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1. Introduction

When dealing with high-dimensional data, dimensionality reduction is an important operation to
allow the discovery of simple relationships between data points and simple modes in which the
data varies. The input to a dimensionality reduction procedure is data in high dimension and the
output is a mapping of that data to a low-dimensional manifold. Dimensionality reduction
should preserve neighborhoods, i.e. points close to each other in the high-dimensional space
should remain close in the computed low-dimensional space. Additionally, it is desirable for a
dimensionality reduction method to allow nonlinear low-dimensional manifolds. Nonlinear
dimensionality reduction by locally linear embedding (LLE) proposed by Roweis and Saul [1] is
such a procedure that is intuitive, simple to implement, and does not involve local minima in its
optimization. If the output low-dimensional manifold has two dimensions, intuitively this
algorithm connects data points in high-dimensional space to neighboring data points with springs
and then presses the spring structure between two glass plates [2]. Another informal description
of the algorithm is that it cuts out locally linear swatches of the data in high dimension with
scissors and places the swatches down in low dimension in such a way that preserves angles
between data points close to each other [3], e.g. deconstructing a soccer ball into its constituent
pentagonal and hexagonal patches and laying them out on a table after possibly deforming them.

In [1], LLE is applied to documents and to face images, but the technique is restricted neither to
a particular application domain nor to a particular domain of data representation within an
application. Of key significance is the wide ranging applicability of LLE, because analysis of
multivariate data is a universal problem in the sciences. In the work presented here, two
application areas will be explored through LLE. After reviewing the algorithm, first document
analysis with a social network interpretation will be considered using data from an epic poem.
Second, the space of signed distance function (SDF) representations of images, often used in
segmentation, will be looked at through topographic and bathymetric data. Some conclusions
will also be given.

2. Locally Linear Embedding Algorithm

In this section, the details of the simple LLE algorithm will be given, following from [3]. We
start with NV data points represented as D-dimensional, real-valued vectors x;. The first step of
the algorithm is to identify the K nearest neighbors using Euclidean distance in the
D-dimensional space for each data point x;. The second step is to determine coefficients w;; that
best reconstruct each x; using a linear combination of the K neighbors x;, where best is in a
squared distance sense. This is the ‘locally linear’ part of the algorithm. Specifically, the
following cost function is minimized with respect to all w;;:
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under the constraint that for each i, the sum of the K weights w;; be unity. The problem is of the
constrained least squares variety and has a simple closed form solution.
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Once these weights are obtained, the final step of the algorithm can be performed. The goal of
dimensionality reduction is to map the D-dimensional x; to d-dimensional y;, where d < D. Thus
with the calculated weights fixed, a cost function of the same form as (1) is minimized over the

low-dimensional coordinates for y;:
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with the following constraints. The value of the above cost function (2) remains unchanged for
any translation of the entire set of vectors y;, so one constraint is that the coordinates be centered
at the origin. The cost function can be minimized by setting all of the y; to equal the zero vector.
To avoid this degenerate solution, another constraint is imposed: the sample covariance of the
vectors y; is set to unity. The optimal low-dimensional mapping can then be calculated in closed
form by solving an eigenvalue problem for eigenvectors corresponding to the smallest d + 1
eigenvalues. The LLE algorithm is no more complicated than these three steps.
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3. Mahabharata

Documents of text are not simply a ‘bag of words,” but have much structure at various
resolutions, including at the sentence level, the paragraph level, and the section level. When the
document is a narrative, with different sections corresponding to different scenes or events, the
co-presence of two characters
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Figure 1: Ramayana characters in the low-dimensional manifold. epic poem popularly touted as
the longest poem in the world with about 110,000 verses, does have thousands of characters and
will be used as a source of data. It will be treated as a surrogate for actual social interaction data.
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The Mahabharata is in the
Sanskrit language, but an
English translation [4] is used
in this work for two primary
reasons. First, it is
significantly easier to
automatically identify proper
nouns in English than Sanskrit
because English has capital and
lowercase letters. Second,
nouns in English are not
declined based on their
function within a sentence,
remaining invariant to usage.
In this work, names of
individual people, of groups of
people, and of places will be
considered.

The epic is divided into eight-
een books, each subdivided
into varying numbers of
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Figure 2: Two sets of groups in the low-dimensional manifold.

sections. Overall, there are 2,110 sections, which will be treated as the events of social
interaction. In the English translation, there are 10,854 distinct capitalized words, of which
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Figure 3: Characters related to the narration of the Mahabharata.

