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Handout 2: Enhanced GMR Notation

1 Introduction

These notations described here are the fully formal ones. We have somewhat looser notation
in the actual lecture, but the concepts laid out here are crucial for proper understanding.

2 Notation

2.1 Enhanced GMR Notation

For handling more complex probabilistic experiments, we present an enhancement to the
standard GMR notation [2].

Basic Notations

e Integers, Sets and Strings.

We denote by N the set of natural numbers. If n € N, by 1" we denote the con-
catenation of n 1’s. We identify a binary string o with the integer x whose binary
representation (with possible leading zeroes) is o.

By the expression |z| we denote the length of z if z is a string, the length of the binary
string representing z if = is an integer, the absolute value of z if z is a real number,
or the cardinality of z if z is a set.

If 0 and 7 are binary strings, we denote their concatenation by either o o 7 or o7.
A language is a subset of {0,1}*. If L is a language

and k > 0, we set Ly = {z € L: |z| < k}. For variety of discourse, we may call
“theorem” a string belonging to the language at hand. (A “false theorem” is a string
string outside L.)

o Algorithms.

An algorithm is a Turing machine. An efficient algorithm is a probabilistic Turing
machine running in expected polynomial time.

We emphasize the number of inputs received by an algorithm as follows. If algorithm
A receives only one input we write “A(-)”, if it receives two inputs we write “A(-,-)”
and so on.

If A(-) is a probabilistic algorithm, then for any input z, the notation A(z) refers to
the probability space that assigns to the string o the probability that A, on input z,
outputs o.



We assume a standard encoding is adopted and, if A is an algorithm, then we denote
by (A) the encoding of A.

Standard GMR Notation

e Random assignments. If S is a probability space, then “z < §” denotes the algorithm
which assigns to z an element randomly selected according to S. If F' is a finite set,
then the notation “z & F” denotes the algorithm which assigns to = an element
selected according to the probability space whose sample space is F' and uniform
probability distribution on the sample points.

o Probabilistic experiments. If p(-,-,---) is a predicate, the notation Pr[z E Sy &
T;...: p(z,y,--)] denotes the probability that p(z,y,---) will be true after the or-
dered execution of the algorithms z £ S,y & T,...

e Probability spaces.

The notation {z E Sy & T (z,y,--+)} denotes the probability space over
{(z,y,---)} generated by the ordered execution of the algorithms z & S, y & T,---.

e Negligible Functions We denote by v : N'— (0,1) a function that vanishes faster than
the inverse of any fixed polynomial, for all sufficiently large arguments.

New GMR Notation

e History-Preserving Algorithms. We say that an algorithm (or interactive TM) A is
history-preserving (HP, for short) if it “never forgets” anything. As soon as it flips a
coin or receives an input or a message, A writes it on a separate history tape that is
write-only and whose head always moves from left to right. The history tape’s content
coincides with A’s internal configuration before A executes any step.

If A is an HP algorithm, then if A appears more than once in a piece of GMR. notation
(e.g, Prl...;a & A(x);... ;0 & A(y);...: p(--- ,a,b,---)]) then it is understood that
the final internal configuration and content of the history tape of one run of A coincide
with A’s initial internal configuration and content of the history tape of the next run.

If A is an HP algorithm, then if A appears more than once in a piece of GMR. notation
(e.g, Prl...;a & A(z);... ;b6 & A(y);... - p(--- ,a,b,---)]) then the history and state
of A is preserved from the end of one “use” to the beginning of the next.

The notation h +— A indicates that k is the content of the current history tape of A.

If A is a HP algorithm, and A the final history of an execution of A, we denote by
A{h} the algorithm having the same tapes and finite state control of A and initial
configuration equal to the last configuration of h.

e Adversaries. An adversary is an efficient history-preserving algorithm (interactive
™).



e Non-Determinism. If S is a set, the notation x &2 S indicates that z has been

non-deterministically chosen from S.

Whenever non-deterministic choices appear within an experiment, they are regarded
as constants (and not random variables), and all probabilistic statements made refers
to each possible individual choice. For instance, the expression Pr(z = S : A(z) =
1) = 1/2 means that, for every z € S, A on z outputs 1 with exactly probability 1/2.

2.2 Protocols

Following [1], we consider a two-party protocol as a pair, (A4, B), of interactive Turing
machines. (ITMs for short). Briefly, on input (z,y), where z is a private input for A and
y a private input for B, and random input (r4,7p), where r4 is a private random tape for
A and rpg a private random tape for B, protocol (A, B) computes in a sequence of rounds,
alternating between A-rounds and B-rounds. In an A-round (B-round) only A (only B) is
active and sends a message (i.e., a string) that will become an available input to B (to A)
in the next B-round (A-round). A computation of (A, B) ends in a B-round in which B
sends the empty message and computes a private output.!

Executions, Transcripts, and Outputs

If (A,B) is a protocol and (z,y) an input for (A4, B), we let EXE4® (z|y) denote the
experiment of randomly executing (A, B) on input (z,y). In our definitions, we think of
this experiment as affecting the computation history of the participants rather than having
an output.

Letting E be an execution of protocol (4, B) on input (z,y) and random input (r4,7g),
we make the following definitions:

e The transcript of F consists of the sequence of messages exchanged by A and B, and
is denoted by TRANSAB (z,r4ly,rB);

e The view of A consists of the triplet (x,r4,t), where ¢ is E’s transcript, and is denoted
A,B
by VIEW p'" (z,74ly,rB);

e The view of B consists of the triplet (y,7p,t), where t is E’s transcript, and is denoted
by VIEW " (a,raly,r);

e The output of B in E consists of the string z output by B in the last round of E,
and is denoted by OUTg’B (z,raly,rB), though it only depends on B’s inputs, coin
tosses, and E’s transcript.

When we are only concerned with the output, and when both parties have the same
input z, we sometimes write (4, B)[z] as shorthand for OUT42 (z,-|y,-) .

We also define the following random distributions

e TRANSAB (z,-ly,rB), TRANSYP (z,74]y,-), and TRANSAE (z,-|y,-)

'"Due to the one-sidedness of secure computation, only machine B produces an output.




as the distribution respectively obtained by randomly selecting r4, rp, or both, and then
drawing from TRANS4® (z,74]y,75). We also consider the similarly defined random vari-
ables

o VIEW 4 (z,-|ly,rB), VIEW 4 (z,74ly,-), VIEW 4 (z,"|y,-), VIEW g (z,-|y,rB), VIEW g (z,T4ly,-),
and VIEW g (z,-|y,-); and

hd OUT};",B (IE, '|ya’rB)7 OUTg,B («'I»','I‘A‘y, ')7 and OUTg,B (iL', |y7 )7

In all above quantities the superscript (A, B) will sometimes be omitted when clear
from the context. When we do not wish to explicitly consider the random coins of the
participants, we will omit them.

Polynomial-Time Protocols

A protocol (A, B) is called polynomial time if there is a fixed polynomial P such that, for
all kK € NV, in every execution in which the length of both private inputs is < k, the number
of steps taken by both A and B in that execution is < P(k).

Security parameters

If k is a positive integer, we denote by 1 the unary representation of k (i.e., the string
consisting of k 1-symbols). We say that an execution of a protocol (A, B) has security
parameter k if the private input of A is of the form (1*,z) and the private input of B is
of the form (1%,y). (Thus, de facto 1¥ is a “common input” while z and y are the “real
private inputs.”)
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