadonlyToMutable(readonly Date roDate) {

/*mutable*/ ACell mutCell = new ACell();
readonly ACell roCell = mutCell;
roCell.d = roDate; // error
/*mutable*/ Date mutDate = mutCell.d;
return mutDate;

}

The mutable keyword specifies that a field is mutable even
when referenced through a read­only reference. A mutable
field’s value is not a part of the abstract state of the object

(but the field’s identity may be). For example, in the code
below, log is declared mutable so that it may be mutated
within read­only methods such as hashCode.

class Foo {

final mutable List<String> log;

int hashCode() readonly {
log.add("entered hashCode()"); // OK: log is mutable
...

}

}

Note that assignable and mutable are orthogonal notations
and may be applied in conjunction.

2.2 Parametric types and arrays
In Java, the client of a generic class controls the type of any
reference whose declared type is a type parameter. A client
may instantiate a type parameter with any type that is equal
to or a subtype of the declared bound. One can think of the
type argument being directly substituted into the param­
eterized class wherever the corresponding type parameter
appears.

Javari uses the same rules, extended in the natural way to
account for the fact that Javari types include a mutability
specification. A use of a type parameter within the generic
class body has the exact mutability with which the type pa­
rameter was instantiated. Generic classes require no special
rules for the mutabilities of type arguments, and the defaults
for local variables and fields are unchanged.

As with any local variable’s type, type arguments to the type
of a local variable may be mutable (by default) or read­only
(through use of the readonly keyword). Below, four valid
local variable, parameterized type declarations of List are
shown. Note that the mutability of the parameterized type
List does not affect the mutability of the type argument.

/*mutable*/ List</*mutable*/ Date> ld1; // add/rem./mut.
/*mutable*/ List<readonly Date> ld2; // add/remove
readonly List</*mutable*/ Date> ld3; // mutate
readonly List<readonly Date> ld4; // (neither)

As in Java, subtyping is invariant in terms of type argu­
ments. Therefore, List</*mutable*/ Date> is not related (a
subtype or supertype) to List<readonly Date>. Wildcard
types can be used to provide a common supertype for List
</*mutable*/ Date> and List<readonly Date>. The common
supertype will have readonly Date as its type argument’s
lower bound and /*mutable*/ Date as its the upper bound.
Using Java­like syntax, this type is written as List<? extends
readonly Date super /*mutable*/ Date>. Java, however, does
not allow the declaration of a lower and upper bound on a
wildcard. Therefore, Javari provides the special keyword
? readonly, to specify a that a wildcard should be bounded
above by the read­only version of a type and below, by
the mutable version of the same type. For example, using
? readonly, the common supertype of List<readonly Date>
and List</*mutable*/ Date> would be written as List<?
readonly Date>. Below, List<? readonly Date>’s relationship
to the other List types is demonstrated.

List</*mutable*/ Date> ld1;
List<readonly Date> ld2;

3

List<? readonly Date> ld3;

ld1 = ld2; // error: ld1 and ld2 are unrelated

ld3 = ld1; // OK: ld3 supertype of ld1
ld3 = ld2; // OK: ld3 supertype of ld2

Since List<readonly Date>s may be assigned to a reference
of type List<? readonly Date>, Dates taken from a List of
? readonly elements must be read as being read­only. Oth­
erwise, one would be able to place a readonly Date in a List
of readonly Date’s and take the Date out of a aliasing List of
? readonly dates. Similarly, because a List of mutable Dates
could alias a List of ? readonly Dates, only mutable Dates
may be written to a List of ? readonly Dates. Below, these
type rules are demonstrated.

List<? readonly Date> ld;

/*mutable*/ Date d;
readonly Date rd;

rd = ld.get(0); // OK
d = ld.get(0); // error: elms. read as read­only

ld.add(rd); // error: elms. written as mutable
ld.add(d); // OK

As with any instance field’s type, type arguments to the type
of a field default to this­mutable, and this default can be
overridden by declaring the type argument to be readonly,
mutable or ? readonly:

class DateList {
// 3 readonly lists whose elements have different mutability
readonly List</*this­mutable*/ Date> lst;
readonly List<readonly Date> lst2;
readonly List<mutable Date> lst3;
readonly List<? readonly Date> lst4;

}

As in any other case, the mutability of a type with this­
mutability is determined by the mutability of the object in
which it appears (not the mutability of the parameterized
class in which it might be a type argument). In the case
of DateList above, the mutability of lst’s elements is deter­
mined by the mutability of the reference to DateList, not by
the mutability of lst itself.

Similar to non­parametric typed field, when reached through
a mutable reference, the this­mutable elements of a parame­
terized class are read as mutable, and when reached through
a read­only reference, the elements are read as mutable.
However, whether reached through a mutable or read­only
reference, the elements of a this­mutable parameterized class
must always be written to by mutable references. Thus,
this­mutable elements of a List when reached through a
read­only reference are read as read­only and written to as
mutable, which is the same behavior as a list of ? readonly
elements. The following example illustrates this behavior.

class EventPlanner {
/*this­mut*/ List</*this­mut*/ Event> evts;

}

/*mutable*/ EventPlanner p;

readonly EventPlanner rp;

/*mutable*/ List</*mutable*/ Event> e1 = p.evts; // OK
readonly List<? readonly Event> e2 = rp.evts; // OK

2.2.1 Arrays
As with generic container classes, a programmer may inde­
pendently specify the mutability of each level of an array.
As with any other local variable’s type, each level of an ar­
ray is mutable by default and may be declared read­only
with the readonly keyword. Additionally, as with paramet­
ric types, the type of an array’s elements may be declared
as ? readonly. As with any other field’s type, each level
may be declared mutable with the mutable keyword, read­
only with the readonly keyword, or this­mutable by default.
Again, the type of an array’s elements may be declared as
? readonly. Parentheses may be used to specify to which
level of an array a keyword is to be applied. Below, four
valid array local variable declarations are shown.

Date [] ad1; // add/remove, mutate
(readonly Date)[] ad2; // add/remove

readonly Date [] ad3; // mutate
readonly (readonly Date)[] ad4; // no add/rem., no mutate

The above syntax can be applied to arrays of any dimen­
sionality. For example, the type (readonly Date[])[] is a
two­dimensional array with a read­only inner­array and that
is otherwise mutable.

As in the case of parameterized list, an array may have this­
mutable elements. When such an array is reached through a
mutable reference, the elements have mutable type and when
reached through a read­only reference, the elements have ?
readonly type. Below, gives an example of this behavior.

class Wheel

/*this­mut*/ (/*this­mut*/ Spoke)[] spokes;

/*mutable*/ Wheel w;
readonly Wheel rw;

/*mutable*/ (/*mutable*/ Spoke)[] spks1 = w.spokes; // OK
readonly (? readonly Spoke)[] spks2 = w.spokes; // OK

Java’s arrays are covariant. To maintain type safety, the
JVM performs a check when a object is stored to an array.
To avoid a run­time representation of immutability, Javari
does not allow covariance across the mutability of array el­
ement types. For example,

Date [] ad1;

(readonly Date)[] ad2;

ad2 = ad1; // error: arrays are not covariant over mutability

2.3 romaybe
When the mutability of the return type of a method is de­
pendant on the mutability of one (or more) of the method’s
formal parameters, it is often necessary to write two meth­
ods that differ on in their signatures. For example, below,
the return type of getDate depends on the mutability of the
method’s receiver.

class Event {

Date date;

4

/*mutable*/ Date getDate() /*mutable*/ {

return date;

}

readonly Date getDate() readonly {
return date;

}
}

Thus, as shown above, one is forced to write two versions of
getDate.