7,296 were identified as proper
nouns. Of the 7,296 proper
nouns, 3,980 appear just once
and 3,316 appear more than
once. These 3,316 names are
the data points that will be used
in a 2,110 dimensional space.
For each dimension (section),
the data is a count of how
many times the name appears
in that section. This type of
data is very similar to the text
example with encyclopedia
articles in [1]. Some results are
presented below with the
number of neighbors K = 24.

In Fig. 1, the data points, the
names, are plotted as they have
been mapped to dimensions
two and four of the computed



low-dimensional space. The
figure illustrates that LLE is
neighborhood preserving and
maintains global properties as
follows. The names highlighted
n red, Rama, Ravana,
Kumbhakarna, Lakshmana, Sita,
Sugriva, Surpanakha, etc. are all
characters of another epic poem,
the Ramayana, that precedes the
Mahabharata chronologically and
is recounted at various points by
various characters, but is not part
of the actual Mahabharata story.
Not surprisingly, all of these
names are kept close together in
the low-dimensional space. A
main character in the Ramayana,
Hanuman, is immortal and is
encountered by the protagonists
of the Mahabharata in one
instance.  Correspondingly, the
Hanuman data point, highlighted
in green, is closer to the central

mass of points, which are
connected with the central
narrative.

In Fig. 2, dimensions two and
three are plotted, with two
groups of names highlighted.
One set is shown in detail in Fig.
3 and the other in Fig. 4. The
names in Fig. 3, in green, are not
characters in the main
Mahabharata story either, but
lead to the story being narrated.
Dhaumya is a teacher with
students Aruni, Veda, and
Upamanyu. Dhaumya tests
Upamanyu with the help of the
Aswins. Utanka is a student of
Veda who is tested with the help
of Paushya. Utanka goes on to
prompt the telling of the
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Figure 4: Places, groups, and people from the west.
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Mahabharata to Janamejaya. These names are also separated from the main conglomeration and
fall along one axis.

The English translation is inconsistent in the transliteration of Mleccha, a group of people from
the west in Persia and Greece, but nevertheless, all of the different instances fall in the low-
dimensional manifold near each other and near others originating in the west in Fig. 4 in red.
Salwa and Shakuni are both kings from the west. The Pishacas, Arattas, Vahikas, and Madrakas
are all people from the west, from places such as Afghanistan. The Madrakas are from the
kingdom of Madra, with capital Sakala and king Shalya. This grouping occurs despite the fact
that Salwa, Shakuni, and Shalya have extremely different roles in the story and are not co-
present much of the time. Thus LLE is able to discover modes of variation in the data that are
not readily apparent otherwise, in this case, direction of origin. All of these names are important
to the story and thus are part of the central mass of points.

An interesting feature of the computed low-dimensional space is the data point mapped closest to
the origin in the first two dimensions shown in Fig. 5, Mahameru. It is a mountain that is
purported to be the cosmic axis or the center of the physical and metaphysical universe. It is
mapped close to the origin in the other dimensions as well.

Thus, this dataset of the Mahabharata text, as a surrogate for social interaction data, illustrates
that the use of LLE preserves both local and global structure. Even when the form of the
structure is not known in advance, by viewing the low-dimensional space, it is possible to find
properties within the dataset that group data points and separate data points.

4. Earth Relief

The signed distance function is a powerful way to implicitly represent a curve, often used in
segmentation algorithms [5]. (A curve partitions a plane into two regions, with one designated
the inside and the other the outside.) One intuitive way to describe signed distance functions is
through analogy with Earth elevation, specifically the Hawaiian Islands [6]. Elevation data
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Figure 6: 2-Minute Gridded Global Relief Data (meters)




above sea level is known as topography and depth data below sea level is known as bathymetry;
collectively, these data are known as relief. In the case of Earth relief, the two regions are the
above water portion — the inside, and the underwater portion — the outside. Thus in Hawaii, an
island that sticks up out of the water is the inside region. By convention, the SDF is negative
inside and positive outside, counter to relief data. The space of signed distance functions is not
linear because the sum of two signed distance functions is not a signed distance function [7]. In
this section, low-dimensional manifolds will be determined using nonlinear dimensionality
reduction by LLE for relief and for negated signed distance functions using data points
consisting of small patches in coastal areas of the Earth.

