6.876/18.426: Advanced Cryptography 10 March 2003

Lecture 9: A Bounded NIZK Proof System for a Special Language

Scribed by: Matthew Lepinski

1 Introduction to Non-interactive Zero-Knowledge

1.1 What is this lecture about?

So far, in our study of zero-knowledge, we have seen that we can attain zero-knowledge proof
systems by exploiting two very powerful tools: (A) The interaction between the prover and
the verifier and (B) The unpredictability of the verifier’s coin flips. Today we will see the
amazing result that it is possible to achieve zero-knowledge in a setting where: (A) The
verifier does not send messages to the prover and (B) All of the randomness used by the
verifier is known to the prover in advance.

1.2 The Non-interactive Zero-Knowledge Model

Like in a standard zero-knowledge proof system, we consider a situation where there are
two parties, a prover and a verifier. The prover would like to prove the theorem “z € L”
to the verifier, where x is a common input to both parties. Additionally, the prover has an
input w, which is a witness to the fact that « € L.

The NIZK proof consists of the prover sending a single message, 7(w,, o). Upon seeing
this single message, the verifier will be convinced that the theorem is true but will gain no
additional knowledge besides the truth of the theorem. What makes this miraculous goal
feasible is that NIZK proofs take place in the common random string model. That is, it is
assumed that there is a truly random string, o, which is visible to both the prover and the
verifier, but which neither the prover nor the verifier can control. The length of this string
is some fixed polynomial in |z| (the theorem to be proved) and k (the security parameter).
(Since the length of the random string required depends on the length of the theorem being
proved, we refer to this type of NIZK proof system as a Bounded Non-Interactive Zero-
Knowledge proof system. In a future lecture we will consider the case where we want to
prove very long theorems (or very many theorems) with a single short string, o).

1.3 Examples of Common Random Strings

1. Most libraries include a table of random strings published by the Rand corporation.
Since it is believed that neither the prover nor the verifier was able to influence
the publication of these tables, a string from the Rand corporation could serve as a
common random string.

!This assumes that I € NP, but we can define the same concept with respect to an unbounded prover
for languages outside of NP, with the idea that the stronger prover makes up for the lack of a witness.

2. The least significant digit of the daily trading volume from the New York Stock
Exchange starting on January 1, 1921. Since it seems unlikely that either the prover
or the verifier had a significant impact on the trading volume of the NYSE eighty
years ago, these digits could serve as a common random string.

3. Some physical phenomena like the amount of radiation given off by some star many
light years away could also serve as a common random string. (Both the prover and
the verifier could take readings of the radiation levels from the star, but neither party
could force the star to give off more or less radiation).

Note: In all of these examples, it is important to remember that the entire string o is
known to the prover before he begins his proof. What is important is NOT that the string
is unpredictable to the prover (or verifier) but that the string is truly random and outside
the influence of the prover (and the verifier).

Note: An NIZK proof statement is a transformation that proves

o is truly random” = ¢ € L”

2 Definition of NIZK

Completeness:

VzeLYweW,
c 2
Pr[o « {0,1}*; PROOF « P(w,0) : V(o,z, PROOF) = 1] > 3

Note: In an NIZK proof system, V is deterministic. Furthermore, NIZK C AM|2],
the class of languages provable in an Arthur-Merlin scenario in two rounds. Finally, we
know that all AM proof systems can be made to have completeness 1. Therefore, all NIZK
proof systems can be made to have completeness 1.2

Soundness:

VegLV P
Pr[o « {0,1}*"; PROOF' « P'(z,0) : V(0,z, PROOF') = 1] < %

Clearly, we can make the probability of soundness closer to 0 by increasing the length
of o (and composing the NIZK proofs in parallel).

One might consider a variation of this definition where PROOF' is chosen before o.
(That is, we might consider inserting a VPROOF' outside of the Probability statement).
Observe that the definition given above is no weaker than the alternative definition because
we can always consider a P’ that ignores o and always outputs the same PROOF'. Ad-
ditionally, if we consider the case where the verifier always accepts if 0 = PROOF’, we
can see that the above definition is in fact strictly stronger than the alternative definition.

%It is not obvious to me that the AM transformation preserves the zero-knowledge property of an NIZK
proof system.

(Observe that the case where the verifier always accepts when 0 = PROOF" is allowed by
the alternative definition but not by the above definition.)
Zero-Knowledgeness

3 Sppr V 2 € L Va, VIEWy[z,a] = S(z,a)

3 NIZK for a special language

After defining non-interactive zero-knowledge proof systems, the big question is: “Do NIZK
proof systems exist?” We will spend the rest of this lecture providing an affirmative answer
to this question.

3.1 The Example Language

Let 2PP be the language consisting of integers which are divisible by exactly two distinct
primes. (That is, all numbers n such that n = p®¢®, where p and ¢ are prime).

Note that z2 mod p® has exactly two square roots. z? mod p®¢® has exactly four
square roots. =2 mod p®¢®r? has exactly eight square roots. Further, note that 1PP €
BPP (Actually, it was recently shown to be in P). If n € 2PP, then Z* consists of 1/4
squares. If n € 3PP, then Z consists of 1/8 squares.

3.2 How to Prove that n € 2PP

Without loss of generality, assume that n has k bits. First we parse sigma into

o = y1ly2|yslyalys| - - - [yke

Where each y; is a k — bit string. Next we go through and throw out all of the y; such that
y; > n. (Note: This will throw out at most half the y;’s).

