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1	 Introduction 

The subject of these notes is concurrent zero knowledge, in particular the construction given 
in [KP01]. 

Zero knowledgeness property of zero knowledge proof systems is defined with respect 
to an adversarial verifier that does not attempt to run multiple instances of a protocol 
concurrently. It is possible to prove that such protocols can be composed serially with-
out substantial loss of security. However, it is unclear whether parallel (more generally, 
concurrent) composition preserves security. Simulating a protocol then seems to become 
computationally more demanding in the concurrent setting. Namely, there are protocols 
that, to the best of our current knowledge, take exponential time to simulate. 

However, requiring concurrent composability, is natural, as there is no reason to limit 
the adversary’s capability to run multiple protocols concurrently. Therefore, it is of interest 
to attempt to construct zero-knowledge proof systems that are concurrent composable. 

2	 Concurrent Composable Zero Knowledge: The Construc­

tion 

In this section, we give an overview of the construction of [KP01]. 

2.1 Stating the Objective 

It has been demonstrated in previous lectures that many statements that need to be proven 
in various protocols are NP. Furthermore, NP has complete problems, which is particularly 
convenient, as it often only need be demonstrated that a complete problem has a certain 
property, from which it follows that all other NP problems have it. This was certainly the 
case with zero knowledge proofs. 

Therefore, we declare our goal to construct a zero-knowledge proof system for any 
NP language that is concurrent composable. Concurrent composability means that 
we allow the verifier to interact with multiple independent provers, intertwining 
those interactions in any way it pleases (the two extremes being fully serial and fully 
parallel). 

2.2 Tools and Assumptions 

Now we turn to describe which cryptographic tools (primitives) are used to construct concur-
rent composable zero knowledge proof systems. We also identify the necessary assumptions. 
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Zero knowledge proofs for NP 

We assume that for any language in NP, a zero knowledge proof system can be constructed. 
As a brief reminder, zero knowledge proof system for a language L is a protocol between 
two parties, the prover P and the verifier V, that satisfies three properties (for detailed 
definitions, please refer to the previous lectures): 

•	 completeness: any x ∈ L is accepted with overwhelming probability 

•	 soundness: any x /∈ L is accepted with negligible probability 

∗•	 zero knowledgeness: for any x ∈ L and any probabilistic polynomial time V , there  
∗ ·is an oracle machine S (simulator) such that SV (x) is indistinguishable from the view 

∗of V

Bit commitment schemes 

We assume that commitment schemes exist. In a commitment scheme, there are two parties: 
one of them, Alice, wishes to commit to a message, but delay the revealing of it; the other 
one, Bob, wishes to be certain that, when Alice reveals the message, it indeed is the one 
she commited to. 

A non-cryptographic solution to the problem is: Alice and Bob communicate; at some 
point, Alice puts a message in a safe visible by both her and Bob, locks it and keeps the key; 
they continue the conversation; when she wishes to decommit, she gives the key to Bob. 
When Bob unlocks the safe, he is reasonably certain that Alice could not have tampered 
with the message inside while it was locked. 

In terms of cryptography, a bit commitment scheme is a triple of probabilistic polynomial 
time procedures (Setup,Commit,Open) with the following properties: 

•	 functional: 

–	 CK ← (Setup(1k) (given a security parameter, the setup procedure outputs a 
public commitment key) 

–	 (c, d) ← CommitCK(m) (given a message, the commit procedure outputs a com-
mitment c and an opening  value  d) 

–	 m ← OpenCK(c, d)) (given a commitment and a decommitment value, the open 
procedure outputs m; m may either be a message, or a special symbol that 
denotes the invalidity of the input (c, d)) 

•	 security: 

–	 Hiding: For any adversary1 A, it is infeasible to generate two messages m0 

and m1 such that A can distinguish their commitments c0 and c1 ((ci , di) =  
CommitCK(mi)). 

–	 Binding: For any adversary A, it is infeasible to generate a triple (c, d, d′ ) 
such that (c, d) and  (c, d′ ) open to different messages, i.e, m ← OpenCK(c, d), 
m ← OpenCK(c, d) and  m �′	 = m′ . 

The restrictions on the computational resources of the adversary will be discussed later in the text. 
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We consider two flavours of commitment schemes: perfectly binding and statistically 
hiding. The difference lies in the limitations to the resources available to the adversaries. 
A perfectly binding commitment scheme is a commitment scheme whose 

•	 hiding property holds against a probabilistic polynomial time adversary, with 
negligible insecurity 

•	 binding property holds against an unbounded adversary, with  information-theoretic 
security 

A statistically hiding commitment scheme is a commitment scheme whose 

•	 hiding property holds against an computationally unbounded adversary, resources, 
with negligible insecurity 

•	 binding property holds against a probabilistic polynomial time adversary, with 
negligible insecurity 

It should be noted that the commitment schemes are concurrent composable, i.e, running 
multiple schemes concurrently does not jeopardize either hiding or binding property. 