The dataset used for Earth relief is the 2-Minute Gridded Global Relief Data [8], which has
resolution of two minutes in both latitude and longitude. There are sixty minutes per degree and
360 total degrees of longitude on the earth, giving 10,800 columns of pixels. There are 180 total
degrees of latitude and thus 5,400 rows in the dataset. Elevation is given in meters, as shown in
Fig. 6. From this data, 2000 data points — 48 pixel x 48 pixel patches — were selected in the
manner now described. A row and a column were selected uniformly and the 48 pixel x 48 pixel
subimage with that row and column as its bottom left corner was examined. Patches not having
at least 20% above water and at least 20% underwater pixels were rejected. The process was
continued until 2000 points were accepted. The resulting data points are shown in Fig. 7, with
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Figure 7: Southwest corners of 2,000 data points marked as +.

the crosses indicating the southwest corner of the patch. Examples of 48 x 48 patches are shown
in the left column of Fig. 8. The top row is from a data point in Hawaii, the center row is from a
data point in Antarctica highlighted with a red circle in Fig. 7, and the bottom row is from a data
point in Southeast Asia highlighted with a magenta circle in Fig. 7. The relief data was treated as
48-48 = 2,304 dimensional for the purposes of LLE.

For each relief data point, an SDF representation was created as follows using a fast marching
method [9]. In order to reduce boundary effects, first a larger patch of relief was taken for each
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Figure 8: Relief data points (left column), binary image (center column), and SDF data points (right column).
data point. Specifically, 96 x 96 patches concentric with the 48 x 48 data points were used. For
each larger patch, the relief was converted to a binary image demarcating the inside region and
outside region. From the binary image, an SDF was generated using an implementation of the
fast marching method [10]. Finally, the SDF image was clipped to be 48 x 48 and negated.

Example 48 x 48 binary images and 48 x 48 negated signed distance functions are shown in the
second and third columns of Fig. 8, respectively.

Comparing the true relief with the SDF, one can see that the two are not dissimilar, but there are
differences. By definition, the SDF has constant slope, whereas in the true relief, the slope may
be variable. Also, any ridges and valleys within a region that the true relief may have will not be
captured by the SDF, as seen in the bottom row of Fig. 8. When the relief is primarily linear,
then correspondence with the SDF is fairly good, as seen in the first two examples of Fig. 8.

Now, the low-dimensional manifolds will be compared as computed for K = 6. The first two
dimensions of the relief data manifold are plotted in Fig. 9a and the first two dimensions of the
SDF manifold are plotted in Fig. 9b as scatter plots. The colors in the relief data manifold are
simply assigned linearly based on the dimension 1 coordinate. The color for each data point is
transferred to the corresponding data point in the SDF manifold. It is apparent that there is a
correlation between the two manifolds in the first dimension — as the first dimension coordinate
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Figure 9: Low-dimensional manifolds for (a) relief data and (b) SDF data.

in the relief manifold increases, the first dimension coordinate in the SDF manifold decreases.
This inverse relationship is also apparent in Fig. 10, which plots the sorted dimension one
coordinates of the relief manifold against the dimension one coordinates of the corresponding
data points in the SDF manifold. Thus, despite certain features not being captured by the SDF
representation, the primary mode of variation in both sets of data is similar.

The relationship in the second dimension of the low-dimensional manifolds is not as strong as in
the first direction, but exists nonetheless. Fig. 11 shows this relationship in the same manner as
Fig. 9. The distribution of colors in Fig. 11b, the SDF manifold, is certainly not random, but the
pattern is more difficult to discern.

Another way to investigate the similarity of the two manifolds is to consider pairwise distances
between the mappings of the data points. There may be metrics more or less appropriate for use
in manifolds determined by LLE, but standard Euclidean distance was used in this case on the
first three dimensions of each set. In the ideal case, pairwise distance in the relief manifold
would be proportional to pairwise distance in the SDF manifold, so plotting them against each
other would yield a straight line. Doing so with the actual pairwise distances, shown in Fig. 12



with the least-squares fit cubic 3
function overlaid, does not give a
straight line, but encouragingly,
does give a monotonic trend.
The conclusion from this analysis
is that data points that are
mapped close to each other in the
relief manifold are also mapped
close to each other in the SDF
manifold.

I\
()]

N

=
(4]

-

o

An attempt will now be made to
discover the underlying
properties in the data that are the
principal modes of variation. A
variety of  different
descriptors were investigated to

S
o

'
N

Corresponding Dimension 1 Coordinate for Signed Distance Function
o
o

local T

determine whether they are
1
14
121
101 .
al P
™ "
= 1
2 8y %
E ¥
] +
4 i
i
At
2 B 4!
|:| I £y N +4-#-.
»
%
2t -
4 2 0 2 4
Dimension 1

(@)

Dirnension 2

A

3

.
T
A
r

4

4-&#3?'_
b
T

——
T

(o] 1 2 3 4 5
Dimension 1 Coordinate for Relief Data (sorted)

Figure 10: Correspondence between dimension 1 of relief and SDF
low-dimensional manifolds.

