6.876/18.426: Advanced Cryptography April 7th 2003
Lecture 15: A Practical CCA-2 PK Cryptosystem

Scribed by: Javed Samuel
Guest Lecturer: Matthew Lepinsiki

1 Introduction

During this lecture we looked at a practical public key cryptosystem which was provably
secure against an adaptive chosen ciphertext attack. We will first define the decisional
Diffie-Hellman (DDH) problem which we assume to be hard. Then we present a modified
version of El-Gamel assuming that DDH which is hard which is secure against a passive
adversary. We then modify this protocol and prove that it is secure against a lunch-time
attack. Finally we modify the protocol yet again and prove that it is adaptive chosen
ciphertext secure (CCA-2).

2 Decisional Diffie-Hellman

2.1 Definition

Let us consider the following two distributions where q is a large prime and (g1, g2,7,71,72)
are random elements in Z;.

Type 1: (91, 92,97, 95)
Type 2: (g1,92,91"»95°)

We define an algorithm that can solve the decisional Diffie-Hellman problem as a statisti-
cal test that can effectively distinguish between these two distributions. The Diffie-Hellman
decision problem! is considered hard if there is no such polynomial-time statistical test.

2.2 Equivalence

If we have such an algorithm then we can easily distinguish between a Diffie-Hellman triple
(9%, ¢¥, ¢"y) and a non-Diffie-Hellman triple (¢*, g¥, g*). The DDH problem is also equiv-
alent to the worst-case decision problem: given g%, ¢g¥, ¢%), decide with negligible error
probability if z = xy mod p. This equivalence is a result of the random self-reducibility

property.

'"The DDH is related to the Diffie-Hellman problem (given g, g* and ¢g¥ compute g*¥) and the discrete
logarithm problem (given g and ¢g”, compute x). There are obvious polynomial time reductions from the
DDH problem to the Diffie-Hellman problem, and from the Diffie-Hellman problem to the discrete logarithm
problem, but reductions in the reverse direction are not known.

Lecture 15-1



3 Modified El Gamel

3.1 Defintion

This public key cryptosystem? is secure against passive attacks but is vulnerable to lunchtime
attacks (CCA-1) and adaptive chosen ciphertext attacks (CCA-2).

We have a public key consisting of a prime g, two randomly selected generators g1, go
and h = ¢51g32.

The secret key consists of two randomly selected values in Z; namely 21 and z,.

We encrypt a message m by computing
E(m,r) = g1,93,h"m

Let u; =g7, us =¢5 and e = h"'m.
Decrypting is done as follows
e h"m

D(ulau%e) = "%, 22 Tzl _TZ2
Uy Uy 91 92

We note that A" still looks random even after seeing g7, g5.

3.2 Proof Of Security

As always we will prove this by contradiction. We assume that we have an adversary that
can break El-Gamel (ADV) which we can use as a sub-routine and we will show that we
can construct an adversary that can break the Decision Diffie-Hellman assumption.

Let us assume that we are given (g1, g2, u1,u2). We will use g1, g2 as the public key and
we will have h = g;'¢5*. The secret key is as before two randomly chosen values from Z,
namely z; and zo.

Our algorithm sends a message to ADV and then ADV responds by sending two messages
mg and my. One of the messages is randomly chosen by selecting b € {0,1} and send u1, uo
(as obtained from above) and e = uj*u5?my. ADV then sends us g.

We then let g = b which we claim would allow us to break the DDH assumption. This
fact relies on two claims which we prove. We are trying to determine whether

(91,92,u1,u2) = (91,92,97",95°)

3.2.1 Claim 1

If Type 1 (r1 = r2) then g = b with probability % + m.
This claim is very easy to see since in this case ADV is answering the exact question
which we want the answer hence we have the same probability of success as ADV does.

2The El-Gamel cryptosystem consists of a public key with a prime p, generator g, g*. The secret key is x.
You send a message m by choosing a random number y in Z; and then sending over g¥, g®¥ + m. Decrypting
is trivial and we simply use the secret key x to calculate g”¥ and then obtain the message m.

