6.876/18.426: Advanced Cryptography March 19, 2003

Lecture 12: Improved Non-Interactive Zero-Knowledge

Scribed by: Peng Xie

1 Preface

Today, we have two goals. First, we will construct a NIZK proof system under the assump-
tion of trapdoor permutations. Secondly, we will construct a NIZK proof system that can
handle multiple provers with a single random string.

2 Envelope-Based Proof

First of all, we will use an “envelope-based” proof system to demonstrate the intuition of
our NIZK proof for the language HAM. We give the definition of HAM as follows:

HAM = {G : there exists a Hamiltonian tour inG}

It is known that HAM is NP-complete. We use an adjacency matrix A to denote a
directed graph G. The entry A(i,7) = 1 means that there is an edge from node i to node
j- In the following proof system, there are three parties, prover P, verifier V and the third
trusted party T'. The proof system works as follows. The input is a graph G with n nodes
. T will generate a graph H such that it is a random Hamiltonian tour on n nodes, which
we call a unicycle graph. However, T' puts envelopes on every entry in H and shows the
enveloped matrix H to both P and V. Then T whispers the contents of H to P such that
P knows the Hamiltonian tour in H. Then P and V works as follows.

P: on (G,H)

1 Find a permutation 7 such that H is one of the Hamiltonian tours in 7(G).
2 “Qverlap” H with 7(G)

3 Send 7 and open all the envelopes for the entries in H such that the corresponding
entries in 7(G) are 0's.

V: on (G,H)
Checks if the opened envelopes are complete and are all 0's, if so, accepts, otherwise,
rejects.

It is easy to see that this proof is complete. Indeed, if the prover P does know G € HAM,
then prover can find the permutation 7 such that H is one of Hamiltonian tours in n(G).
Soundness also holds because the H is assured to be a unicycle graph even though all the
entries of H have been covered by the envelopes. A malicious prover can’t do anything

12-1

about it. So, if G ¢ HAM, the malicious prover can’t show that all the opened envelopes
are ('s.

This proof system is ZK also. A PPT S can simulate provers by generating a graph
H' such that all the entries are 0s, giving a permutation o to the verifier and revealing all
the ’0’ entries in o(G) to the verifier. All the entries except revealed ones are covered by
envelopes, so no one can distinguish it from the real prover. We will use this intuition to
construct the NIZK proof we will discuss today.

3 Non-Interactive Zero-Knowledge Proofs

In order to get the NIZK proof from the above envelope-based proof, we need to get a
guarantee for the existence of unicycle graph, H when we generate graphs at random. The
answer lies in the random string in the NIZK proof. The idea is as follows. With a long
enough random string o, a one-way permutation, and a hard-core predicate of that one-way
permutation, we can encode ¢ into a bunch of random graphs, and with high probability
we’ll get at least one unicycle graph. A one-way permutation is a function which can be
computed in polynomial time, but the inverse is hard to compute. A hard-core predicate
of an one-way permutation f is a predicate B : {0,1}* :— {0, 1}, which can be computed
by polynomial time, but given f(z), no PPT algorithm can guess B(z) with a nonnegligible
advantage. In the following part, we use the graph and matrix interchangeably.

P first partitions the random input string ¢ into equal size segments, and applies the
inverse one-way permutation f~! to map these segments into new segments, then uses the
hard-core predicate of f, B to transfer these new segments into string of 1s and 0s, which
specifies the adjacency matrix and thus the graph. The “envelopes” are the portions of the
reference string . They, in a sense, commit to the graphs, without revealing them. Now,
the problem is how to map these envelopes into graphs and make sure of the existence of a
unicycle graph with overwhelming probability. Naively, we can group n X n envelops as a
n-node graph. But the probability of the existence of unicycle graph is exponentially low.
Therefore, we need new idea to encode the envelopes.