To reduce this code duplication, Javari provides the romaybe
keyword, which is used to template a method over the mu­
tability over the mutability of formal parameters and return
types. If the type modifier romaybe is applied to any formal
parameter and the return type (including this), then the
type checker conceptually duplicates the method, creating
two versions of it. In the first version of the method, all in­
stances of romaybe are replaced by readonly3 . In the second
version, all instances of romaybe are removed. For example,
the two getDate methods from Event could be replaced by
the single method declaration shown below:

romaybe Date getDate() romaybe {

return date;

}

3. INFERRING READ­ONLY REFERENCES
We use a flow and context insensitive algorithm to infer
which references may be declared read­only. A read­only
reference may have the readonly keyword added to its Javari
type declaration. The algorithm is sound: Javarifier’s rec­
ommendations will type check under Javari’s rules. Fur­
thermore, our algorithm is precise: declaring any references
in addition to Javarifier’s recommendations as read­only—
without other modifications to the code—will result in the
program not type checking.

The read­only inference algorithm does not determine which
fields should be declared mutable or assignable; however, it
is capable of inferring in the presence of fields that have been
declared mutable or assignable (section 2.1.1) by an outside
source (see section 5). The read­only inference algorithm as­
sumes that all fields that are not read­only are this­mutable.
This choice is made because declaring fields to be mutable
is state that the field is not a part of the object’s abstract
state, an exceptional case.

For simplicity, we begin by describing our core algorithm (in
section 3.1), i.e., the algorithm in the absence of subtyping,
user­provided reference immutability annotations including
assignable and mutable fields, arrays, and parametric types.
We then extend the algorithm to subtyping (in section 3.2),
user­provided constraints (in section 3.3), and arrays and
parametric types (in section 3.4).

3.1 Core algorithm
Our algorithm generates then solves a set of mutability con­
straints for a program. A mutability constraint states when
a given reference must be declared mutable. The algorithm

3If romaybe appeared as an type argument to a parameter­
ized class, then it is replaced by ? readonly.

5

C ::= class {f M}
M ::= m(x){s;}
s ::= x = x

x = x.m(x)|
return x|
x = x.f|
x.f = x|

Figure 2: Grammar for core language used during
constraint generation.

uses two types of constraints: unguarded and guarded. Un­
guarded constraints state that a given reference must be
mutable, e.g. “x is mutable.” Guarded constraints state
that a given dependent reference is mutable if the guard ref­
erence is mutable, e.g. “if y is mutable then x is mutable.”
We use constraint variables to name the references in these
constraints—x and y in the previous examples. Unguarded
constraints are represented by the constraint variable of the
reference it is constraining, e.g. “x.” Guarded constraints
are represented as implications with guard reference’s con­
straint variable as the predicate and dependent reference’s
constraint variable as the consequence, e.g. “y → x.

After generating the constraints, the algorithm solves the
constraints yielding a simplified constraint set. The sim­
plified constraint set is the set of all unguarded constraints
and guarded constraints that are satisfied directly by an un­
guarded constraint or by indirectly though the consequence
of a different satisfied guarded constraint. The simplified
constraint set contains the set of references that must be de­
clared mutable; all other references may safely be declared
read­only.

3.1.1 Constraint generation
The first phase of the algorithm generates constraints for
each statement in a program. Unguarded constraints are
generated when a reference is used to modify an object.
Guarded constraints are generated when a reference is as­
signed to another reference or a field is reached through a
reference.

We present constraint generation using a core language. The
core language is a simple three­address programming lan­

4 guage. The grammar of the language is shown in figure
2. We use C and M to refer to class and method definitions,
respectively. m ranges over method names, f ranges over
names fields, and s ranges over allowed statements. p, x,
y, and z range over variables (locals and method parame­
ters). We use x as the shorthand for the (possibly empty)
sequence x1...xn We also include the special variable thism,
which refers to the receiver of m. Furthermore, we assume
any program that attempts to reassign thism is malformed.
Otherwise, thism is treated as a normal variable. Without
loss of generality and for ease of presentation, we assume
that all references and methods are given globally­unique
names.

Control flow constructs are not modeled because the our al­

4Java source and classfiles can be converted to such a rep­
resentation.

gorithm is flow­insensitive and, therefore, unaffected by such
constructs. Java types are not modeled because the core al­
gorithm does not use them. Constructors are modelled as
regular methods returning a mutable thism, and static mem­
bers are omitted because do not demonstrate any interesting
properties.

Each of the statements from figure 2 has a constraint gener­
ation rule, as shown in figure 3. The rules make use of the
following auxiliary functions. this(m) and params(m) returns
the receiver reference (this) and parameters of method m,
respectively. retVal(m) returns the constraint variable, retm,
that represents the reference to m’s return value. retm is
treated, otherwise, like any other constraint variable.

The constraint generation rules are described as follows:

Assign The assignment of variable y to x causes the guarded
constraint x → y to be generated because, if x is a mu­
table reference, y must also be mutable for the assign­
ment to succeed.

Invk The assignment of the return value of the invocation
of method m on y with arguments y generates three
constraints. The guarded constraint thism → y is gen­
erated because the actual receiver must be mutable if
m requires a mutable receiver. Similarly, the set of con­
straints p → y is generated because the ith argument
must be mutable if m requires the ith parameter to be
mutable. Finally, the constraint x retm is introduced →
to enforce that m must return a mutable reference if its
return value is assign to a mutable reference.

These constraints are extensions of the Assign rule
when method invocation is framed in terms of opera­
tional semantics: the receiver, y, is assigned to the
thism reference, each actual argument is assigned to
the method’s formal parameters, and the return value,
retm, is assigned to x.

Ret	 The return statement return x adds the constraint retm →
x because in the case that the return type of the method
is found to be mutable, all references returned by the
method must be mutable.

Ref The assignment of y.f to x generates two constraints.
The first, x → f, is required because, if x is mutable,
then the field f cannot be read­only. The second, x →
y, is needed because, if x is mutable, then y must be
mutable to yield a mutable reference to field f.

Set The assignment of y to x.f causes the unguarded con­
straint x to be generated because x has just been used
to mutate the object to which it refers. The constraint
f → y is also added because if f is not read­only, then
a mutable reference must be assigned to it.

The constraints for a program is the union of the constraints
generated for each line of the program. Figure 4 shows con­
straints being generated for a sample program.

Library code: Our algorithm as described above makes
the close­world assumption. That is, it assumes that all code

x = y : {x → y} (Assign)

this(m) = thism
params(m) = p retVal(m) = retm

(Invk)
x = y.m(y) : {thism → y, p → y, x → retm}

retVal(m) = retm
(Ret)

return x : {retm → x}

x = y.f : {x → f, x → y} (Ref)

x.f = y : {x, f → y} (Set)

Figure 3: Constraint generation rules.

class {
f;
foo(p) {

x = p; // {x ­> p} Assign
y = x.f; // {y ­> f, y ­> z} Ref
z = x.foo(y); // {this_foo ­> x,

// p ­> x, z ­> ret_foo} Invk
this.f = y; // {this_foo, f ­> y} Set
return y; // {ret_foo ­> y} Ret

}

Program constraints:

{x → p, thisfoo x, p → x, z→ → retfoo ,

z, thisfoo , f → y, retfooy → f, y →	 → y}

Figure 4: Example of constraint generation. The
constraints generated and the constraint generation
rule used for each line of code is shown after the line
as a comment.