We are then left with a set of random elements from Z*. (Actually, there is a negligible
probability that one of the y;’s has the property that ged(y;,n) # 1. In this case, the verifier
can easily factor n and the proof is trivial. Therefore, we consider only the case, where all
the y;’s are either greater than n or in Z*). We denote the elements which remain after
throwing out the y; > n as:

g = .’L'1|.T2|.’I)3|.’L‘4|.T5| .

Where each z; € Z;.

Next, for each z; which is a square mod n, the prover provides the verifier with a square
root of z;. If the prover is able to do this for approximately 1/4 of the z;’s then the verifier
is convinced that n € 1PP or n € 2PP. This is because if n has three distinct prime
factors, it is amazingly unlikely that o will happen to consist of 1/4 squares. (Since this is
twice as many squares as we would expect). The verifier can easily check for himself that
n ¢ 1PP and thus is convinced that n € 2PP.

3.3 A Simulator for the 2PP Proof System

On input n, the simulator must output a random looking string ¢ and a proof using o
that n € 2PP. Observe that since the simulator does not know the factorization of n,
the simulator cannot take square roots mod n. Our first thought is to have the simulator
construct the string o by flipping random coins to get R; and then setting o to be:

RY(= 21)|Rj(= 22)|R(= 23)|Ri(= z4)

Unfortunately, this won’t work because every z; will have Jacobi symbol 1. (Where as if o
is truly random then half the z; should have Jacobi symbol -1).
We can fix this problem by having the simulator do the following:

e For each ¢ flip a random coin Cj.
e If C; is 0, choose a random T; with Jacobi Symbol -1 and let z; = T;.
e If C; is 1, choose a random R; and let z; = R?.

e For each ¢ with C; = 1, flip another coin and if this coin comes up 1, put R; in the
proof.

This will create a o where about half the z;’s have Jacobi symbol 1, and the proof will
consist of a square root of half the Jacobi symbol 1 z;’s.

3.4 Perfect NIZK

There is one problem with the simulator from the previous section, the string o created by
the simulator is not truly random. This is because, in a truly random string half the z;’s
with Jacobi symbol 1 are non-squares whereas the simulator creates a o where every x; with
Jacobi symbol 1 is a square. Now this isn’t a major problem because assuming that the
Quadratic Residuosity problem is hard, the ¢ produced by the simulator is computationally
indistinguishable from a truly random string. However, we would ideally like to achieve a
Perfect NIZK proof system for 2PP instead of merely a Computational NIZK proof system
for 2PP.

If there is a well known y € Z7 which is a non-square with Jacobi symbol 1, then the
simulator can just multiply R? by y whenever it chooses not to put R; in the proof and get
a o with the right distribution. That is, replace the simulator’s code with the following:

e For each 7 flip a random coin Cj.
o If C; is 0, choose a random 7; with Jacobi Symbol -1 and let x; = T;.
e If C; is 1, choose a random R; and let z; = RZ?.

e For each ¢ with C; = 1, flip another coin and if this coin comes up 1, put R; in the
proof. If this second coin comes up 0, then set z; = yR;.

Another thought is to make y part of the language. (That is, let L be the language of
pairs (n,y) where n € 2PP and y € Z; where y is a non-square with Jacobi Symbol 1).
Unfortunately, if we do this we get soundness problems because if y is a square mod n, then
the prover can prove false theorems. Therefore, in order to use this idea we need to make
a small change to guarantee soundness.

3.5 The Perfect NIZK Solution

Let L be the language of pairs (n,y) where n € 2PP and y € Z} where y is a non-square
with Jacobi Symbol 1. As before, we cull all the blocks in ¢ which are not in Z}. We are
left with

o = 11|z2|T3|T4|T5] - - -

Then for each z; with Jacobi Symbol 1, the prover provides the verifier with either \/z; (if

x; is a square) or \/z;/y (if z; is not a square).

This proof system is sound. If y is not a square mod n, then when z; is not a square
mod 7, the prover will not be able to provide either \/z; or /z;/y.

We only need to make a small modification to our simulator to prove this new proof
system is zero-knowledge.

e For each ¢ flip a random coin Cj.

If C; is 0, choose a random T; with Jacobi Symbol -1 and let x; = T;.

If C; is 1, choose a random R; and let x; = R?.

For each § with C; = 1, flip another coin and if this coin comes up 0, let z = yR?.

The proof is simply the list of all the R;’s

3.6 An Alternative Definition of Soundness

Note that the above proof system for L actually delivers more than we claimed in our
definition. That is, the above proof system satisfies an even stronger notion of soundness.
Alternative Soundness:

VP!
c 1
Pr[o + {0,1}*°;(PROOF',z') + P'(c) : (z' € L) AV(o,z', PROOF') =1] < 3
In the standard definition of soundness, the theorem is selected before the random string
is chosen. However, in the alternative definition soundness, the cheating prover is allowed
to pick the false theorem after he has seen the string o. This means that the proof system
remains sound, even if the prover is proving a theorem about o. (For example, The prover
wants to use page 114 of the Rand Corporation Volume 1 to prove the theorem, “The first 20
digits on page 114 of the Rand Corporation Volume 1 form a number which is the product
of two prime powers”).