Witness Indistinguishability 

Even though we mention zero knowledge proof systems as one of the key ingredients in build-
ing concurrent composable ones, it is in fact sufficient that we use witness indistinguishable 
proof systems. 

A witness indistinguishable proof system must satisfy completeness and soundness as 
described for zero knowledge proof systems, but the last requirement is weaker. We only 
require that no probabilistic polynomial time machine can tell if w1 or w2 were used as a 
witness. For more details refer to [Gol01]. 

Assumptions 

We have seen earlier in the course that existence of commitment schemes implies the ex-
istence of zero knowledge proof systems for NP. In addition to that, it is known that 
statistically hiding commitment schemes exist if collections of claw-free permutations ex-
ist [DPP93] and that perfectly binding commitment schemes exist if one-way functions do 
[Nao91]. 

But zero knowledge proof systems for NP, two round perfectly binding and two round 
statistically hiding commitment schemes are the only ingredients we need in constructing 
concurrent composable zero knowledge proof systems. Thus existence of collections of claw-
free permutations suffices. 

2.3 The Construction 

We first state the main result of [KP01]: 
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Theorem [Main]: Assume that collections of claw-free permutations exist. Let k be a 
complexity parameter bounding the size of the input. The verifier is polynomial time in 
k and the concurrent proof may consist of polynomially many in k instances. Under this 
condition, a zero knowledge proof system exists for any L ∈ NP that is computational, 
black-box, concurrent composable and it has ω(log2 k) rounds. 

Let us now see the construction. Let L ∈ NP and T ∈ L (T is an NP statement 
that we wish to prove). The prover and the verifier first exchange some messages that 
facilitate concurrent composability, and then proceed to prove in a zero knowledge fashion 
a statement T ′ very similar to T . The messages exchanged prior to proving T ′ are called 
preamble while the messages that constitute the proof of T ′ are called body. 

Protocol [CZK]: 

1. V → P: commit to random v1, . . . , vm 

2. P → V: commit to p1 

3. V → P: reveal v1 

4. P → V: commit to p2 

5. V → P: reveal v2 

. .  .  
2m − 1. V → P: reveal vm−1 

2m. P → V: commit to pm 

2m + 1. V → P: reveal vm 

2m + 2  P ↔ V: carry out a zero knowledge proof that: (T ∈ L) ∨ (∃i)pi = vi 

. .  .  (T ′, the modified statement, is precisely (T ∈ L) ∨ (∃i)pi = vi) 

where m = ω(log2 k). 

The verifier’s commitments are statistically hiding, and the prover’s are perfectly bind-
ing. 

If the verifier fails to open any of its commitments correctly, the protocol should be 
terminated. 

The idea behind this protocol is that the preamble makes it possible for the simulator 
to find i such that pi = vi after a reasonable number of rewinds. This in turn constitutes a 
witness for T ′, so the simulator may act as a real prover in the body of the protocol, thus 
creating a view distributed as expected. 

On the other hand, soundness is not significantly affected because the real prover is 
unable to rewind the protocol, so it is computationally infeasible for it to find i such that 
vi = pi. Thus in order to give a convincing proof, it must prove T ∈ L. Completeness is 
not affected at all, because T ′ can be proven by proving T ∈ L. The next section explains 
completeness and soundness in some more detail. 

2.4 Completeness and Soundness of the Protocol 

For any zero knowledge proof system, let us call the probability that the prover fails to 
prove a true statement completeness error, and the probability that the verifier accepts a 
false statement soundness error. 
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Let (P, V) be a zero knowledge proof system for L (for the original language, not for 
the modified statement). Denote with εc and εs the completeness and soundness errors of 
(P, V). 

Claim [Completeness]: The completeness error of the protocol CZK is no greater than 
εc, that of the original zero knowledge proof system. 

This is so, because if T ∈ L, the prover simply proves that statement in the body. The 
probability of failing is εc. 

Claim [Soundness]: The soundness error of the protocol CZK is no greater than εs + ν(k), 
where ν is a negligible function. 