6

is seen and it, therefore, is safe to change public method re­
turn types and types of public fields. In the case that a
user is running the algorithm on the whole program, the
closed world assumption allows the results to be more pre­
cise. However, in order to support analyzing library classes
which do not have access to their clients, our algorithm needs
to be sound even without the presence of all client code.
Thus, all non­private 5 fields and the return types of non­
private methods must be mutable because an unseen client
may rely on a mutability of the field or return value. Our
algorithm is easily modified to enforce this restriction: an
unguarded constraint for every non­private field and non­
private method return value is added to the constraint set.
Depending on the needs of the other, the algorithm can be
optionally conducted either under the closed­world assump­
tion.

3.1.2 Simplifying constraints
The second phase of the algorithm is to simplify the con­
straint set. Constraint set simplification is done by checking
if any of the unguarded constraints satisfies, i.e. matches,
the guard of a guarded constraint. If so, the guarded con­
straint is “fired” by removing it from the constraint set and
adding its consequence to the constraint set as an unguarded
constraint. The new unguarded constraint can then be used
to fire other guarded constraints. Once no more constraints
can be fired , constraint simplification terminates. The un­
guarded constraints in the simplified constraint set is the
set of references that are used to mutable their referents. 6 .
These references cannot have their declarations annotated
with readonly. All other references are safe to have their
declarations annotated with readonly.

The constraints generated from the example program in fig­
ure 4 will be simplified as shown below. (For clarity, the
unguarded constraints are listed first.)

thisfoo, x → p, thisfoo x, p → x, z{ → → retfoo ,

f, y → z, f → y, retfooy → → y} ⇒

thisfoo , x, p}{

At the end of simplification, the unguarded constraints thisfoo ,
x and p are present in the simplified constraint set and are
mutable. These references may not have their declarations
annotated with readonly. All other references, y, z, retfoo ,
and f, are read­only and may have their declarations anno­
tated with readonly. Figure 5 shows the result of applying
our algorithm’s result to the example program.

3.2 Subtyping
Java and Javari allows subtyping polymorphism which en­
ables multiple versions of a method to be specified through
overriding7 . All versions of an overridden method must have

5In the case that an entire package is being analyzed,
package­protected (default access) methods and fields may
be processed as under the closed world assumption.
6They must be declared this­mutable for fields, mutable in
the case of all other types of references.
7We use the term overriding to specify when a method im­
plements an interface’s method signature, implements an
abstract method, or overrides a concrete method in a su­
perclass. Furthermore, for brevity and to highlight their
identical treatment, we will refer to both abstract methods
and interface method signatures as abstract methods.

7

class {
readonly f;
foo(p) {

x = p;
readonly y = x.f;
readonly z = x.foo(y);

this.f = y;

return y;

}

}

Figure 5: The results of applying our algorithm’s
results the program.

identical signatures including the mutability of parameters.8

Therefore, our algorithm must infer the same mutabilities
for the parameters of all versions of the overridden meth­
ods. If not, the resulting code would not type check under
Javari’s type rules. For example, in the case of a class’s
method overriding an abstract method, the class would no
longer implement the interface or abstract class that con­
tained the abstract method. On the other hand, in the case
of a method overriding a concrete method, the two methods
would no longer be in a overriding relationship, but an over­
loading relationship. This is not allowed, however, because
Javari does not allow two overloading methods to differ only
in the mutability of parameters.

To ensure that our algorithm does not infer different signa­
tures for polymorphic methods, we must place an additional
set of constraints in the constraint set. For every parame­
ter of a overloaded method, we add the constraint that it
is equal in mutability to every other version of the method.
Equality is represented by two guarded constraints, one in­
dicated if the first parameter is mutable then the second
parameter is mutable, the other specifies that if second pa­
rameter is mutable then the first is mutable. For example,
below, the method toString is overloaded.

class Event {
Date d;
...
String toString() {

return d.toString();

}

}

class Birthday extends Event {
...
int age;
String string;
String toString() {

if (string == null) {
string = "I’m" + age + "on" + d + "!";

}
return string;

}

}

Thus, the mutability of the this parameter of Event’s and
Birthday’s toString methods must be the same. This re­
quirement generates the constraints thisEvent.toString →
thisBirthday.toString and thisBirthday.toString → thisEvent.toString.

8Java signatures do not include the return type, however,
such methods are additionally restricted to have covariant
return types.

Although, to preserve overloading, both methods are de­
clared to have mutable this parameters, only Birthday’s
toString method actually mutates it receiver. One version
of the method mutating the receiver while another does not
is disconcerting because overloaded methods are suppose to
both be implementations of the same specification. There­
fore, our algorithm should issue a warning in such cases
or make both receivers read­only using the technique of
declaring select fields to be mutable or assignable given in
section 5.1. For example, the technique would state that
Birthday’s string field should be declared assignable, and
doing so would allow Birthday’s toString along with Event’s
to be read­only, the expected result.

3.3 User­provided annotations
Our read­only inference algorithm can be extended to in­
corporate user­provided annotations. This capability is re­
quired because the read­only inference algorithm is not ca­
pable of directly inferring the assignable and mutable key­
words. Additionally, user­provided annotations are needed
for native method invocations, on which our algorithm can­
not operate. Finally, a user may, using knowledge of the
program, wish to override the annotations inferred by our
algorithm. A user may specify that instance fields are this­
mutable, read­only or mutable and other references (static
fields, local variables and parameters) are read­only or mu­
table.

A user declaring either a field or non­field reference to be
read­only causes the algorithm, upon finishing, to check if
it is safe to declare the given reference as readonly. If not,
the algorithm either issues an error, stating the conflict with
the user annotation, or recommend ways to change the code,
discussed in section 5.1, such that reference would be safe
to declare be readonly.

It is expected that this type of declaration will be particu­
larly useful for overridden methods (see section 3.2) because
declaring a supertype’s method to be read­only would propa­
gate to all the subtypes. For example, a user could annotate
Object’s toString, hashCode, and equals methods as having
read­only this parameters. The user would then be notified
if any class’s implementation of the above methods are not
read­only. Such cases may arise from errors or usage of a
cache fields that should be declared assignable.

A user declaring a non­field reference mutable or a field this­
mutable results in the system adding an unguarded con­
straint that the reference cannot be read­only. This speci­
fication is useful when a programmer knows that a certain
reference is not currently used to modify its referent, but
that it may be used to do so in the future. This case is ex­
pected to be particularly relevant for method return types
when running the algorithm with the closed world assump­
tion (see section 3.1.1). For example, a user may wish to
annotate an program under the closed world assumption but
specify that certain public observer methods return mutable
references.

Finally, a user may declare fields to be assignable or mutable.
These annotations are particularly important because our
algorithm cannot soundly infer fields to be assignable or
mutable as it would require knowing which fields the pro­

assignable(f)
(Set­A)

x.f = y : {f → y}

¬assignable(f)
(Set­N)

x.f = y : {x, f → y}

mutable f; : {f} (Mutable)

mutable(f)
(Ref­M)

x = y.f : {}

¬mutable(f)
(Ref­N)

x = y.f : {x → f, x → y}

Figure 6: Modified constraint generation rules for
handling assignable and mutable fields.

grammer intended to be a part of an object’s abstract state.
Our algorithm, however, can be extended to work with fields
that are declared, by an outside source, to be assignable or
mutable. This ability is important because fields may be de­
termined to be mutable or assignable by hand or through
heuristics (section 5).

