6.876/18.426: Advanced Cryptography March 17, 2003

Lecture 11: Generalizing Non-interactive Zero Knowledge Proofs

Scribed by: Scott Russell

1 Summary of NIZK So Far

Last class we developed a NIZK protocol to prove membership in 3SAT. We made use of our
previous NIZK protocol for the “special” language £ = {(n,y) : n € 2PPAy € NOQRNJ41}
where J;1 = {y : (£) = 1}, i.e. the set of all remainders mod n with Jacobi symbol +1).
We observed that the resulting protocol in fact satisfied a slightly more general definition of
NIZK than we had started with. Specifically we were able to weaken the assumptions on the
soundness condition without sacrificing zero-knowledgeness. Recall our current definition
of a NIZK proof system. We say that (P,V) is a NIZKPS for language L if is satisfies the

following 3 conditions:

1. Completeness: Yz € L, Yw € Wy, Prlo + {0,1}*% 7 « P(z,0,w) : V(z,0,7) =
“YES”) > 1 —negl(|o|)

2. (Strong) Soundness: VP, Prloc « {0,1}" (z/,7") « P'(0) : V(a',0,7") =
“YES”) < negl(|o])
3. ZKness: ISppr, Vx € L,Va, S(x,a) = VIEW (z,a).

What are the strengths and weaknesses of our definition and the protocol we gave for
membership in 3SAT last class?

e Strengths

1. Allowing a malicious P’ to choose z/, 7’ after seeing ¢ in the soundness require-
ment is a more general formulation.

e Weaknesses
1. To construct a ZK simulator, it seems theorem z must be given before the random
string o
2. Can only prove 1 theorem with a single o.
3. Need many random bits to prove a single theorem! |o| > |z|
Currently in order to prove ZKness we need to have o follow x so that the simulator S
can come up with an appropriate value. This may not seem like a problem right now, but

we may later encounter situations where this works to our disadvantage. Thus it would be
nice if the proof of theorem z was independent of o.

! As explained in [1], for a size n clause ¢, a total of 8n° + 2n* random bits are required.

11-1

The number of theorems we can prove with a given o is 1 (possibly O(1)) since each
theorem we want to prove imposes restrictions on o (from S’s perspective) and it will quickly
become impossible to find a o capable of simultaneously satisfying all of these constraints.

TODAY’S GOAL: To continue to generalize our definition of NIZK and to improve our
3SAT protocol with respect to the not so nice features identified above.

2 Review of NIZK for 3SAT (Version 1)

TOOLS:
e 1 generic lie can prove 1 specific “truth”
e Randomization of the goal

The basic idea was that (P, V) has as input the theorem ¢ € 3SAT and a shared random
string (think of it as coming from the sky) whose length is polynomial in the security
parameter k = |$|. This random string is divided into two parts call them o and 7. First
the prover chooses a random k-bit integer n, the product of two primes, and a random
element y of Z} such that y is a non-square mod n and has Jacobi symbol +1. P uses o
(in a purified form) to construct a NIZK proof that (n,y) € £ (using the protocol for £ we
discussed in lecture 9) with reference string o. Then it uses (n,y) to prove that ¢ € 3SAT.
It does this by generating an encoding € of the witness w, (a satisfying assignment) for
¢ and sending this to the verifier. Each component of € is random element of Z} where
U(e;) = x; for all variable assignments z; in w,. Recall that last class we defined the
function ¥ : Jy1 — {0,1}. For a € J41 C Z}, ¥(a) = 0 if a is a square (mod n), i.e.
a € QR, and ¥(a) =1 if a is not a square, i.e. a € N QR.

It now remains for P to prove to V that the given encoding €'is in fact a satisfying assign-
ment for ¢. P does this by subdividing 7 into m parts, 71,79, ..., Ty, one for each clause of
¢. BEach 7, is then further subdivided into k-bit cells and purified by first removing any cells
whose value is greater than n, and then removing any triple of cells containing an element
in J_;. The resulting purified 75, is then used to prove clause C}, of ¢ with the help of the
equivalence relation ~,, that we defined last class. Recall that for (a1, as,as), (b1,be,bs3) €
J_|_1 X J_|_1 X J+1 we write (al,ag, a3) N (bl,bQ,bg) 4 3\/&1[)1, \/a2b2,\/a3b3 mod n., ie. if
and only if a; and b; have the same quadratic character for all 1 = 1, 2, 3. For each clause C},
the prover reveals all of the triples in 7, of the type (sg, sq, sq), corresponding to (0,0, 0), by
giving a random square root for each square component?. For a purified 7, with « triples,
there should be close to /8 such triples. Finally, P proves that the encoded assignment of
the literals in Cy, say (e;, yej, ex) for (2,77, 1) (using multiplication by y mod n for nega-
tion), satisfies C}. This involves proving the equivalence of (e;, ye;, ex) to an additional a/8
triples (a1, a2,a3) %y (sq, sq, sq), again by revealing the square roots of e;a1,ye;as, exas.

