6.876/18.426: Advanced Cryptography March 12, 2003

Lecture 10: Non-Interactive ZK Proofs for all of NP

1 Recap

Last lecture we defined the notion of a non-interactive proof system (NIPS), and constructed
a non-interactve zero-knowledge (NIZK) proof system for a ”special” language of pairs:
L={(n,y):n€2PPAy€ QNRN J;1}.

Today, we’ll see how to use the proof system constructed for this “special” language L
as a stepping stone in building a computational NIZK proof system for any NP language.

2 (Bounded) NIZK Proof Systems Revisited

Recall that we say that (P,V) is a (perfect) NIZK proof system for language L if the
following conditions hold:

1. Completeness: Yz € L, Yw € W,, Prlo « {0,1}*% 7 « P(z,0,w) : V(z,0,7) =
“YES”) > 1 — negl(|o|)

2. (Strong) Soundness: YP', Pr[o + {0,1}"; (z/,7') + P'(0) : V(2',0,7') = “YES”) <
negl(|o])
Note that here, |z| and n are polynomially related whenever P’ is PPT. However,
technically, we should enforce this property even for unbounded P’.

3. ZKness: ISppr, Vz € L,Va, S(z,a) = VIEW (z,a).

Remarks

Recall that o denotes a common random reference string, which is in open view of both
parties, and is fixed outside of their control (e.g. the Rand reference table).

Note throughout we may think of P as being PPT, since he receives a witness w € W,
as input, where W, denotes the set of all witnesses for the theorem z € L. Alternatively,
we may think of P as being of unbounded power as usual, who then can compute a witness
from the common input.

The statement of soundness above is the strengthened form from last lecture. That is we
assume that the malicious prover P’ possesses an algorithm which, when given a particular
reference string o, will generate a pair (z',7'), such that 7’ is P’s attempt at a “proof”

'Here and following we omit the understood modulus n and just write J11 = {y : (£) = 1} for the set of
all remainders mod n with Jacobi symbol +1).

10-1

(with respect to o) of the false theorem z' ¢ L; i.e, after seeing o the malicious prover P’
gets to choose the particular false theorem z’' whose validity he will try to convince V of.

“Bounded” NIPS

We will say that a proof system (P, V) satisfying the above statements of (1) Complete-
ness and (2) Soundness is a bounded NIPS (non-interactive proof system) for language L.
This highlights the fact that the length of any theorem x which we may prove in such a
system is bounded above by a (polynomial) function of the length of the reference string
0. Or, the other way around, if we want to prove a theorem z of a certain length, this will
require access to a sufficiently long reference string o. For example, in last lecture in the
proof system for the special language L, in order to prove (n,y) € L we assumed that the
given o was long enough so that we could subdivide it into many sections each of length

3 Applications of NIZK on the horizon

The power of the ZK protocols we’ve seen previously depended on interaction and random-
ness (unpredictability of the verifier’s coin flips). In contrast, the concept of a NIZK proof
is very attractive: the verifier V never talks, and hence we don’t need to refer at all to
a malicious V’ in the definition of ZKness. Herein lies a great advantage of NIZK proof
systems. Indeed, the VIEW referred to in the ZKness definition above is given without
machine parameters, since the VIEW of a NIZK proof essentially contains: (o, 7,(x)),
where 7,(z) is a proof of the common input theorem z, given with respect to the o, the
externally fixed, publicly viewable reference string. This freedom will prove to be extremely
useful in constructing secure multi-party computation protocols, something to be seen later
in the course.

4 Observations on NIZK for L and beyond

Up to now we have just seen a single example of a NIZK proof system, the one from last
lecture for the language of pairs:

L={(n,y) :n€2PPANy€ QNRN Jy1}.

In this lecture we will see how to generalize from a NIZK proof system for the special
language L to one for any NP language.

4.1 Limitations of NIZK for L and beyond

1. Boundedness: n must be short relative to o.
2. This L is just one “special” language.

3. The quantification of o gives less than ideal strength to the definition.

Let’s examine the above limitations one by one.

10-2

Boundedness

We will not focus on refining the notion of boundedness today, though we note it may be
useful to think of |o| < poly(|z|, k), i.e. with an additional dependency on some independent
security parameter k.