Lecture 15-2



3.2.2 Claim 2

If Type 2 (r1 # r9) then b is completely independent of ADV’s view (PK,u1,us,e) and
that the probability that g = b is equal to % + ﬁ In Type 2 we note that this is not a
valid ciphertext since the encryption is not valid. Valid encryptions are always in the form
e = h"my

3.2.3 Proof of Claim 2

Given the public key we can see that log(h) = 21 + wze. Also it is equally likely that
7121 + Wwroze = mio or that 7121 + wroze = le We can think of the public key as defining
some line in the z1, 2o space. Each of the messages is also constrained to a particular line
in the z;.2z9 space as indicated above. However that is still not enough information for the

adversary, even with infinite time to be able to decide whether mg or m, was sent.

3.3 Why is it not CCA-2 secure?

Assuming we are given u1, ug, e which is equal to g7, g5, h"m. The adversary can ask for the
decryption of u1 g1, usgs, h * ezg’{“, g§+1, R™*1 % m which would be equal to the message m.

3.4 Why is it not CCA-1 secure?

Using a lunchtime attack we can compute information about the public key that we did not
know before. We can ask for the decryption of

T1 T121 ,T122

( r1 ,ra=r1—1 hr) _ h _ 91 "9 _ 22

917599 )T AR T A g 92
1 Ug 91 92

We gain some more information about the public key which we could use to break the
security. We do not know how we can use a PPT algorithm to break security with a CCA-1
attack but we cannot prove that this protocol is CCA-1 secure.

4 Cramer Shoup CCA-1 Secure Protocol

4.1 Introduction

This Cramer-Shoup protocol is an improvement of the modified E1 Gamel protocol discussed
earlier. This protocol is secure against a passive adversary and against a lunch-time attack.
The basic idea involves having another pair of elements from Zj,z1andz2 which provides
security against a lunch time attack.

4.2 Definition

We have a public key consisting of a prime q, two randomly selected generators g, go and
h Z1 22 L1 T2

=9g7'95° and ¢ = g;'gy”.
The secret key consists of four randomly selected values in Z; namely 21, zo and x1, 3.
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We encrypt a message m by computing

T T T rTo__ r1,,T2
E'('m,?") _gla927h m,C = Uj Uy

T T
Let u; =g, ua =g5, e = h"m and v = " = uj'uy’

Decrypting is done as follows using (u1, us, e,v). First we verify that v is indeed equal

to ¢" = u7'us?. Then we compute m which is equal to ﬁ

4.3 Proof of CCA-1 Security

Security against a passive adversary is trivial and follows immediately from the proof de-
scribed earlier in the modified El-Gamel protocol. As before we will prove that this protocol
is CCA-1 secure by contradiction. We assume that we have an adversary ADV which can
break the security of this protocol and then we will show that this adversary can be used
as a subroutine to solve the DDH problem with non-negligible probability.

Let us assume that we are given (g1, g2, u1, u2). We will use g1, g2 as the public key and
we will have h = ¢5'¢5? and ¢ = ¢{'g5%. The secret key consists of four randomly chosen
values from Z,’; namely z1 ,z9, 1 and za.

Our algorithm sends a message to ADV and then ADV responds by sending a ciphertext
of any message. This decryption of the ciphertext is sent back to ADV. After a polynomial
number of queries ADV sends two messages mg and m;. One of the messages is randomly
chosen by selecting b € {0,1} and then u1,us (as obtained from above) ,e = ui*u3?>m; and
ui'us? is sent to ADV. ADV then sends us g.

We then let ¢ = b which we claim would allow us to break the DDH assumption. This
fact relies on two claims which we prove. We are trying to determine whether

(glaQQaula U’?) = (91’9259?59;2)
Claims 1 and 2 from above hold here. Assuming that no invalid ciphertexts are decrypted
then the above proof shows that that the protocol is CCA-1 secure.
4.3.1 Claim 3

The adversary cannot ask for the decryption of invalid ciphertext except with negligible
probability. This is important since if the adversary is able to ask invalid questions with
greater than non-negligible probability, then he can put extra constraints on the secret key
which may allow him to get additional information.