To extend our algorithm to handle mutable and assignable
fields, the constraint generation rules are extended to check
the assignability and mutability of fields before adding con­
straints. The algorithm is given a set of fields that are
declared to be assignable, AS, and the set of fields that
are declared to be mutable, MS. The auxiliary functions
assignable(f) and mutable(f) returns true if and only if f is
contained in AS or MS, respectively. The changes to the
constraint generation rules are shown in figure 6 and are
described below.

To handle assignable fields, the Set rule is divided into two
rules, Set­A and Set­N, which depend on the assignability
of the field. If the field is assignable, then Set­A does
not add the unguarded constraint that the reference used
to reach the field must be mutable, because an assignable
field may be assigned through either a read­only or mutable
reference. If the field is not assignable, then Set­N proceeds
as normal.

To handle mutable fields, we add the constraint generation
rule Mutable, which adds an unguarded constraint for each
mutable field. The Ref rule is again divided into two rules:
Ref­M and Ref­N depending on the mutability of the field.
If the field is not mutable, then Ref­N proceeds as normal.
If the field is mutable, then Ref­M does not add any con­
straints because, when compared to Ref­N, (1) the first
constraint, that of the field, has already been added to the
constraint set via the Mutable rule, and (2) the second con­
straint, applied to the reference used to reach the field, is
eliminated because mutable field will be mutable even when
reached through a readonly reference.

3.4 Arrays and parametric types
Our algorithm can be extended to handle arrays and para­
metric types. We begin by discussing the issues involved for

8

� �

Grammar:

s
� ::= s

x[x] = x|
x = x[x] |

Figure 7: Core language grammar extended for ar­
rays.

arrays; parametric types are a simple extension.

We extend our core language grammar to allow for storing
and reading from arrays. The extended grammar is shown
in figure 7.

3.4.1 Constraint variables
Javari allows array elements to have two­sided bounded types.
For example, the array (? readonly Date)[] has elements
with upper bound readonly Date and lower bound mutable
Date. All array element types can be written in the form of
having an upper bound and a lower bound. For example,
(readonly Date)[] has elements with upper bound readonly
Date and lower bound readonly Date. Therefore, our algo­
rithm will need infer an upper bound and a lower bound for
the types of array elements.

In addition to the arrays themselves, we must constraint
the upper bound and lower bound of an array’s elements.
Thus, we create constraint variables for an array’s elements’
upper and lower bounds in addition to the array’s constraint
variable. For a reference x that is a single dimension array,
we denote the array’s mutability by the constraint variable
x[] and the array’s elements’ upper bound by x� and the
lower bound by x�.

3.4.2 Constraint generation
The constraint generation rules are extended to add con­
straints between array elements during an assignment be­
tween array references. For the assignment, x = y where
x and y are arrays, the extension must enforce that y is a
subtype of x. Simplified subtyping rules for Javari are given
in figure 8. The simplified rules only check the mutability
of the type because we assume the program being converted
type checks under Java. For parametric types, the subtyp­
ing rules check that the element types are in a contains rela­
tion. 9 An array element’s type (or a parametric class’s type
argument), TA2, is said to be contained by another array el­
ement’s type, TA1, written TA2 <= TA1, if the set of types
denoted by TA2 is a subset of the types denoted by TA1. Our
subtyping rules use ∗ to denote additional, possibly zero,
levels of the array.

We modify the constraint rules to enforce the subtyping re­
lationship across assignments including the implicit assign­
ments that occur during method invocation. The extended
rules are shown in figure 9.

3.4.3 Constraint simplification
9In Java, array are covariant; however, in Javari, array are
invariant in respect to mutability, therefore, we use the con­
tains relationship as Java’s parametric types do.

y[]
∗
[] → x[]∗[] x[]

∗ <= y[]∗

x[]
∗
[] <: y[]∗[]

xy →

x <: y

� <: y[]∗	
y[]

∗
x[]

∗
� <: x[]∗

x[]
∗ <= y[]∗

Figure 8: Subtyping rules for mutability in Javari.

x = y : {y<: x} (Assign)

this(m) = thism
params(m) = p retVal(m) = retm

(Invk)
x = y.m(y) :	{y<: thism, y<: p, retm <: x}

retVal(m) = retm

(Ret)

return x : {x<: retm}

x = y.f : {f<: x, x → y} (Ref)

x.f = y : {x, y<: f} (Set)

x = y[z] : {y[] <: x} (Array­Ref)

x[z] = y : {x, y<: x[]} (Array­Set)

Figure 9: Constraint generation rules in presence of
arrays.

9

Before the constraint set can be simplified as before, sub­
typing and contains constraints must be reduced to guarded
constraints. To do so, each subtyping or contains constraint
is expanded by adding the rule’s predicates, as shown in fig­
ure 8, to the constraint set. This step is repeated until only
guarded and unguarded constraints remain in the constraint
set. For example, the statement x = y where x and y are one
dimensional arrays would generate then reduce subtyping
and contains constraints as follows:

x = y	 : {y[] <: x[]}
: {x[] → y[], y <= x}
: {x[] → y[], y� <: x�, x� <: y�}
: {x[] → y[], x� → y�, y� → x�}

The first guarded constraint enforces that y must be a mu­
table array if x is a mutable array. The second and third con­
straints constrain the bounds on the arrays’ elements types.
x� → y� requires the upper bound of y’s elements to be mu­
table if the upper bound x’s elements is mutable. This rule is
due to covariant subtyping between upper bounds. y� → x�

requires the lower bound of x’s elements to be mutable if
the lower bound y’s elements is mutable. This rule is due to
contravariant subtyping between lower bounds.

After eliminating all subtyping or contains constraints, the
remaining guarded and unguarded constraint set is simpli­
fied as before.

Unlike the case without arrays, this approach is not guar­
anteed to alway provide the most general method signa­

10tures , or, therefore, the maximum number of read­only
annotations. We are unable to always infer the most gen­
eral method signature because in some cases one does not
exist. For example, take the method below:

void addDate(Date[] a, Date d) {
a[0] = d;

}

Three type­correct Javari method signatures can be infer
(our algorithm as stated above infers the first):

addDate((readonly Date)[] a, readonly Date d)
addDate((? readonly Date)[] a, /*mutable*/ Date d)
addDate((/*mutable*/ Date)[] a, /*mutable*/ Date d)

In all cases the array a is mutable. The last method signa­
ture is strictly less general than the second, so we will no
longer consider it. The first method signature allows a more
general type for d because could be applied to readonly or
mutable Dates. The second method signature allows a more
general type for a because it could applied to arrays with
readonly, mutable, or ? readonly elements. Thus, neither
the first or second method signature is the most general and
there is no most general method signature that can be in­
ferred.

Furthermore, this problem cannot be solved with method
overriding, including romaybe (section 2.3), because one is

10The most general method is the method that accepts the
most types of arguments. For example foo(readonly Date)
has a more general method signature than foo(mutable*
Date), because it can take read­only Dates in addition to
mutable ones.

not allowed to overload methods based only on differing mu­
tabilities of the arguments in Javari and romaybe in this case
would not expand to the needed types.