“Specialness” of L

We’d like to be able to extend such an attractive concept as NIZK beyond the special
language L. Recall the previous progression we saw for general ZK, from ZK for ISO,
then NISO, and later 3-colorability, which gave us all of NP. Here again, the choice of the
“right” NP-complete language is particularly important in order to make the difficulties in
reduction go away. In the case of NIZK, we’ll choose 3SAT as our intermediate step, for
reasons perhaps mysterious at present.

Timing of o

Finally, consider the timing (relative to the theorem z to be proved) of when the reference
string ¢ must be fixed.

For completeness, it doesn’t matter whether o is generated before or after x is specified,
since all parties are honest.

As for soundness, note that the definition of soundness above says that no malicious
prover P’, even if first given o, will be able to find a false theorem z’ that it can generate
an acceptable proof for, except with negligible probability.

As for zero-knowledgeness, recall that the simulator S we constructed in the last lecture
had to be given the freedom to determine o after the theorem z to be proved was fixed; the
o it produced depended explicitly on z. Specifically, given (n,y) € L, S constructed a o
(with the correct distribution) in part by squaring random elements of Z* and multiplying
roughly half of these squares by .

In fact the requirement that o be able to be chosen independently by the simulator S
after the theorem z is fixed seems to be an intrinsic limitation of NIZK proof systems in
general, although we don’t know how to prove that this is the case. In particular this would
spell problems for NIZK proofs for languages containing statements about o itself. That
is, we would get into trouble trying to simulate a proof of something like “o factors as the
product of three distinct primes”.

5 A Bounded NIZK Proof System for 3SAT

Recall that the language 3SAT consists of all satisfiable formulas ¢ which consist of con-
junctions of 3-literal disjunctive clauses: 3SAT = {¢ : ¢ = C1 ACy A --- A C,}, where each
clause Cj is of the form: (X, V X, V X,,), and where each literal X, represents either the
boolean variable z;, or its negation Z,.

Given a formula ¢ € 3SAT with satisfying assignment (witness) w = (z1,z2,...,ZTm),
the NIZK prover’s task is to construct a proof 7w using the reference string ¢ which will
convince V that ¢ € 3SAT, without disclosing any knowledge about the witness w.

In order to realize this, we resort to a useful tool: reduce to a previously solved problem.
Namely, P will subdivide his proof in two parts: = = (71, m2), and will divide the reference
string into two equal halves: o||r. The first proof, the auziliary proof w1, will refer to o

10-3

and will be a NIZK proof of membership for some pair: (n,y) € L, where L is the special
language we have already seen. The second part, w9, will refer to 7 and will use the (n,y)
pair to convince V that a special (knowledge-hiding) encoding e of w does in fact correspond
to a satisfying assignment of ¢.

Encoding an assignment

We create the encoding e = (e, eq,...¢ey) of the assignment w = (z1,z2,...,Zmy) by
selecting e; € J41 C Z; as follows: If z; = 0 (FALSE), then we set e; to be a random square
mod n. If z; = 1 (TRUE), then we set e; to be a random non-square mod n which is also
in J11. Note that if the Quadratic Residuosity Assumption (QRA) holds, then disclosing
this encoding will reveal no knowledge about the witness w.

Given such an encoding e, V can check in polynomial time that e is properly formed (i.e.
Vi,e; € J+1), and thus corresponds to some assignment on the variables. P must provide
evidence that the assignment to which e corresponds actually satisfies ¢.

5.1 A Number Theory Aside

Here we recall the definition of the Jacobi symbol of z € Z} modulo composite n as an
extension of Legendre symbols (RHS below), where the modulus n prime factors as n =

hi hy
pl ... pk :

k h;
(2) =11 (_>
S \P
Consider the subset of Jacobi symbol +1 elements J;; C Z;. Next, consider triples of
elements (a1, a2,a3) € J41 X J41 X Jy1. We define an equivalence relation on triples from
this special set. We write (a1, as,a3) = (b1, ba, b3) iff a; has the same “quadratic character”
(i.e. “square” vs. “non-square”) as b; for i = 1,2, 3.
A nice characteristic of this equivalence relation is that for n € 2PP,

(a1,a2,a3) =~ (b1, b2, b3) & 3V a1bi, Vazbe, Vazbs mod n.

Thus, producing three such roots as on the RHS above would constitute a short proof
of the equivalence relation. The equivalence above holds for n = pi“pg”2 € 2PP because
for such moduli n, any element z € J;; must have Jacobi symbols modulo p1,ps of either
(+1,41) or (—1,—1), depending on whether z is a square or non-square, respectively; i.e.
for n € 2PP, J41 consists of 1/2 squares and 1/2 non-squares.