4.3.2 Proof of Claim 3

A ciphertext gzl,g?,e‘,v‘ is rejected unless it lies on the line satisfied by the following
validity check equation.
log(v') = rz1 + wryzo

where w = logy, g2
The constraint from the public key is

log(C) = z1 + wzs
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Therefore we note that for each invalid ciphertext where (r; # r2‘) there is only one
secret key (x1,x2) which passes the validity check. We recall from linear algebra that a line
can intersect a linearly independent hyperplane exactly once. The adversary only passes
the validity check if his invalid ciphertext line intersects the public key constraint. This
event has negligible probability.

4.4 Why is it not CCA-2 secure?

An equivalent attack as described previous for the El-Gamel scheme will suffice. Assuming
we are given u1,u2, e which is equal to g7, g5, h"m. The adversary can ask for the decryption
of u1g1,usgs, h * ezg{“,ggﬂ, h™*! % m which would be equal to the message m. Another
attack suggested in class was to simply the third value in our challenge ciphertext by some
constant and then request that this ciphertext is decrypted. This modification will not
affect the validity check and then we can divide by the constant to determine the original

message.

5 Cramer Shoup CCA-2 Secure Protocol

5.1 Introduction

This Cramer-Shoup CCA-2 Secure protocol is a modification of the CCA-1 Secure Protocol
discussed earlier. This protocol is secure against an adaptive chosen cipher text adversary
The basic idea involves having another pair of elements from Z7,yjandys and a collision
resistant hash function® H.

5.2 Definition

We have a public key consisting of a prime q, two randomly selected generators g, go and
h = g¢/'¢3?, c = ¢{"'g5%, d = ¢7'g5" and a public collision resistant hash function H.

The secret key consists of six randomly selected values in Z; namely z1, 29, z1, T2 , Y1
and Y.

We encrypt a message m by computing

E(m7 r) = g'i" 957 hrm’ C”'da,’-
Let u; =g7, ua =¢5, e = h"m and v = ¢"d*"
Decrypting is done as follows using (u1,us9, e,v). First we compute o = H (u1,u9,e) and
then we test the validity condition.

v = u3181+ay1ugz+ay2

If this condition does not hold, the decryption algorithm outputs "reject”; otherwise we
compute m which is equal to #
1 2

3We can actually use the weaker assumption of universal one-way hash functions
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5.3 Proof of CCA-2 Security

This protocol is CCA-1 secure and this can be seen by the proof described earlier. As always
we prove that this is CCA-2 secure by contradiction. We have an adversary ADV who can
break this cryptosystem, and that the hash function is collision resistant and we will use
this adversary to construct a statistical test for the DDH problem.

The validity check constraint is (let w = logg, g2)
log(v) = z1 + wrezy + ary + Qwryys
The two public key constraints are
log(c) = 1 + wxs

log(d) = y1 + wyeo

The public key constraints define a plane and he validity check constraint also defines
a linearly independent plane. Also we recall from linear algebra that these two linearly
independent planes will intersect at a line.

When constructing invalid cipher text the adversary will either use new a or old a.
We want to show that the adversary has negligible probability of constructing an invalid
ciphertext.

5.3.1 Casel

The adversary uses an « from a previous challenge in his new query. We can easily see that
this cannot happen since we assumed that the hash function was collision resistant.

5.3.2 Case 2

The adversary uses a new . The decryption algorithm will reject this invalid ciphertext
unless it lies on the hyperplane defined by our validity check constraint. We can use linear
algebra in 4d geometry to see that the adversary is looking for a particular line that intersects
the validity check constraint. The probability of this event is negligible since each challenge
ciphertext plane only intersects at one point. Basically the probability that the adversary‘s
invalid ciphertext contains the secret key is negligible given that it is linearly independent
from the public key constraints.

Since we have argued that the adversary cannot create invalid ciphertext with more than
negligible probability it follows from the previous discussion that this protocol is adaptive
chosen ciphertext secure.

6 Questions

1. Can you use a similar approach to simplify the Sahai scheme?

2. Is there any other scheme that achieves adaptive chosen ciphertext security?
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