6.876/18.426: Advanced Cryptography April 2, 2003

Lecture 14: Lunchtime and Chosen Ciphertext Security

Scribed by: David Wilson

1 Recap: Naor/Young’s Lunchtime Security

1.1 Definition
At the beginning of class we reviewed the concept of security against a “lunchtime” attack

(abbreviated CCA-1). Recall the protocol-based definition of CCA-1 security:

1. Initiation: An adversary ADVppT is given the public key PK.

2. Learning: ADV can send polynomially many ciphertexts to an oracle, who will send
the corresponding plaintexts (or will notify ADV if the ciphertext is invalid). In this
way, ADV attempts to learn about the secret key or weaknesses in the cryptosystem.

3. Testing: ADV then sends two messages mg, m1 which he thinks he can distinguish.
The decryptor chooses a random b € {0,1} and sends the encryption of my. ADV
then responds with a guess g € {0,1}.

Def. A cryptosystem is CCA-1 secure (or “lunchtime-secure”) iff

1 1
Prb=g) < =+ ———
rb=g) < 2 + Poly(k)

where k is the security parameter.

1.2 Naor-Yung Cryptosystem
The Naor-Yung scheme[NY90] is a cryptosystem (G, E,D) defined as follows:

G: The public key is the triplet (PK;, PK», R), where PK; and PK> are two independent
public keys generated from an underlying GM-secure cryptosystem (G, E,D), and R is
a random string long enough to use for a non-interactive zero-knowledge proof. The
secret key is (SK1,SK>), the two secret keys associated with PK; and PKo.

E: To encrypt a message, first encrypt it using each of the keys PKi, PKs using the
underlying GM-secure cryptosystem. Also, supply a non-interactive zero-knowledge
proof (using R as the random string) that the two encryptions are of the same message.
Thus, E(m) = (E(m, PK1),E(m, PK3),II1r(“same message”)).

D: The decryption algorithm has two steps:

1. First, check the validity of II. If II is invalid, terminate with failure (.L).

14-1



2. Assuming IT is valid, calculate D (E;(m)) = m.

It is important to first check that II is a valid proof. If II is invalid, then it is entirely
possible that the two encryptions are not of the same message. The importance of
this point will become clear in the proof.

2 Proof of Lunchtime Security

Here we proved that the Naor-Yung system described above is CCA-1 secure. Proof, as
always, is by contradiction.

2.1 Proof

Assume that there exists some ADVppt that can guess b with probability non-negligibly
better than % We show how to construct, given ADV, an algorithm adv that breaks the
GM-security of the underlying cryptosystem (G, E,D). Construct algorithm adv as follows:

1. adv randomly selects a € {1,2}. adv then generates (PK,, SK,) using G, and lets
PKj_, be the input key PK (that adv will break). adv must also generate a “random”
string for the NIZK proofs. In the case of some NIZK proof systems, for example,
that of Feige, Lapidot, and Shamir [FLS90], the simulator can actually pick the ran-
dom string in advance, without knowing the theorem it will be asked to prove. We
thus use the simulator to generate the string R, and send the Naor-Yung public key
(PK,,PKy,R) to ADV. We will need to record the state « of the simulator so we
can use it later.

Note that R may not be random if generated in this way. However, we know that R
generated this way must be indistinguishable from random, or the zero-knowledgeness
of the NIZK proof system would not hold.

2. ADV sends a ciphertext (ci,co,II) to adv. Just as the usual case, adv first checks
that IT is valid with respect to R; if invalid, L is returned to ADV. If it is valid, then
presumably, m; = mg = m, so adv can return m (obtained by decrypting ¢, using
SK,). Since the messages are the same, ADV obtains no knowledge of the procedure
used to decrypt the ciphertext, merely the decryption itself. (This step can be repeated
a polynomial number of times.)

Note here that if the adversary manages to slip a false proof in, we might have a
problem. If ¢; and ¢y encrypt different messages, then the adversary can distinguish
the case a = 1 (in which case we are behaving exactly as we’re supposed to) from the
case a = 2. We will need to argue later that the adversary cannot distinguish these
two cases. However, this cannot happen with more than negligible probability by the
soundness of the NIZK proof system.

3. ADV sends two messages (mg,m1) to adv. adv returns (mg,m;) and gets back
¢ = E(my, PK). The goal of adv is to guess b. We next pick a random bit r and let
¢o = E(m,,PK,) and c3_, = ¢. Then, we run the simulator from state « to fake a

14-2



proof I that ¢; and ¢, encrypt the same message. We send (c1, ¢, II) to ADV. ADV
returns a guess g, and adv outputs the same value.

Now we prove that the probability that adv returns the correct value is non-negligibly
better than 1/2.
Case 1: r=1»
If r = b, then from the hypothesis ADV will guess correctly with probability nonnegligibly
better than % For simplicity, we can state that in this case g = b with probability 51%.