Next we will see how P can leverage such proofs of this equivalence relation to convince

V that his encoding e actually corresponds to a satisfying assignment of the formula ¢.

5.2 A Bounded NIZK proof system for 3SAT (continued)

Proving satisfaction of a clause in ¢ from the encoding

By the nature of 3SAT, P must convince V that every clause C} in ¢ contains at least
one true literal. Suppose for example that Cj, = (z; V Z; V ;). Under the encoding from
above, P’s task is equivalent to proving that at least one of e;,e; is a non-square, or e; is

10-4

a square. This in turn is equivalent to proving that at least one of (e;,yej,e;) is a non-
square. This follows from the fact that V has already been convinced by 71 that (n,y) € L.
Consequently, the conditions n € 2PP and y € QNR N Jy1 imply that ye; will be a non-
square mod n iff e; is a square?. Thus, V should believe that multiplying any e; from the
encoding by y will “flip” its quadratic character, from square to non-square or vice-versa.

So P may complete the second half 75 of his proof as follows. For each 3-literal disjunctive
clause (X, V X5, V X;;) in ¢, P will use the second half of the reference string, 7, to give
evidence that at least one element of the triple {es, (or yes,),es, (or yes,),es, (or yes,)} is
a non-square, where each choice, e;; (or yes,), is made as in the example above on the basis
of whether X, = z; or X, = ;, respectively.

Details of P’s strategy

To accomplish this, P first subdivides 7 into m sections of equal length 71, ..., 7, where
m is the number of clauses in ¢. 7 itself must be chosen long enough so the rest of the proof
has a high probability of going through (Completeness exponentially close to 1).

Now wlog, fix a clause C}, from ¢ to consider, and for simplicity of notation let us assume
it has a particular form: Cj = (z; VT; V z).

P can construct a NIZK proof that C}, contains at least one true literal as follows:

1. Divide the subsection 7, C 7 into a sequence of consecutive triples. Each triple should
consist of three strings, each of length |n|.

2. “Purify” this sequence of triples by completely removing every triple in which any
one of the three strings corresponds to the binary representation of a number not in
Jy1 C Z}. This will leave a refined sequence of triples: 7;, = Tp1,. .., Thq, for some a.
Furthermore, each of these remaining triples should contain three numbers that are
distributed uniformly at random over J,;.

3. For every 3-square triple (sqi,sqo,sq3) € 7}, write down a proof (zi,2z,23) of its
quadratic character, such that z? = sq; for 1 = 1,2,3. On average this will identify
a subset S; of /8 triples from 7, (since as noted above, for odd n € 2PP, J;; will
consist of 1/2 squares and 1/2 non-squares).

4. Consider the triple Ej, = (e;, yej, ex) derived from the clause we are considering Cj, =
(z; VZ;V xg). Since the encoding e is of a true satisfying assignment on the variables,
we know in particular that the triple E;, above must contain at least one non-square
mod n. Therefore the triple E}, lies in a quadratic character equivalence class different
from the 3-square class containing the a/8 triples identified in the previous step.

So for every triple in 7’ from the same equivalence class as Ej, write down a proof
of the equivalence = Ej. For example, suppose (z;,T;,zx) = (0,0,1). Then e; =
(square), ye; = (square), e, = (non-square), and so Fj € (square, square, non-
square). So for every triple in 7/ of the form (sqi,sq2,3G;) write down a proof of

2Note that for general n this equivalence does not hold, since in general the product of two non-squares
mod n might produce another non-square. For example, if n € 3PP, we might have two non-squares
21,22 whose Jacobi symbols relative to the three prime factors are given by the triples (+1,+1,—1) and
(—1,+41,+41); their product z1z2, having triple (—1,+1, —1), is also a non-square.

10-5

equivalence ~ Ej, as: (\/5q1€i,/5G2Y€;,/5qzer (see number theory notes above). In
general this will identify a subset S of roughly «/8 additional triples from 7] belonging

to some equivalence class other than the 3-square class from the previous step, and so
S5 N S1 = (. Indeed the equivalence class of Ej must be different than the 3-square
class, since C}, will be satisfied iff at least one non-square is present in E},.

If P follows the above sequence of steps for each clause C; in ¢, and for each clause uses
as purified reference string the corresponding (fresh) section 7} from 7, then if the above
conditions are met, V will be convinced that each clause is satisfied, i.e. ¢ € 3SAT.