3.1 Encoding The Envelopes

Let’s consider the following encoding method. If we combine the logn3 envelopes into

one entry in the matrix, that means, if all the consecutive logn® envelopes are 1's, the

corresponding entry is 1, otherwise, 0. Then the probability that an entry in the adjacent

matrix is 1 is Wﬁzﬁg Now in order to get the expected number of ’1’ entries in the graph

to be n, we need a matrix of size n? x n2. That is, the number of 1’s in matrix is expected
4, 1

n* X —z = n. Under this probability, for any matrix, the probability that there are exactly n

1's entries is, (7:14)(n—13)(1 - %)"4_” > ﬁ, provided that n is large enough. Now, we have
2 2

n° X n’ matrix and the probability that there are exactly n ’1’ entries is greater than ﬁ,
if n is large enough. What’s the probability that there is at most one 1 in each column and
row given that there are exactly n ’1’ entries in the matrix? The answer is a constant. This
is can be explained by the following example. Let’s say, there are n?
in n? rows and n? columns, and you throw n socks randomly into one of these drawers.

x n? drawers arranged

12-2

The probability that there is only one sock in each row and column is constant by birthday
paradox. We call a “valid configuration” the configuration that there are exactly n 1s in
the matrix and all these 1s are arranged in a way such that there is only one 1 in each
column and row. The probability that we get a valid configuration is, Q(ﬁ), where c is a
constant. We are interested in some special configurations, by which we define to be the
configuration that all the nodes in the graph are connected in one cycle. We claims that the
fraction of these special configurations in valid configurations is % This is explained as the
following example. Suppose we have 5 elements. The chance of a configuration is special is
£2Ls = % Generalizing this, we get the probability % Therefore, we can conclude that the

probability that a matrix have a unicycle graph is Q(cn_%), where ¢ is a constant. Thus,
if the length of the random string o is long enough, in other words, if we generate enough
graphs, we can get the probability that there exist at least one matrix that corresponds to
a unicycle graph to be 1 — Q(cin), where c is a constant.

3.2 NIZK Under One-Way Permutation Assumption

Once the prover gets the random string o and mapping the string into a sequence of graphs,
we can use the envelope-based method for finishing the NIZK proof. By the above argument,
with high probability, at least one of these graphs is a unicycle graph. The prover will reveal
all the entries for the graphs which are not unicycle graphs. For the unicycle graphs, the
prover will reveal the n? — n rows and n? — n columns which contain only 0's. Then the
remaining matrix is unicycle graph. The prover then uses the envelope-based proof system
to prove G € HAM. We give the formal description as follows.

P: on (G,0)
1 Partition the o into sequence of segments, u1,us,..., Uy, where |ui| = |ug| =
o= |um| = k.
2 Compute f !(u;), where f ! is the inverse of one-way permutation.

3 Compute B(f_1(u;)), get string of envelopes, where B is the hard-core predicate
for f.

4 Encode the string of envelopes into graphs.

5 Reveal the non-unicycle graphs by sending f~!(u;) and envelopes for all such
graphs. For all unicycle graphs, reveal the n? —n rows and n? — n columns which
contain only 0's.

6 Continues the envelope-based proof for each unicycle graph.
V: on (G, o)
Checks if the revealed matrixes are non-unicycle graphs by computing f(f~!(u;)) and

checking if the matrices define non-unicycle graphs. Check if the partially revealed
entries are all 0’s. Then runs envelope-based protocol verifier.

Completeness holds: if the input graph G has a Hamiltonian tour, then the prover
can prove G € HAM. Soundness holds as well: since the input string is long enough,
we get overwhelming probability that there exists a unicycle graph. A dishonest prover

12-3

can’t abandon the unicycle graphs because the prover has to open all the envelopes in the
matrix to prove that there is no Hamiltonian tour. Therefore, any prover has to use the
unicycle graph in his proof, thus, can’t cheat without being caught by the verifier. Now,
we need to prove zero-knowledgeness. The problem is that the poly-time S can’t compute
the inverse of one-way permutation and can’t compute the Hamiltonian tour for a given
graph G. S can generate a random string, u1, ug, . . ., umy, then compute B(u;) as envelopes
and encodes them into graphs. For the unicycle graphs, S still uses these graphs, but
S has to do extra work here. For all entries that are 1's in unicycle graph, S randomly
re-generates a new random segment until all these entries are 0's. This is can be done
in polynomial time. After doing this, S pretends these graphs are unicycle graphs and
computes f(u1), f(uz2),..., f(un) as the input random string o. S then can simulate by
showing that all the revealed entries in the alleged unicycle graph are 0s. By using the
hybrid argument, we can show that the output of S is indistinguishable from the view of
any provers. The more detail proof can been found in [FLS].