Three approach to deal with this situation are:

1. Duplicate the method into two versions with different
names and then infer which should be method should
be used at each call site.

2. Rewrite the method to be generic using type parame­
ters.

3. Try both signatures, and see which one allows the most
references to be declared readonly.

The first and second techniques would guarantee the max­
imum number of read­only annotations, but make a larger
change to the program by adding or parameterizing meth­
ods in addition to adding immutability annotations. The
third technique could infer less read­only annotations in the
case that both versions of the method are needed but makes
a smaller change to the code. Unfortunately, the third tech­
nique’s runtime would grow exponentially in the number of
such methods, if it tried every possible combination of sig­
natures. Evaluating these techniques in practice remains
future work.

3.4.4 Parametric types
Parametric types are handled in the same fashion as arrays.
In their case, a constraint variable must be made for each
type argument to a parametric class.

4. INFERRING ROMAYBE
Our core read­only inference algorithm can be extended to
infer the romaybe keyword. Doing so allows more precise
immutability annotations to be inferred.

4.1 Motivation
For our algorithm to be practical, it must also be able to
infer romaybe types. romaybe is used to create two versions
of a method: a read­only version, which takes a read­only
parameter and returns a read­only type, and a mutable ver­
sion, which takes mutable parameter and returns a mutable
type (see section 2). For example, in figure 10, the getSeat
method could be declared to have a romaybe this parame­
ter and return type. Declaring getSeat to be romaybe allows
the mutable version to be used by lowerSeat, which mutates
the returned Seat object, and the read­only version to be
used by printSeat, which does not mutate the returned Seat
object. Providing both versions of the method is benefi­
cial, because by using the read­only version of the getSeat
method, printSeat’s parameter b may be declared readonly
as one would expect, since printSeat does not modify its ar­
gument. The results of the read­only inference when getSeat
is declared to be romaybe are shown in figure 11.

On the other hand, if the algorithm is unable to infer romaybe,
it will be able to only provide the mutable version of the
method as a mutable return type is required for the lowerSeat
method. Unfortunately, inferring only the mutable version
of getSeat requires contexts that do not need a mutable Seat
object to still invoke the mutable version of a method and,

10

class Bicycle {

private Seat seat;

Seat getSeat() {

return seat;

}

}

static void lowerSeat(Bicycle b) {

Seat s = b.getSeat();

seat.height = 0;

}

static void printSeat(Bicycle b) {

Seat s = b.getSeat();

System.out.prinln(s);

}

Figure 10: Java code containing getSeat method
which should be declared to be romaybe.

class Bicycle {

private Seat seat;

romaybe Seat getSeat() romaybe {

return seat;

}

}

static void lowerSeat(/*mutable*/ Bicycle b) {

/*mutable*/ Seat s = b.getSeat();

seat.height = 0;

}

static void printSeat(readonly Bicycle b) {

readonly Seat s = b.getSeat();

System.out.prinln(s);

}

Figure 11: Sound and precise Javari code which
gives getSeat romaybe type.

class Bicycle {

private Seat seat;

/*mutable*/ Seat getSeat() /*mutable*/ {

return seat;

}

}

static void lowerSeat(/*mutable*/ Bicycle b) {
/*mutable*/ Seat s = b.getSeat();
seat.height = 0;

}

static void printSeat(/*mutable*/ Bicycle b) {
/*mutable*/ Seat s = b.getSeat();
System.out.println(s);

}

Figure 12: Sound but imprecise Javari code which
not using romaybe. getSeat is given the imprecise mu­
table type instead of the precise romaybe type.

therefore, provide a mutable receiver to getSeat. Thus, the
printSeat method which does not require a mutable refer­
ence to the Seat object returned by getSeat, would still need
to provide mutable reference as the receiver to the getSeat
method as shown in figure 12. This situation can cause
many references, such as printSeat’s parameter b, to be de­
clared mutable when they are not used to mutate the object
to which they refer. While these annotations are sound they
suffer from a loss of precision.

4.2 Approach
To extend our read­only inference algorithm, we create two
versions of every method and invoke one version where a mu­
table return type is needed and the other when a mutable
return type is not needed. If the type of any of the param­
eters of the method is different between the two versions,
those parameters and the return type should be declared
romaybe. Otherwise, the two contexts are redundant, and
only a single method should be created.

4.2.1 Method contexts
We extend our read­only inference algorithm to infer romaybe
by recognizing that romaybe methods. In the first context,
the return type and romaybe parameters are mutable. In the
second context, the return type and romaybe parameters are
read­only. Since we do not know which methods are romaybe
before hand, we create both contexts for every method.

In the case of methods that should not have romaybe param­
eters, the two contexts are redundant, that is, mutability of
parameters from each context will be identical. However, in
the case of methods should romaybe parameters, the param­
eters will be mutable in the mutable context and read­only
in the read­only context.

To create two contexts for a method, we create two con­
straint variables for every method local reference (param­
eters, local variables, and return value). To distinguish
constraint variables from each context, we superscript the
constraint variables from the read­only context with ro and
those from the mutable context with mut. Constraint vari­
ables for fields are not duplicated as romaybe may not be

11

this(m) = thism params(m) = p retVal(m) = retm
mut ? ? mut ?x = y.m(y) : {x ? → thism → y , x → p → y , x → retm}

Figure 13: Constraint generation rule, Invk­romaybe
for method invocation in the presence of romaybe ref­
erences.

applied to fields and, thus, only single context exists.

4.2.2 Constraint generation rules
With the exception of Invk, all the constraint generation
rules are changed to generate identical constraints for both
the read­only and the mutable version of constraint vari­
ables. Otherwise, the constraints are the same. For exam­
ple, x = y generates the constraints:

ro ro mut mut , x{x → y → y }

For short hand, we write constraints that are identical with
the exception of constraint variables’ contexts by super­
scripting the constraint variables with ? . For example, the
results of the x = y constraint generation rule can be written
as:

? ? {x → y }

The method invocation rule must be modified to invoke the
mutable version of a method when a mutable return type
is needed and to invoke the read­only version, otherwise.
For the method invocation, x = y.m(y), a mutable return
type is needed when x is mutable. Otherwise, the read­only
version of the method is used. When the mutable version
of a method is used, the actual receiver and arguments to
the method must be mutable if the this parameter and for­
mal parameters of the mutable version of the method are
mutable. When the read­only version of a method is used,
the actual receiver and arguments to the method must be
mutable if the this parameter and formal parameters of the
read­only version of the method are mutable. The new Invk
rule are shown in figure 13.

The invocation rule checks whether x is mutable, and in the
case that it is, adds constraints that the actual arguments
must be mutable of the formal parameters of the mutable
context of the method are mutable. Rule also adds the con­
straints that the the actual arguments must be mutable of
the formal parameters if the read­only context of the method
are mutable without checking if x is mutable. The check can
be skipped because the parameters of the read­only version
of the method’s constraints are guaranteed to be subsumed
by the mutable version of the method. Thus, adding the
read­only version of the invoked method’s constraints in ad­
dition to the mutable version’s constraints in the case of the
mutable method being invoked will add nothing new to the
constraint set.

The constraints are solved as before.