In order to prove ZKness, the simulator is able to generate a valid session transcript
by lying about the (n,y) pair it chooses, generating a false proof for that pair, and then

2Remember to chose a random n, both S and P can chose two random primes and use their product for
n. Since they have n’s factorization taking square roots is no trouble.

11-2

using that pair to prove that the encoding € corresponding to (1,1,1,...,1) is satisfying.
Specifically, S chooses (n,y’) with 3" a square and transforms a random o into a & in order
to generate false proof ©’ of (n,y’) € £ (see lecture 10 for details). The simulator’s ability to
use ¢y a square (in place of y a non-square) and & (in place of o) depends on the Quadratic
Residuosity Assumption. Then using 7, the second (unmodified) part of the randomly
chosen string, S proceeds as P would have to prove the equivalence of the encoding of every
clause to a satisfying assignment. Because every element of the encoding € is non-square,
and multiplication by square 3’ won’t change this, S always just proves the equivalence of
the Cp’s encoding to (1,1,1). Of course V doesn’t know which equivalence class was used
in the proof only that it wasn’t (0,0, 0).

Notice that (n,y) € £ and ¢ are uncorrelated since both the prover and simulator
randomly choose (n,y) so there is no relationship between o and ¢. Is there any relationship
between 7 and ¢7 Well, no special properties of 7 were used to prove ¢. We relied entirely
on the random choice of (n,y) and the “truth” of its membership in £ substantiated with
0. So, we claim the random string and theorem are completely unrelated which means that
getting ¢ o7 first and then ¢ is also all right. If the theorem ¢ to be proven is unknown, we
can get the random string of bits first and then use them to prove the theorem ¢ when it
is eventually given. Thus we now have greater generality in our ZK property, but can still
only prove a single theorem since |0 o 7| > | 4.

An alternative way to prove ZKness is to have S use o unchanged (but still purified),
chose a random (n,y) € £, again assign an encoding € off all non-squares, and transform 7
to T as necessary to again prove equivalence to the class corresponding to (1,1,1). Of course
V still cannot tell which class the encoding is in, only that it isn’t (sq, sq, sq). Unfortunately,
restricting 7 in this way also prevents us from proving more that a single theorem with a
single random string. The reason is that once the simulator modifies a portion of 7 to prove
some clause C}, of ¢1, it is very unlikely that the same modification to 7 would allow S to
also prove a clause Cj, of ¢s.

Q: Can’t we just take a random o, use it a as seed for a pseudorandom generator, and use
the output as our 7 as a way to save on random bits?

A': Possibly if we restrict P to be PPT. We have to be careful since the seed is also publicly
known. The security of the PRF depends on the secrecy of the seed, but we are revealing the
seed. The question we have to ask ourselves is does V learn anything about the distribution
of 7 given the seed o that he doesn’t already know?

3 NIZK for 3SAT Version 2

We will now lift the one theorem per random string restriction by showing how to prove an
arbitrary number of theorems ¢ €3SAT. However, the size of each individual theorem is still
restricted and will need to be “shorter” than in version 1 for the same length random string.
As in version 1, completeness will be 1 (or asymptotically close), soundness will strong and
negligible in the security parameter, and ZKness will be indistinguishable. Here let k be the
length of the shared random string, the security parameter, and let each theorem ¢ have m
(or fewer) clauses.