Case 2: r#b

If r # b, then ADV has received one encryption of each message and a “proof” that they
are the same message. Although ADV’s behavior is not well defined in this circumstance,
the protocol constrains ADV to send a single bit. Since even the order in the public key is
randomized (the reason for the use of a above), ADV cannot distinguish between the case
my = mg and my = mq since ADV doesn’t know which message encrypts my. Thus, ADV
is correct with probability exactly 50%.

Since r is selected randomly, Case 1 and Case 2 occur with equal probability; thus, overall
the probability that g = bis 50.5%. However, this violates the GM-security of the underlying
cryptosystem, since adv can then simply send g to the owner of the copied public key as a
guess for b and be correct with probability nonnegligibly more than %

Here we also see the importance of adv first checking II before giving the plaintext m,
since otherwise ADV could send encryptions of two different messages and thus determine
that adv always returned the message m,. Once this is known, the argument given in case
2 above is invalid, since ADV can use the position in the message to differentiate m, from
my. ADV could then return r with probability 51% (without violating its protocol, since its
behavior is undefined for an invalid input), resulting in adv having no advantage in breaking

the GM-secure public key and invalidating the proof of lunchtime security given here.

2.2 A Few Concerns
2.2.1 Can adv really fool ADV?

In Step 3, adv provides an NIZK proof that m, = mj, when this is not necessarily the case
(and, even if true, is not known by adv). However, adv can construct a valid-looking I
since adv previously prepared the random string R for exactly this purpose. This is exactly
the method used by the simulator in Lectures 9 and 10 to provide a false proof.

Concerns were raised in class about R not being random. However, several lectures
previously it was proven that a simulator could prove 3SAT € NIZK using a string that was
indistinguishable from random; thus, adv can prove the NP statement ”m, = m;” using a
string that appears random to ADV.

2.2.2 Can ADV fool adv?

It is worth noting that although R was constructed in order for adv to construct a false
proof, ADV uses the same public key to send ciphertexts to adv in Step 2. Thus, if ADV

14-3



could use R to construct a II that appears valid, he could potentially determine that adv
always answers m, and adjust his final guess accordingly, skewing the probability.

The resolution of this concern again rests on the fact that R is indistinguishable from
random. adv can construct a false proof using R because adv knows a trapdoor function
that gives an unusual probability distribution of results when applied to R. ADV only sees
the string R, and cannot construct a false proof since he does not know the appropriate
secret.

3 Adaptive Chosen Ciphertext Security

3.1 Definition

The definition of adaptive chosen ciphertext security (also called CCA-2 security) is very
similar to that of CCA-1 security, except that the adversary is allowed an additional
” question-and-answer” period after receiving the encrypted my. Thus, ADV’s queries may
depend on the encrypted message my, whereas in the previous case ADV had to make a
guess immediately.

1. Initiation: An adversary ADVppT is given the public key PK.

2. Learning Period 1: ADV can send polynomially many ciphertexts to an oracle, who
will send the corresponding plaintexts (or will notify ADV if the ciphertext is in-
valid). In this way, ADV attempts to learn about the secret key or weaknesses in the
cryptosystem.

3. Testing: ADV then sends two messages mg, m1 which he thinks he can distinguish.
The decryptor chooses a random b € {0,1} and sends the encryption of m.

4. Learning Period 2: ADV can again send polynomially many ciphertexts to the de-
cryptor /oracle, who will again send the corresponding plaintexts (or will notify ADV
if the ciphertext is invalid). Thus, ADV’s queries in this step can depend on the
encryption of my received in Step 3.

5. Guess: ADV sends a guess g € {0,1}.

Def. A cryptosystem is CCA-2 secure (or “adaptive chosen ciphertext secure”) iff
1 1

Prob(b = g) < -
rob(b = g) < 2 + Poly (k)

where k is the security parameter.

3.2 The Naor-Yung System and CCA-2 Security

Since we have just finished proving that the Naor-Yung cryptosystem is CCA-1 secure, the
question naturally arises as to whether it is CCA-2 secure. The answer is, not necessarily.
Recall that the security of the Naor-Yung system relied on ADV not being able to produce a
false proof IT based only on seeing R (and not knowing the appropriate trapdoor). However,

14-4



once adv sends the encryption (E;(m,), Ea(my),II), ADV has an example of a false proof
II to work with as well. While ADV cannot come up with a false proof on his own, it is
possible that seeing IT will give him the knowledge necessary to create a second false proof
II'. Once ADV has the ability to create false proofs, he can potentially break the security
of the cryptosystem, as shown in the previous section. Thus, the Naor-Yung system is not
CCA-2 secure unless creating IT’ is hard.

The system would be secure if the underlying cryptosystem used in it was actually non-
malleable, but non-malleability for a cryptosystem is equivalent to CCA-2 security, so that
would be too much of an assumption.