Let us first see where the soundnes might go wrong. The prover might conceivably get 
an advantage by commiting to pi such that both Commit(vi) and  Commit(pi) open to  the  
same value. Note that to do that, the prover need not necessarily learn all the information 
about some vi. But if the verifier uses a non-malleable commitment scheme, then it is not 
in prover’s power to construct commitments that are correlated to Commit(vi) 

However instead of using a non-malleable commitment scheme, we achive the desired 
security by having the verifier use a statistically hiding commitment scheme, and prover 
use a perfectly hiding one. This eliminates any but negligible chance that prover can open 
one of its commitments to the same value as the verifier. Namely, because of statistically 
hiding property, the value pi cannot be non-negligibly correlated with vi. On the other 
hand, because of the perfectly binding property, Commit(pi) can be open in only one way. 
Therefore the protocol is sound. 

2.5 Zero Knowledgeness of the Protocol in Concurrent Setting 

As usual, we demonstrate the zero knowledgeness of the protocol by constructing a simula-
tor. The simulator is a probabilistic polynomial time and it interacts in a black box manner 
with the verifier. Its goal is to produce a view whose distribution is indistinguishable from 
that of the real verifier. Of course we allow the verifier to execute multiple interactions with 
the prover concurrently. 

We already said that the preamble is the simulator’s fulcrum. It suffices that for each 
proof, the simulator finds one index i such that pi = vi. That index is a witness for T ′, so  the  
simulator may proceed to prove T ′. A naive way to find a suitable index is to simply rewind 
after the verifier opens Commit(vi) for  some  i, and  then  set  pi ← vi and continue. After 
rewinding and setting pi, the verifier must open the same value as it did before rewinding, 
since it commited to it even earlier. Seemingly, this achieves our goal. However, rewinding 
by need, as we may call this schedule, may lead to exponential time simulation. This is so 
because many other instances may be nested in between Commit(pi) and  Open(Commit(vi)). 

We now observe that several problems need to be addressed: 

• a more clever rewinding schedule must be employed 

• the rewinding schedule must enable the simulator to learn the verifiers’ secrets 
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•	 it needs to be proven that proving that some vi is equal to the corresponding pi 

does not noticably slant the simulator’s distribution away from the verifier’s view 
(remember, the real prover proves that T ∈ NP, while the simulator proves that 
(∃i)vi = pi) 

•	 it needs to be proven that the simulator runs in polynomial time 

The following sections describe how these issues are solved, if static scheduling is assumed. 
That means that we assume that the adversary, who starts the proof sessions as it pleases, 
and intersperses their messages, determines the schedule of the messages in advance, in-
dependently of the content of the messages. In the paper [KP01], dynamic scheduling is 
addressed as well. 

Rewinding 

The simulator needs to be able to provide a “good” portion of the view for each proof 
(remember, we are considering concurrent setting and many proofs may be running con-
currently). The simulator does so by rewinding after learning vi, so that it is  able to set  pi 

equal to vi, which is the desired event for each proof. Thus we say that the simulator solves 
a proof  if it is able to set pi = vi for some i. 

Cleary, in order to solve a proof the simulator must, after seeing the verifier’s decom-
mitment Open(Commit(vi)), rewind past the point where it commited to pi. However, the 
simulator must not rewind too far, because it might rewind past the verifier’s commitments, 
thereby rendering useless vi’s that it had learned. Also the simulator must not let the first 
run (the one before rewinding) go past the preamble, because otherwise the verifier might 
just notice that something has gone wrong and stop responding. 

Once again we stress that a naive solution: picking an index i and, after learning vi 

rewinding just enough to set pi = vi, does not necessarily work. Instead we employ an 
oblivious rewinding schedule. 

Since we are assuming static scheduling by the adversary, and we only care about pream-
bles, we may view the adversary’s schedule as mk slots which contain pairs of messages. 
Each pair consists of a commitment by the simulator (prover) to pi, followed by the verifier 
revealing vi. Determining a rewinding strategy now amounts to “walking back and forth” 
on these mk slots. 

The oblivious rewinding strategy that gives all the desired properties is described by 
the following procedure: 

Schedule(a..b): 
if b − a = 1 then return the following schedule:


execute a

execute b


a+b−1 )compute s1 as Schedule(a.. 2

compute s2 as Schedule( a+b+1 ..b)
2 
return the following schedule: 

execute schedule s1 and remember the values vi

a+b−1
rewind → a2


execute schedule s1 again, this time setting pi appropriately
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execute schedule s2 and remember the values vi 
a+b+1rewind b → 2 

execute schedule s2 again, this time setting pi appropriately 

The simulator’s rewind strategy is then Schedule(1..mk). For example, when mk = 8,  the  
slots executed  are:  1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 5, 6, 5, 6,  
7, 8, 7, 8. 

The Rewinding Schedule Solves All Proofs With High Probability 

We already said that the simulator solves a proof if it learns some vi of the proof in the first 
run (before rewinding). Then after rewinding, it sets pi = vi. However, it is not obvious 
that the above rewinding schedule guarantees that every proof is solved. 