11-3

TOOL: Self authenticating history (1 generic lie allows you to prove many truths)

The protocol again divides the random string into parts, this time 3, which we label
0,71, and To. As in version 1, we use o to prove (ng,yo) € £. Then we use (ng,y) and 7y
to prove an auxiliary pair (n1,y1) € £ by proving ¢gyuz; € 3SAT using version 1. @gyy is the
corresponding 3SAT instance obtained by a Cook reduction of (n1,y1). Depending on the
specific reduction used, |@quz| Will be some fixed polynomial in |n;|. Lastly, using (n1,y1)
and 19, P proves the corresponding theorem ¢; € 3SAT, again via version 1.

Notice that our proof of ¢; has gotten longer. We now have to give a proof 7y for
(no, o), m1 for (n1,y1), and m for ¢1. Have we really gained anything? Absolutely, because
by using (n1,y1) and re-using 71 to prove a new pair (ne,y2) another theorem ¢, can be
proved using (n2,y2) and re-using 9. This process can be repeated an arbitrary number of
time.

A slightly more detailed description of the protocol (P,V) with input (¢1, ¢o,...,#:) and
random string oot o7y follows. The prover with the additional witness inputs (@g,, . . . , We,,)
does the following:

1. Chooses random m-bit ng and yo € N QR N J41
2. Uses o to prove (ng,yo) € £ via version 1
3. Chooses random m-bit ny and y3 € NQR,, N J4+1

4. Transforms (n1,y;) into its corresponding ¢gyr € 3SAT (via a polynomial time Cook
reduction)

5. Proves the poly(m) clause ¢gyr € 3SAT using (ng,yo) and 71 via version 1, thereby
proving (ni,y1) € £

6. Proves ¢ € 3SAT via Version 1 using (n1,%;) and 7o

7. Repeats steps 3-6 for each theorem ¢; with (n;_1,y;_1) reusing 71 to prove a new pair
(ni,yi), and (n;, y;) reusing 7> to ¢;

Since each ¢; has m clauses, each of the n;’s must also be m bits long. Because the
number of clauses in ¢gy; is some fixed (dependent on the specific reduction) polynomial
in m and version 1 is used to prove ¢q,,; and ¢; using different parts of the random string,
we have to settle for “short” theorems. They are short with respect to the length of the
random string and ¢ in version 1.

Are the completeness, soundness, and ZK requirements satisfied by this protocol? Com-
pleteness follows directly from the completeness of version 1. Soundness with respect to
the proof of each (n;,y;) € £ also follows from version 1. Additionally, soundness when
(nj,y;) € £ for all 0 < j < 4, but ¢; ¢3SAT also holds since version 1 is used and
(nj,y;) € £. So how about ZKness? Is it safe to reuse 71 and 75 in this way? Even though
the proof of every theorem ¢; uses 7o, for each the encoding of its witness is with respect to
a different pair, namely (n;, ;). Similarly, even though each pair (n;,y;) is used twice, once
to prove corresponding theorem ¢; and also to prove the next pair, each of these proofs uses

11-4

a different part of 7, so it certainly seems like nothing about the encoding or correspondence
can leak. More formally, as in version 1, S can choose a fake initial pair (ng,yg), generate
a false proof 7’ by transforming o into ¢/, and then use that to prove “anything it wants”.
Specifically it can generate valid looking proofs of pairs (n;,y}) where y; are squares modulo
n; and in turn use these to prove theoremsg;.

REMARK: The full proof of ¢; for 0 < 7 <t now counsists of ¢;’s proof via (n;,y;) AND all
of the proofs for (ng,yo),- .-, (1, y;) via their predecessors in the chain. In other words the
full size is linear the theorem number 4, or worst case in the total number of theorems ¢.
Although the proof size has grown, before we could only prove one theorem with one random
string. Now because each (n;,y;) does double duty, we can prove a polynomial number of
theorems. The drawback is that since we are still leveraging our version 1 protocol, we still
need significantly more random bits than the length of the theorems we are proving. Still,
dealing with one problem at a time we are making progress.

3.1 Version 2a: Tree Variation

Rather than having ¢;’s proof depend on a chain of prior proofs, leading to a total proof
size linear in %, we can instead use a binary tree make the total proof size logarithmic in
the number of theorems. Let (n,y) be the initial pair proved using o. Using (n,y) and
71, instead of authenticating a single auxiliary pair, we prove the compound statement
(no,y0) € £ A (n1,y1) € £, again by reducing this statement to the corresponding problem
dauz € 3SAT. Proceeding recursively, we use (ng,yo) to prove (ngo,%00), (no1,yo1) € £ and
(n1,y1) to prove (n19,%10), (n11,%11) € £ in both cases reusing 7. Each node (n,,y,) is
used to prove a pair of children (n,0, y,0) and (n,1,y,1) and to prove a theorem ¢, with
using version 1.