(Note it is important that no portion of the reference string 7 is reused for proving equiv-
alences for two different clauses, since this might reveal knowledge of correlation between
truth values of literals from these two clauses)

Conditions on V’s acceptance

We stipulate that in order for V to accept that a given C}, is satisfied, the sizes of the
two disjoint sets of triples Si, S92 identified by P in the last two steps above must satisfy
a/8 —a/32 < |51],]52] < a/8 + a/32. As long as ¢ € 3SAT, this condition will be met
with probability exponentially close to 1 given a sufficiently long choice of 7.

6 (P,V)is a bounded NIZK proof system for 3SAT

Completeness

Completeness holds with probability exponentially close to 1. The first part of the proof,
71, was seen last lecture to be NIZK with exponentially small failure rate.

As for the second part of the proof, w9, we see from the above steps that failure will
occur when for some clause C}, the corresponding string 75, happens to contain too few
(or too many) representatives of the required equivalence classes, (3-square and the class
corresponding to the clause in question). But this will only occur with exponentially small
probability.

Soundness

There are two possible scenarios under which a malicious P’ could successfully deceive
V.

First, note that P’ can almost always succeed in deceiving V (into accepting a false
theorem ¢' ¢ 3SAT) if after P’ looks at o he is then able to come up with a ”proof” =
which fools V into accepting some invalid pair (n’,y’) ¢ L. For example, after fooling V into
accepting the invalid pair (n',y’) ¢ L, P’ then may construct the false theorem ¢’ ¢ 3SAT
whose 8 clauses are all the possible triples of literals for the 3 variables z1,z9,x3. This
formula is not satisfiable, and yet if P’ assigns all three variables the value 1 (TRUE), he
can almost always fool V into accepting. Indeed, by the first deception V will incorrectly
believe that 3’ € QN R, so P should be able to (deceitfully) persuade V that each of the 8
clauses’ encodings (after purported inversions, where appropriate) belongs to an equivalence
class distinct from that of 3-square triples, namely the class of 3 non-squares. (This will
be possible as long as each subsection of 7 contains roughly the expected number of triples
from the 3 non-square equivalence class; hence the “almost always” condition above on the
success of P’ under these conditions).

10-6

However, the above scenario is very unlikely to occur, because by the strong soundness
of the NIZK proof system for L, even after a o is fixed, the probability that such a false
pair (n',y’) together with a “proof” =} that deceives V is found by the polynomial-time
subroutine of P’ is exponentially small.

Second, now assuming that P’ is using a valid pair (n,y) € L, the only way he could
succeed at deceiving V is if for every unsatisfied clause C} in ¢ an extraordinary number
(roughly 2a/8, twice the expected value) of 3-square triples happen to be present in the
substring 75,. This is necessary, since to fake a proof that E}, contains at least one non-square,
all of the distinct |S1| + |S2| = 2a/8 triples from 7/ identified in the last two steps of P’s
algorithm above would in fact have to belong to the same (3-square) equivalence class. The
possibility of this event is equivalent to flipping a biased coin for which Pr{[HEADS] =1/8
some number of times and observing that a 1/4 fraction of the outcomes are HEADS. This
probability will be exponentially small for a large enough number of coin tosses, i.e. for a
sufficiently long reference string 7.

Zero-Knowledgeness: The Simulator S

Here we describe an efficient simulator algorithm S which outputs a view whose distri-
bution is indistinguishable (by non-uniform circuits under the QRA assumption) from that
generated by the real NIZK prover P.

Consider the task facing the simulator S. Given only a formula (¢ € 3SAT), S must
produce a simulated view: S(¢) = (ol||7, 71, 72).

S proceeds as follows:

1. Generate an invalid pair (n,y) ¢ L by randomly selecting an appropriate length
n € 2PP, but choosing a random square y € Jy1, (rather than y a random non-
square € Jy1).

2. Use the NIZK simulator Sz, which exists for language L to compute (o, m1) = Sr(n,y).

Note that because the QR decision problem y ; QR,, is 50/50 hard for each instance
y € J41 (or all but negligibly many), then intuitively the output distribution of Sz (y)
for random y € QR,, should be indistinguishable from that of Sz, (z) for random y €
J+1NQNR,. So the output (o, 7m1) of Si(n,y) in this step should be indistinguishable
from an auxiliary proof given by P. The difference is that the o which Si(n,y)
generates in this step using y € QR, will contain only elements of J,; which are
squares.