+

el 1

S +&_
4

4

4
.

R EN

PR
Y
£

e
n

-1 0 1 2
Dimension 1

(b)

Figure 11: Low-dimensional manifolds for (a) relief data and (b) SDF data.



associated with the dimensions of the manifold. Two local descriptors were notable: the
percentage of above water pixels in the image patch and the orientation of the gradients within
the image patch.

As shown in Fig. 13, the second and third dimensions of the SDF manifold are extremely
correlated to the proportion of pixels that are above water. The coloration in the figure shows the
percentage of above water pixels in each data point. Red data points are 80% above water and
blue data points are 20% above water. This relationship is very obvious from the figure. As
demonstrated above, the connection between the SDF manifold and the relief manifold in
dimension two exists but is not very strong. Consequently, the effect of the ratio of underwater
pixels to above water pixels on the
second and third dimension
coordinates in the relief manifold
1s much less. As seen in Fig. 14,
above  water  proportion  is
associated with how the data
' points get mapped to the manifold
but it does not seem to be the
principal effect.
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W | the low-dimensional manifolds is
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contour map for an example data
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Figure 12: Correspondence between pairwise distances. column of Fig. 15. The center

Distance between corresponding pairs in signed distance function representation

column illustrates the gradient in an enlarged part of the image and the right column shows a
histogram of the gradient directions with bins of width 30 degrees. The distribution of
orientations in the relief image and the SDF image has the same general shape, but the
distribution in the SDF image is peakier, due to the lack of ridges and valleys within a region that
exist in relief. The full histogram provides a rich collection of local descriptors, but in the
analysis below, the feature that is considered is the orientation bin with maximal count.

Fig. 16 demonstrates that the first dimension of the SDF manifold is related to the gradient
orientation. The data points in the scatter plots are colored according to the maximum histogram
bin. As dimension one in the SDF manifold increases, the maximum orientation completes a full
cycle of angles counterclockwise. As the first dimensions of the SDF manifold and relief
manifold are inversely proportional, the relief manifold’s first dimension changes with gradient
angle as well, but clockwise as the first dimension coordinate increases. This trend is shown in
Fig. 17 using the same color scheme as Fig. 16.

Thus we have seen that two simple properties in the image patches can be used to label the axes
in the low-dimensional manifolds. The signed distance function has many fewer degrees of
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Figure 13: SDF manifold as a function of the proportion of above water pixels.
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freedom than relief data, so the correlation with the maximum gradient angle and especially with

the number of above water pixels is much stronger. However, despite the differences in
representation, the same properties principally affect how the data points get mapped to lower
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dimension. In some sense these properties are like scaling and rotation, and do not say much
about the actual shape. That these two properties dominate is not surprising, but is counter to the
intuition of what the space of shape should be. That is not to say that the actual form of the
shape plays no role. Examining the histogram in ways other than looking at the maximal bin, for
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Figure 15: Examples of gradient angle histogram for relief data (top row) and SDF data (bottom row).
example, will give more insight to that role. In future work, it would be interesting to normalize
the proportion of underwater pixels and to rotate all image patches to a common maximum angle
before applying LLE. It may also be interesting to perform LLE on a scale invariant feature
transform [11] of the image patches.

5. Conclusion

Nonlinear dimensionality reduction by locally linear embedding has been applied to social
interaction data and to a space of signed distance function images along with relief images.
Local and global structure in the low-dimensional space of social interactions coincides with
what is expected intuitively. Additionally, modes of variation in the data are illuminated that
would not have otherwise been seen. The dimensionality reduction approach seems like a
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promising way to construct or study social networks as an alternative to using graphs that
connect two characters if they have an interaction [12]. Dimensionality reduction and
specifically nonlinear dimensionality reduction by locally linear embedding is a versatile
technique applicable to all forms of high-dimensional data analysis.

In comparing the low-dimensional manifolds produced by LLE for the relief data and the SDF
data, it was shown that there is a good amount of correspondence. Thus, the analogy of equating
the Hawaiian Islands to signed distance functions is fairly accurate. In addition, two simple local
descriptors were found that are very closely related to the different axes in the low-dimensional
manifolds. These two descriptors are tied to scaling and rotation; thus, it seems as though the
structure of the space of signed distance functions is defined in large part by scaling and rotation,
which are shape preserving, rather than by features more descriptive of shape. If manifolds
arranged by shape properties are to be obtained through dimensionality reduction on the space of
signed distance functions, it seems that scale and orientation will have to first be normalized.
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