Let us first identify a necessary condition that during a particular rewind, a proof is 
solved. 

Definition: We say that a rewind l → k may solve a proof Π if:  

•	 the first round of Π is in a slot before k 

•	 the last round of Π is in a slot after l 

•	 exactly two rounds of Π2 are in slots k, k + 1, . . . , l  

•	 the first round of Π appears in the first half of l → k and the second round in the 
second half 

This definition captures a necessary condition that the rewind l → k is the smallest 
rewind that has a chance of solving Π. The first two bullets guarantee that the rewind has 
a chance of solving Π, and the other two that it is the minimal one. 

The distinction between the notions “solve a proof ” and “may solve a proof” is justified, 
because not every rewind that may solve a proof actually solves it. That can happen if the 
verifier, whether maliciously or erroneously, decides not to disclose vi during the first run. 
However, [KP01] demonstrate that there are enough rewinds that may solve any particular 
proof, to compensate for the verifier’s malice or flaws. 

Lemma [Rewinds]: For any schedule of k copies of the proof preambles, each with m 
pairs of messages, if the preamble of a specific proof Π completes in slot l, then there are 
at least � m 	 − 2 rewinds that complete by slot l and that may solve Π. log(mk)+1

In addition to that, it can be computed that each rewind that may solve a proof, indeed 
solves it with probability at least 2 . Roughly, the computation is based on the fact that the 3
only way in which the verifier might force the simulator to not solve a proof, when it may, 
is to hide vi in the first run and reveal it in the second one. Because of the hiding property 
of the commitment scheme used by the prover, the verifier is not able to tell which run is 

In this definition, by “proof” and Π we mean “preamble” and “preamble of Π”. 
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currently happening, and thus cannot determine when to hide vi and when not  to  vi better 
than by flipping a coin. 

By the previous lemma, using m = ω(log2 k) we get that there are 

ω(log2 k) 
a ≥ = ω(log k)

log k + log  m 

1rewinds in which a particular proof Π may be solved. Now because there are less than 3 
chance of a proof not being solved during any of these rewinds, and all of them are disjoint, 
we have that with probability at most 

a 1 
�ω(log k)1 

= = ν(k)
3 3 

the proof Π is not solved during any rewind (ν is a negligible function). Now using the 
union bound we get that there is only negligible probability that any proof is not solved at 
all. 

The Indistinguishability of the Views 
∗ 

Theorem [Indistinguishability of the Views]: If the simulator SV solves each proof, 
∗ ∗then the view of the verifier V (in the proof system (P, V ) is indistinguishable from the 

view generated by S. 

Let us first see what are the issues in proving this theorem. First, the preambles gener-
ated by the simulator are different than the ones generated by the real proof system. That 
is because in simulator generated preambles, there are some values of i for which pi = vi, 
whereas that is improbable for the real proof system. Second, the witness used by the 
simulator is different than the one used by the real proof system: the simulator proves that 
pi = vi, while  the real system  proves that  x ∈ L. 

The first observation presents no problem, because if anyone were able to distinguish the 
preambles, that would imply breaking a commitment scheme. The second one also presents 
no problem, because any zero knowledge proof system is witness indistinguishable too, so 
noone can tell which witness was used to prove the theorem. 

The full proof can be found in [KPR01], but let us just say here that a hybrid argument is 
used, with one hybrid point. The hybrind point is a view generated by a modified simulator 

∗ 
S′V that gets a witness w, to the statement “x ∈ L”, as extra input. It generates preambles 
as the usual simulator S, i.e. it tries to solve the proofs by setting vi = pi for some i. But  
when it executes the body of the proof, it behaves as the real prover P, and proves that 
x ∈ L using w. 

∗ 
Distinguishing the view generated by S′V from that generated by S then implies that 

the zero knowledge proof system for L is not witness indistinguishable, which in turn implies 
that it is not zero knowledge at all. 

∗ 
On the other hand, distinguishing the view generated by S′V from that generated by 
∗(P, V ) implies that a commitment scheme is not semantically secure. 
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Running Time of the Simulator 

It can proven that the number of rewinds is polynomial in the security parameter k. On  
the other hand, a polynomial in k number of operations takes place during each rewind. 
Hence the simulator runs in polynomial time. 

3 Conclusion  

log k[CKPR01] prove that Ω( log log k ) rounds are needed for black box concurrent zero knowledge 
proofs for any language outside BPP. Thus the result of [KPR01] is not far from this lower 
bound. However, [PS02] further improve the round complexity of concurrent zero knowledge 
by giving an O(log k) round protocol. 
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