4.2.3 Interpreting results of solved constraint set
If both the mutable and read­only version of a constraint
variable is found to be in in the simplified, unguarded con­

straint set, then the corresponding reference is declared mu­
table. If both versions of the constraint variable is absent
from the constraint set, then the corresponding reference
is declared readonly. Finally, if the mutable context’s con­
straint variable is in the constraint set but the read­only
constraint variable is not in the constraint set, the corre­
sponding reference is declared romaybe because the mutabil­
ity of the reference depends on which version of the method
is called.11

It could be the case that a method contains romaybe refer­
ences but no romaybe parameters. For example, below, x and
the return value of getNewDate could be romaybe.

Date getNewDate() {
Date x = new Date();
return x;

}

However, romaybe references are only allowed, or useful, if
the method has a romaybe parameter. Thus, if none of a
method’s parameters are romaybe, all the method’s romaybe
references are converted to be mutable references.

5. INFERRING MUTABLE AND ASSIGNABLE
The core algorithm infers references to objects that are not
modified as readonly. While it is able to leverage user­
provided assignable and mutable annotations for inferring
readonly, it is not able to infer the assignable and mutable
annotations as these represent overriding of the default tran­
sitive immutability guarantees of the Javari language. We
present a technique that infers and provides recommenda­
tions when the default transitive immutability guarantees
should be overridden by leveraging references that have been
marked readonly but are being modified. Since these refer­
ences are annotated readonly but are being modified, the
read­only inferencer will not have recommended such an­
notations and they are likely to be provided by users or via
other techniques such as via heuristics. We present two such
heuristic to detect fields used as caches and mark method
references as readonly.

Since the provided recommendations represent overriding of
the immutability guarantees, these techniques are disabled
by default and need to be explicitly triggered by the user via
a Javarifier input option. The recommendations provided by
the sections are presented to the user on as ranked lists of
fields that should be assignable or mutable.

5.1 Leveraging readonly annotations
In order to detect the overriding of default transitive im­
mutability guarantees, we need to detect references that are
being modified or assigned but have been marked readonly.
Since these references are annotated readonly but are be­
ing modified, the read­only inferencer will not have recom­
mended such annotations and they are likely to be provided
by users or via other techniques (as described in the next
section). Consider the balance method below:

class BankAccount {

11The case that read­only constraint variable is not found
in the constraint set but the mutable context’s constraint
variable is not cannot occur.

12

int balance;

List<String> securityLog;

int balance() readonly {
methodLog.add("balance checked");
return balance;

}

}

In this example, the read­only inference algorithm finds the
method balance (the parameter thisbalance) to be mutable
because it is used to mutate this.securityLog. However,
since the user has specified that thisbalance should be read­
only, our technique would need to recommend securityLog
to be declared mutable.

When there are multiple field references leading to an as­
signment, there may be multiple ways of declaring fields to
be mutable or assignable that would resolve the conflict. It
is always more favorable to modify a field of the class con­
taining the method in question than modifying a field of
another class. For example, consider the code below:

class Cell {
Object val;

}

class Event {

Cell current;

beginWeek() readonly {

((Date) current.val).day = Date.Monday;

}

}

The technique will need suggest that either current or val
is declared mutable; or day is declared assignable. However,
changing the declarations of val or day is a non­local change;
thus, it is preferred to modify current.

Approach: This technique needs to find all references be­
ing modified, find their cause, and suggest them to be anno­
tated as mutable or assignable. The constraint­set provided
by the read­only inferencer contains most of the information
needed by the technique. As can be seen in in figures 3 and
6, whenever an object can be modified guarded constraints
are added to the constraint­set. Thus, following the guarded
constraints backwards from a modified reference annotated
as read­only allows finding all references that need to be
considered as being annotated mutable.

The backwards traversal would end in the actual modifica­
tion, represented as an unguarded constraint. This happens
when the object is being directly modified by assigning a
field (the Set rule), unguarded constraints are added to the
constraint­set. In such cases, we use an objectMutatorFieldSet
to track the field which is being used to mutate the object,
each unguarded constraint therefore has its causing field
added to this set. Mutator fields found in this set indicates
the fields that need to be considered as being annotated
assignable.

13

Algorithm: Implementing support for this technique thus
has two requirements. The read­only inferencer is modified
to add the cause for every unguarded constraint, i.e. the
direct mutation done by field assignments should result in
a mapping being added to the the objectMutatorFieldSet.
Then after the read­only inference is run, and constraints
are solved, four simple steps are performed:

1. It checks if a user­annotated readonly reference is marked
as mutable.

2. Goes backwards through constraint­set, from the ref­
erence to collect references which are modified causing
the current reference to be mutable.

3. Maintain the order of collected fields — a breadth­first
backwards traversal through the constraint­set lists
the fields from the most recent and local causes to
indirect causes.

4. Recommend the collected fields to the user for anno­
tations, either as mutable or as assignable. If a field
is added as the cause in objectMutatorFieldSet then
it needs to be annotated as assignable, otherwise the
field needs to be annotated as mutable.

Since user­provided annotations are by default inferred to be
inherited by subclasses, this technique allows one to anno­
tate a few common methods like Object.hashCode and Object.
toString as readonly and the parameters of PrintStream.print
as readonly, thereby resulting in all subclasses converting
their overriding methods to also include the readonly anno­
tation.

5.2 Heuristics and Cache Detection
The main cases where the mutable and assignable keywords
are used is in annotating caches. There are two common
traits of caches and are provided as heuristics:

1. Fields	 which are private and only referenced or as­
signed in a single method.

2. Fields using the Java transient keyword (designed to
mark fields that should not be saved during object
serialization).

The above heuristics use the technique in the previous sec­
tion to determine if making the fields mutable or assignable
will result in the corresponding methods becoming readonly.
Only field annotations that will result in adding the readonly
on the method are recommended to the user (in order to
minimize the number of annotations the user has to con­
sider, especially if providing such annotations do not result
in improved annotations of other parts of the code).

The heuristics run on the results of the read­only inferencer.
A search for all occurrences of cached fields and their re­
spective methods are performed as suggested by the heuris­
tics. The previous technique is then invoked, to traverse
the guarded constraints are traversed in a backward man­
ner from the searched method. If one of the potential output
fields is a cache variable, then the field is recommended for
the mutable or readonly annotation.

openness

checker

constraint generator

code-updater

assignable/
mutable

inferencer

Code

Legend:

Data Flow
Causes

User-provided
readonly
annotation

User-provided
assignable /

mutable
annotations

Code

Inference
options

User-provided
native method

annotations
romaybe

constraints set

data structure

Javarifier

Figure 14: Data flow diagram of Javarifier.

6. IMPLEMENTATION detect if any fields are to be recommended for being anno­
We have implemented the read­only and romaybe inference
algorithm in the absence of arrays and parametric types. As
mentioned in this paper, the algorithm can be extended to
handle such constructs. Javarifier leverages user­provided
annotations in its inference, and uses readonly annotations
references towards inferring mutable and assignable key­
words. Heuristics for cache detection are expected to be
simple extensions but are currently not implemented.

To enable the annotation of library class­files in the absence
of source code, Javarifier takes classfiles as input. Users can
specify a number of command­line options to enable/disable
various components of the inferencer, including running us­
ing the closed­world assumption and running the various
mutable and readonly inferencers. Options also specify files
containing external annotations, as well as files for annota­
tions of library API’s and native methods. Javarifier, pro­
cesses these inputs and returns a list consisting of the mu­
tability of all references (parameters, fields and locals). In
the future work we discuss extending Javarifier to directly
apply its results to class and source files.