3. Generate an encoding (é1, ..., é5,), consisting entirely of random non-square é; € J1.
Recall this would correspond to a uniform setting of TRUE on all the variables in ¢,
but by the QRA, V will not be able to discern the extremely “special” nature of this
artificial encoding.

4. Generate a sufficiently long random string 7 and subdivide it into m sections, one for
each clause in ¢.

5. From here, proceed just at the prover P would from above. For example, again consider
wlog some clause in ¢ of the form: Cj = (z; V T; V z;). To simulate a NIZK proof

10-7

that the clause C}, contains at least one true literal, use the refined section 7}, divided
into consecutive triples of elements of Z*. First identify a (roughly) 1/8 fraction of 3-
square triples as above by providing square roots (S is able to do this because himself
generated n and so knows its prime factorization).

6. Identify a roughly 1/8 disjoint fraction of triples consisting of 3 non-squares. Then
prove that E), = (éi,yéj,€x) lies in the same equivalence class as each of these new
triples (S again uses the factorization of n). Note that regardless of the structure of
the 3-literal clause in question, by the choice of this special encoding (all non-square
é;) and y € QR,, the corresponding E), will always consist of three non-squares.

The concatenation of these subproofs for each clause C}, in ¢ will give the second half
of the simulated proof w9, which refers to the random string 7.

7. Output (ol|1, 71, 72).

Proof of Indistinguishability

The details of the indistinguishability proof are somewhat complex. The essential ingre-
dient is the QRA. Here we just recall as mentioned above that the first half of the simulated
view, (o, 71), intuitively should be indistinguishable from that resulting from a genuine aux-
iliary proof of P, by virtue of the fact that Quadratic Residusity is a hard decision problem
for almost all instances. That is, we need the fact that the output of Sp(n,y) with y a
random square mod n will be indistinguishable from Sy, (n,y) with y a random non-square
in Jy;. This is a subtle but crucial point in the proof.

Indistinguishability of the second half of the simulated view, (7, 72), can also be argued
under the QRA.

Note, however, that we can only prove one theorem with a single 0. Otherwise, clues
could leak about correlations between clauses: for instance, if the first clause in each had
different truth values of their literals, an observer would notice this.

We have thus motivated the fact that the system (P,V) described above is bounded
NIZK for the (carefully chosen!) NP-complete language 3SAT. Thus we have seen that the
attractive concept of bounded NIZK can be implemented for any NP language, under the

QRA.

7 NIZK for NP under general complexity assumptions

Note that undergirding today’s construction is the Quadratic Residuosity Assumption (QRA),
by way of the auxiliary proof of membership for the special language L from last lecture.
It has been shown in [FLS90] and [BeYu96] that NIZK proof systems for any NP language
can be constructed under the general complexity assumption of one-way trapdoor permu-
tations (whose existence is implied for example by the QRA used here). It remains an open
question whether the same result is possible assuming only general one-way Functions.

A question was raised: Isn’t there a Black-Box separation between one-way permutations
and NIZK? More to come on this perhaps in future lectures.

10-8

A similar progression from special to general assumptions may also be observed in the
development of other cryptographic tools. Often it is the case that:

1. An interesting notion is latched onto.
2. The notion is instantiated, perhaps using some very ad hoc assumptions.

3. Further work shows how the same tool can be constructed under some “well-established”
number-theoretic assumption.

4. Finally, one tries to relax the construction to the most general assumptions possible,
such as any abstract one-way function or trapdoor permutation.

As an example of the above process, consider some historical instances of PRG’s and
PREF’s, together with their assumptions (discrete log, factoring, any OWF). Also, consider
the recent development of verifiable random functions.

Please note: some section headings and structure of the above notes were informed by
[BIDeMiPe91].

References

[BeYu96] M. Bellare and M. Yung. Certifying Permutations: Non-Interactive Zero-
Knowledge Based on any Trapdoor Permutation. Journal of Cryptology. Vol. 9, No. 1,
Winter 1996, pp. 149-166.

[BIDeMiPe91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero
Knowledge. SIAM J. Comput. Vol. 20, No. 6, pp. 1084-1118, 1991.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs Based on a Single Random String. Proc. 31st Ann. Symp. Found. Comput. Sci.
pp. 308-317, 1990.

10-9