3.3 NIZK Under Trapdoor Assumption

In the above NIZK proof, the prover’s power is unlimited because the prover must compute
the inverse of one-way permutation. We now construct NIZK proof for polynomial-time
prover. This polynomial prover NIZK is based on the assumption of the existence of the
family of trap-door permutations. The scheme is similar to the previous one. The prover
randomly chooses a trap-door permutation from the family of trap-door permutations. In-
stead of computing the inverse of a one-way permutation, the prover compute the inverse of
the trap-door permutation by using the trapdoor information. Then the prover sends the
“index” of the trap-door function to the verifier. Then prover uses the same protocol as be-
fore. The proof of the completeness is the same as before. The proof of soundness is sightly
different. Here is the question, who selects the trap-door permutation? The answer is the
prover. Is it possible that a dishonest prover chooses a particular trap-door permutation
such that all the graphs generated by the random string ¢ don’t contain Hamiltonian tour,
and therefore, the prover can cheat that any graph has Hamiltonian tour without getting
caught by the verifier? The answer is that it is almost impossible. From the argument
in 3.1, we know that for any input random string ¢ and fixed trap-door permutation, the
probability that all the generated graphs don’t have Hamiltonian tour is Q(cin), where c is
a constant. Without losing generality, we suppose this probability is 2% If we enlarge the
length of o by k times, the probability is 2,%,1, where there are 2¥ members of the trapdoor
permutation family. By the union boun(li, tille probability that ANY trapdoor permutation

allows the prover to cheat is at most 72“275 —

The ZK-ness proof is similar to before except that we have a family of trap-door per-
mutations rather than a fixed one-way permutation.

4 Multi-Prover

Now, we alter our construction so that we can reuse the same string for multiple provers
that do not share state. (Our construction from last time would work for multiple provers
if they jointly remembered where they were.)

12-4

Under the assumption that one-way function exists, any NIZK proof system with poly-
nomial prover is also witness indistinguishable. As we know, the indistinguishability is pre-
served if polynomially many witness indistinguishable proof systems share the same random
string. Here is how we construct multi-prover version. Let g : {0,1}" — {0,1}?" be a pseu-
dorandom generator. On the random input string o, the prover partitions the string into
two parts, 7 and ¢’ ,where || = 2n. Then the prover will prove L' = (G € HAMV 1 = ¢(s)),
where s is some seed, and |s| = n. So, s is a witness for the new problem L’ also, which is
an NP problem. The prover can use polynomial time reduction to reduce this new prob-
lem L' into G' € HAM, and the witness s (or a Hamiltonian path in G, of course) can
be reduced into corresponding witness w for the G' € HAM. The prover then can send
the G and proof for the G' € HAM based on ¢’ to the verifier. It is easy to see that
completeness holds here. Soundness also holds because the chance that a random string of
length 2n is a pseudo random string is 5%; That means, except with negligible probability,
G' € HAM < G € HAM. The simulation of (P,V) can be done by replacing 7 with a
pseudo random string y = g(s’), where s’ is the randomly selected string, which is indistin-
guishable from real random string to any polynomial time distinguisher. The detailed proof
can be found in [FLS]. The advantage in this proof system is that we can reuse the random
string here. Provers can use different trapdoor functions for different graphs, because of the
witness indistinguishability, all these proofs can still be simulated by the same simulator S.

References

[FLS] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple Noninteractive Zero Knowledge
Proofs Under General Assumptions. SIAM J. COMPUT. Vol.29, No.1, pp.1-28

12-5