As shown in Figure 14, Javarifier processes the various in­
puts and build a constraint set. We use the Soot library [?],
to convert Java classfiles into a three­address programming
language, for the constraint generator to build the constraints.
The open­world mode is then checked and constraints are
added to the constraint set. The constraint generator then
leverages user­provided annotations during its inference, and
beyond readonly inference also includes constraint informa­
tion needed for romaybe inference in the constraint set. The
constraint generator also also builds a set of fields causing
the objects to be mutated, in order to support assignable
and mutable inferences the constraint generator .

The constraints solver processes the constraints from the
constraint generator. These solved constraints are then ex­
amined, by the assignable/mutable inferencer (if enabled) to

tated. A checker then ensures that user­provided readonly
annotations do not conflict with the mutability recommen­
dations as generated by the read­only inferencer, and reports
conflicts to the user as errors.

7. EVALUATION
Our results show that our read­only inference algorithm is
sound and precise with the exception of immutable classes.

7.1 Methodology
We evaluate Javarifier’s read­only inferencing algorithm by
comparing its results against hand­produced annotations.
We have hand­annotated the key classes in Gizmoball, an
implementation of a pinball game done for a MIT software
engineering class. Over approximately 8 hours, we anno­
tated 33 classes in the Gizmoball project, consisting of about
8000 lines of code. Due to time constraints, we eliminated
classes that dealt with the graphical user interface. Those
classes are not as interesting because they did not make use
of abstract state. Instead, we chose classes that modeled
the state of the pinball game, its elements and the physics
behind the pinball game.

We annotated all non­primitive references under the open
world assumption, that is, we annotated all public methods
to return mutable references. This choice led to an interest­
ing result for immutable objects. In the case of references
to immutable objects used as a return type, we labelled the
references as mutable although this label is counterintuitive:
in the case of references to immutable objects, we know that
these objects can never be mutated, either through a muta­
ble or read­only reference. However, we cannot label these
references as read­only, to ensure that any other client code
that happens to use the method will type check. Further­
more, the specification of the Javari language [13], does not
allow the readonly keyword to be applied to references to
classes that are declared immutable.

14

However, our implementation does not actually infer im­
mutable classes, and, thus, we can suffer a loss of precision
when a field refers to object of an immutable class. In this
case, our analysis would require any reference to the enclos­
ing class to be mutable if accessing the field as a mutable
type. This situation is imprecise, because the field’s type
should be treated the same whether reached through a mu­
table or read­only reference. To work around this impreci­
sion, we declared all such fields mutable.

Another possible source of imprecision is method overload­
ing, particularly in the case of interfaces. All overloaded
methods must have the same method signatures. That means
if one subtype mutates itself in a method, that mutating
method annotation will be propagated up to the annotation
of the interface and back down to all subtypes of the inter­
face, even subtypes that do not actually mutate the receiver.
Again, we not a loss of precision but not soundness. Addi­
tionally, this behavior is required by the Javari language.

To avoid annotating library code through Javarifier, we sim­
ulated library annotations by providing external library an­
notations to the Javarifier. For example, List.clear() has the
signature ro List.clear() mut, meaning that the method
will mutate its receiver and return a read­only object. For
simplicity, we represented void returns and primitives as
read­only. However, these library annotation simulations
are not sound. Namely, the method annotations were pro­
vided based on our understanding of the library classes and
whether we believed the parameters and fields of a library
class would be mutated. The more sound approach is to ac­
tually look at the source code for these library classes before
making the annotations.

The current implementation of Javarifier can not handle ar­
rays and parametric types. Therefore, we converted all uses
of arrays to Lists and did not add any parameterized decla­
rations (Gizmoball was written in Java 1.4), including muta­
bilities. Because of this limitation, for a collection class like
List we can only have annotate for the actual list, but not
for the parameterized type of the list. Therefore, the same
mutability would need to be inferred for all List elements,
a major source of imprecision. This limitation forced us
to create two copies of the List class and other Collections
classes. We created a ListOfMutable and a ListOfReadonly
class in order to make the analysis of the Javarifier more
precise.

The results of our hand­annotations are summarized in fig­
ure 15.

To evaluate the read­only inferencing algorithm, we pro­
vided the algorithm with the set of fields hand­annotated
to be assignable or mutable. In addition, we provided a set
of annotations for library method calls. An evaluation of
Javarifier’s performance is given in the next section.

7.2 Results
We ran Javarifier’s read­only inference algorithm on Giz­
moball under three­different set of conditions: without hand­
annotated assignable and mutable fields, with hand­annotated
fields, and under the closed world assumption with hand­
annotated fields. The results of running Javarifier’s read­

only inference algorithm without providing it the hand­annotated
assignable and mutable fields on are given in figure 16. In
addition, the results of running Javarifier’s inference algo­
rithm along with providing a set of assignable and mutable
fields, shown in figure 17. We also ran Javarifier on the sam­
ple project under the close­world assumption with the same
set of assignable and mutable fields; these results are shown
in figure 18.

Although we only hand­annotated Gizmoball under the sec­
ond assumption— with assignable and mutable fields un­
der the closed world assumption—in the other cases, we in­
spected the changes in Javarifier’s output and found it to be
correct.

Figure 19 shows a comparison of the hand annotations with
the Javarifier results under the three conditions mentioned
above. Using the hand annotations as the control, under the
first condition (no hand­annotated assignableand mutablefields),
the only difference is that there are more mutableannotations
in the Javarifier results than the hand annotations because
all methods that mutate the fields are labelled as mutable
even if the field is not be part of the abstract state of the
object. Under the second condition (user provided annota­
tion of assignable and mutable fields), the hand annotations
and Javarifier annotations match exactly, as expected. Un­
der condition 3 (closed­world assumption), there are more
readonlyannotations in the Javarifier results as expected be­
cause public method are no longer to require return mutable
references in all cases.

8. RELATED WORK
First we discuss effect analysis which is a related but orthog­
onal analysis to our read­only inference algorithm. Then we
discuss two other techniques, type inference and the Houdini
approach, that can be used to infer read­only references but
have greater complexity.

8.1 Effect Analysis
Effect analyses for Java and in general [3, 11, 9, 10, 7, 6] have
been widely studied. Similar to our algorithm’s readonly
parameters, effect analysis can be used to determine the set
of a method’s “safe” parameters [12]. A method parameter
is safe if the method never modifies the object passed to
the parameter during method invocation. Unlike read­only
references, a parameter is not safe if the method never uses
the parameter but instead mutates the object through a
different aliasing reference. Additionally, if safe parameter is
reassigned with a different object, the safe parameter may be
used to mutate that object. A read­only parameter, on the
other hand, may not be used to mutate any object. Safety
and read­only­ness are orthogonal: safety is a property over
objects while read­only­ness is a property over references.

Additionally, our algorithm has a much lower complexity
than effect­analyses, which must be context­sensitive to achieve
reasonable precision .