4 A CCA-2 Secure Cryptosystem

The professor then gave the outline of a CCA-2 secure cryptosystem by Sahai [Sah99]. The general
idea is recorded here; further elaboration can be found in the paper.
Sahai’s system extends the basic notion of NIZK and uses the modified notion to provide
CCA-2 security.

4.1 Intuition

Intuitively, there are several properties that are desirable for an NIZK proof system to make
the Naor-Yung construction secure against CCA-2. Briefly:

A. If I see a good proof II of a true theorem X, and use it to produce a good proof IT’
of another theorem X’ then not only is X’ true, but I could have generated (X', II')
already.

B. If I see a good-looking proof II of a false theorem X, and use it to produce a good-
looking proof IT' for another theorem X', then not only is X’ true, but I could have
generated (X', IT') already.

4.2 Construction

NIZK proofs have taken the basic form of (P,V,S, f), where P is the prover, V is the verifier,
S is the simulator, and f is the length of a public random string o required to complete the
proof. Sahai’s enhanced NIZK algorithm uses (P,V,S, f) works as follows:

1. Consider a digital signature scheme (V K, SK) that is not existentially forgeable under
a chosen message attack. Let ¢ = 0109...09;_109;, where k is the length of the
verification key V K. Thus, where in a regular NIZK proof ¢ is a random string of a
certain length, & is a random string of 2k times that length which can be viewed as
the concatenation of 2k separate strings. Thus, f(k) = 2kf (k).

2. The prover P carries out a non-interactive zero-knowledge proof of the theorem for
each bit of the verification key V K, using an associated piece of . For example, if the
first bit of VK is 0, then P generates II; using oy; if it is 1, then P instead generates
I, using oy. Similarly, for the i-th bit of PK, P generates II;_; using og;_1 if the bit

14-5



is 0 and IIy; using o9; if the bit is 1. In this way, P generates k separate NIZK proofs
for the theorem. For the other k£ indices, we let II; =L.

3. Using the signing key SK, P then signs the concatenation of the proofs generated in
the previous step along with the theorem itself:

s = Sigg (I, ...IIy, X)

4. A proof TI then consists of s, II1,. .., Iy, and the verification key V K. Verifying the
proof is straightforward: all II;s must be valid proofs of the theorem if ¢ is an index
that would be selected in step 2 for an actual proof, the signature must be valid, and
the II;s must use the pieces of & corresponding to the bits of VK. Note that the
indices chosen are based on V K so the verifier can determine which are supposed to
be real proofs and which may be omitted.!

4.3 Proof Sketch of CCA-2 Security

The general idea is as follows. Given ADV we construct adv as before, except after the
challenge is given, we answer queries on ciphertexts other than the challenge we gave to
ADYV just as we would have before the challenge. Now, if ADV never generates any false
proofs after the challenge, the argument from before works. However, there is a concern
that the adversary might gain the capability to make a false proof after seeing the fake
proof we give in the challenge.

Suppose that we give the adversary a proof s, V K, II of a statement X, and the adversary
produces a proof s’, VK’ II' of a statement X’ such that at least one thing is different: either
X #X's# s, VK #VK', or Il £ II'. There are two cases.

Case 1: VK'=VK

If the same verification key is used, the adversary has successfully signed a new message
using the same verification key. However, this contradicts the assumption that the digital
signature scheme being used is unforgeable.?

Case 2: VK' #VK

If VK' # VK, the two must differ in at least one bit. Assume WLOG that i is such that
VK[i] = 0 and VK'[{] = 1. Then in the construction of II’, the adversary necessarily
constructed Ilp; using o9;. However, the adversary has not seen a proof using o9; before,
since the original prover used o9; 1 in his proof instead. Thus, the adversary must have
already been able to construct an NIZK proof of X’ before seeing the proof II, so by the
soundness of the underlying NIZK proof system, if X' is false, the adversary can only
produce such a proof with negligible probability.

! Actually, one detail we need is that the signature scheme used is one where for any message and any
verification key, there is only ONE valid signature of that message under that key. However, this is not hard
to construct. For details, see Sahai’s paper.

2The case where s # s’ but all other components are the same is ruled out by the unique signature
requirement from the footnote above.

14-6



4.4 Closing questions
Several things to think about with regard to the Sahai scheme:
e Does this scheme satisfy CCA-2 security? What, exactly, does it accomplish?

e The intention of CCA-2 security is to protect against an adversary who may be ”in-
spired” by seeing a proof of a false theorem. What about security against an adversary
who sees multiple false proofs?

e As it stands, the Sahai scheme works to prove a single theorem. Can you modify it
to work with polynomially many theorems?

References

FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge

g

proofs based on a single random string. Proceedings, 31st IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 308-317, 1990.

[NY90] M. Naor, M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ci-
phertext Attacks. Proceedings, ACM 22nd Annual Symposium on Theory of Computing
(STOC), pp. 427-437, 1990.

[Sah99] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. Proceedings, 40th IEEE Symposium on Foundation of Computer
Science (FOCS), pp. 543-553, 1999.

14-7