If, the size of each proof is say O(k3) bits, then the size of the total proof for any ¢; is
O(k31ogi) bits or worst case O(k*) bits.

Q: Doesn’t this mean that we have to remember everything we have proved previously?

A: Not really. Suppose we decide in advance we want to be able to be able to provide say
2k proofs. We only have to remember proofs on the path from the root to the leaf where
the proof of the current ¢; is located, i.e. the binary representation of . Alternatively, with
seed or key s and a pseudorandom function fs, for each theorem we could calculate a k-bit
path string R = f;(¢,) or R = fs(i). Provided we used the same random bits each time we
generate (n,,y,) for node p, we could regenerate pairs and reconstruct their corresponding
proofs for the appropriate nodes along the path R as necessary. At the very least the prover
has to remember the seed and the number of the current theorem. So it seems just as easy
to use the theorem number in binary to specify the path down the tree and remember the
proofs along the path as long as they are needed and discarding them after that point.

So we have seen how using either a chain or a tree together with the self-authenticating
history idea, we were able to remove the restriction on the number of theorems we could
prove. Great!

11-5

4 NIZK for 3SAT Version 3

Finally we want to lift the last restriction. Namely, we would like it to take only around
the same number of random bits as the theorem’s length to prove it. This is where we will
see why choosing 3SAT as our representative problem is so important.

TOOL: Recursion

We again divide the random string into 3 pieces, o,71,72. As in version 2a, a ran-
dom initial pair (n,y) is proved in £ using o and then using 71, the compound statement
(no,%0), (n1,y1) € £ is proven. Successive levels of the tree are generated recursively as be-
fore. What is new is the way in which we prove ¢ €3SAT. First we use (ng,yo) to produce
an encoding € of the witness wy. Again it remains for P to prove clause by clause that the
given encoding corresponds to a satisfying assignment.

Consider clause C, = (z;,T;,) with encoding (e;, yoej, ex) where e;,ej,e, € Z;; . P
must prove the statement “at least one of {e;, yoe;, ex} € NORp,”. But since this statement
is itself a member of an NP language, it can be reduced to 3SAT formula ;- Now since
€, Yo, €j, €k, no are all some x bits each, the resulting ,,, will have poly(k) clauses (where
the exact polynomial is fixed with respect to the reduction used). Notice that this does not
depend on m the number of clauses in ¢, but only on k the length of the n; used. Version
1 is used to prove gy € £, but the number of random bits needed depends on x allowing
us to prove ¢ with an arbitrary number of clauses m.

The beauty of 3SAT and the reason it’s the “right” problem to choose is this locality.
Previously each (n,40,Y,) pair proved the entire theorem ¢, meaning that the number of
random bits needed depended heavily on the length of o071 075. Now, each pair (other than
the one used to encode ¢’s witness) shoulders only the burden of proving a single clause’s
correctness. Consequently the number of random bits needed becomes for the most part
independent of the theorem size.

5 Closing Remarks

We have successfully addressed the drawbacks we mentioned at the beginning of the class.
However there remain other drawbacks and areas of improvement to NIZK proofs. These
include:

1. Replacing the Quadratic Residuosity Assumption with weaker /simpler cryptographic
assumptions

2. Allowing the given random string o to be used simultaneously by many provers with-
out some intercommunication

3. Preserving the property of ZK interactive proofs that the transcript of a NIZK proof
should not by itself constitute a proof.

The first two we will discuss next class and are due to Shamir, Feige, and Lapidot [3].
The third item is addressed by Dwork, Naor, and Sahai in [2].

11-6

References

[1] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero Knowledge.
SIAM J. Comput. Vol. 20, No. 6, pp. 1084-1118, 1991.

[2] C. Dwork, M. Naor, A. Sahai. Concurrent Zero-Knowledge. Proceedings of STOC 1998:
409 — 418, 1998.

[3] U. Feige, D. Lapidot, A. Shamir. Multiple Non-Interactive Zero Knowledge Proofs Based
on a Single Random String (Extended Abstract). Proceedings of FOCS 1990: 308 — 317,
1990.

11-7