8.2 Type inference
Most approaches for type inference, use a constraint­based
approach. A basic approach detailed in [8], defines a type
inference algorithm for basic object­oriented languages. The

15

ro mutable this­mut romaybe assignable
references 515 373 28 60 7
params 511 356 ­ 60 ­
fields (non­primitives) 4 17 28 ­ 7
static fields (non­primitives) 1 16 ­ ­ 0
instance fields (non­primitives) 3 1 28 ­ 7
method receivers 223 158 ­ 18 ­
method params 277 85 ­ 12 ­
method returns 11 113 ­ 30 ­

Figure 15: Results of hand­annotating a software project.

ro mutable this­mut romaybe assignable
references 221 690 31 34 0
params 219 674 ­ 34 ­
fields (non­primitives) 2 16 31 ­ 0
static fields (non­primitives) 1 16 ­ ­ 0
instance fields (non­primitives) 1 0 31 ­ 0
method receivers 151 231 ­ 17 ­
method params 59 315 ­ 0 ­
method returns 9 128 ­ 17 ­

Figure 16: Results of Javarifier’s read­only inference algorithm with no assignable and mutable external anno­
tations.

ro mutable this­mut romaybe assignable
references 515 373 28 60 7
params 511 356 ­ 60 ­
fields (non­primitives) 4 17 28 ­ 7
static fields (non­primitives) 1 16 ­ ­ 0
instance fields (non­primitives) 3 1 28 ­ 7
method receivers 223 158 ­ 18 ­
method params 277 85 ­ 12 ­
method returns 11 113 ­ 30 ­

Figure 17: Results of Javarifier’s read­only inference algorithm with assignable and mutable external annota­
tions.

ro mutable this­mut romaybe assignable
references 774 189 11 2 7
params 736 189 ­ 2 ­
fields (non­primitives) 38 0 11 ­ 7
static fields (non­primitives) 17 0 ­ ­ 0
instance fields (non­primitives) 21 0 11 ­ 7
method receivers 251 147 ­ 1 ­
method params 350 24 ­ 0 ­
method returns 135 18 ­ 1 ­

Figure 18: Results of Javarifier’s read­only inference algorithm under the closed world assumption and with
assignable and mutable external annotations.

params
ro

params
romaybe

params
mutable

fields
ro

fields
this­mut

fields
mut

Hand annotations 511 60 356 4 28 17
Javarifier without help 219 34 674 2 31 16
Javarifier with help 511 60 356 4 38 17
Javarifier closed world 736 2 189 38 11 0

Figure 19: Evaluation of Javarifier’s read­only inference algorithm.

16

approach involves defining a set of type constraints on the
program and propagating these constraints to a fixed point.
In [1], the introduction of the Cartesian Product Algorithm
builds upon basic type inference algorithm to handle para­
metric polymorphism. By using the Cartesian product to
decompose the analysis of the core algorithm, CPA improves
the precision, efficiency, generality and simplicity over the
other algorithms while addressing the issue of parametric
polymorphism. The Data Polymorphic CPA algorithm [14]
expands on the CPA algorithm to address the issue of data
polymorphism.

8.3 Houdini approach
An approach that has been used successfully for inferring
annotations is the Houdini approach [5]. This approach
could work by declaring all references readonly, then iter­
atively running a checker to find which annotations causes
the checker to fail, and removing such annotations. Us­
ing such an approach for providing ESC/Java and rccjava
(race conditions) [4] annotations have been found useful.
For Javarifier, this approach would have poor performance
as it would need to invoke the type­checker multiple times.
Additionally, it is unclear if the approach could be used to
infer the romaybe keyword.

9. FUTURE WORK
We are working on implementing inferencing in the presence
of arrays and parametric types. We further plan on using
Javarifier on real projects to determine the real­world use­
fulness of Javarifier, and determine any additional heuristics
needed for making the tool practical.

Since many developers currently use the Eclipse IDE and
the Ant build systems we plan on integrating Javarifier with
these environments. We expect the benefits of the Javari
language to be apparent even when the annotations are not
provided in the source file and are in separate external files,
at least in the few cases where library APIs indicate re­
turn types to be readonly. Future integration would involve
adding the Javari keywords as part of the source file as ei­
ther escaped comments such as /*=readonly*/ or ideally by
modifying the various parsers to provide transparent inte­
gration. We also plan on adding support for Javarifier to
apply its results directly to class, so that separate files do
not need to be provided by developers.

10. CONCLUSION
In this paper, we have created an algorithm for inferring
read­only and romaybe types. We have implemented a use­
ful subset of our algorithm within Javarifier and verified its
effectiveness. We have also designed an heuristic to suggest
assignable or mutable fields.

11. REFERENCES
[1] Ole Agesen. The cartesian product algorithm: Simple

and precise type inference of parametric
polymorphism. In ECOOP ’95: Proceedings of the 9th
European Conference on Object­Oriented
Programming, Volume 952 of Lecture notes in
Computer Science, pages 2–26, London, UK, 1995.
Springer­Verlag.

[2] Adrian Birka and Michael D. Ernst. A practical type
system and language for reference immutability. In
OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN conference on Object­oriented
programming, systems, languages, and applications,
pages 35–49, New York, NY, USA, 2004. ACM Press.

[3] K. D. Cooper and K. Kennedy. Interprocedural
side­effect analysis in linear time. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation,
pages 57–66, New York, NY, USA, 1988. ACM Press.

[4] Cormac Flanagan and Stephen N. Freund. Detecting
race conditions in large programs. In PASTE ’01:
Proceedings of the 2001 ACM SIGPLAN­SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 90–96, New York, NY, USA, 2001.
ACM Press.

[5] Cormac Flanagan, Rajeev Joshi, and K. Rustan M.
Leino. Annotation inference for modular checkers.
Information Processing Letters, 77(2­4):97–108, 2001.

[6] Ana Milanova, Atanas Rountev, and Barbara G.
Ryder. Parameterized object sensitivity for points­to
and side­effect analyses for java. In ISSTA ’02:
Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pages
1–11, New York, NY, USA, 2002. ACM Press.

[7] Phung Hua Nguyen and Jingling Xue. Interprocedural
side­effect analysis and optimisation in the presence of
dynamic class loading. In CRPIT ’38: Proceedings of
the Twenty­eighth Australasian conference on
Computer Science, pages 9–18, Darlinghurst,
Australia, Australia, 2005. Australian Computer
Society, Inc.

[8] Jens Palsberg and Michael I. Schwartzbach.

Object­oriented type inference. In OOPSLA ’91:

Conference proceedings on Object­oriented

programming systems, languages, and applications,

pages 146–161, New York, NY, USA, October 1991.

ACM Press.

[9] C. Razafimahefa. A study of side­effect analyses for

Java. Master’s thesis, McGill University, December

1999.

[10] A. Rountev and B. Ryder. Practical points­to analysis
for programs built with libraries. Technical Report
DCSTR­410, Rutgers University, February 2000.

[11] Barbara G. Ryder, William A. Landi, Philip A.
Stocks, Sean Zhang, and Rita Altucher. A schema for
interprocedural modification side­effect analysis with
pointer aliasing. ACM Trans. Program. Lang. Syst.,
23(2):105–186, 2001.

[12] Alexandru Salcianu and Martin Rinard. Purity and
side effect analysis for java programs. In Proceedings
of the 6th International Conference on Verification,
Model Checking and Abstract Interpretation, 2005.

17

[13] Matthew S. Tschantz and Michael D. Ernst. Javari:
Adding reference immutability to Java. In
Object­Oriented Programming Systems, Languages,
and Applications (OOPSLA 2005), San Diego, CA,
USA, October 16–20, 2005.

[14] Tiejun Wang and Scott F. Smith. Precise
constraint­based type inference for Java. In ECOOP
’01: Proceedings of the 15th European Conference on
Object­Oriented Programming, Lecture notes in
Computer Science 2072, pages 99–117, London, UK,
2001. Springer­Verlag.

18

