6.876/18.426: Advanced Cryptography March 5, 2003

Lecture 8: Communication Efficiency for NP Arguments

Scribed by: Chris Peikert

Today is Adam Smith’s guest lecture.

The protocol we’ll construct today will illustrate two important ideas that tend to recur
frequently in cryptography:

1. The use of interaction to decrease the need for computation. (E.g., consider the
result that IP = PSPACE: PSPACE may contain extremely hard problems, but by
interacting with a prover, an efficient verifier can decide such problems.)

2. ZK for NP can be used as a general tool to make “any” protocol “private,” with only a
polynomial blowup in communication complexity. (The meanings of the words “any”
and “private” will be formalized, in increasing generality, throughout this course.)

There are two main results we’ll cover in this lecture:

1. Any language L € NP has an argument using only O(k%logn) communication (i.e.,
total bits sent). Here, k is the security parameter, so that soundness is negligible in
k, while n = |z| is the length of the theorem z € L to be proved.

2. The above argument can be transformed to be zero-knowledge, with total communi-
cation complexity poly(k,logn).

A few comments are in order: in the past, we have made no distinction between the
security parameter k and the length n of the theorem (that is, we have set &k = n for
simplicity). In this case, it is useful to make them independent parameters in order to
optimize the communication complexity. Typically, we will set k < n. With a careful
choice of intractability assumptions, we will be able to achieve negligible (in n) soundness
with only polylogarithmic (in n) communication.

Note also that the protocol is merely an argument: that is, it is sound only against
bounded cheating provers. In particular, we will assume that any cheating prover is imple-
mented by a polynomial-sized circuit family.

1 An Argument for NP

There are two general tools (also useful in many other areas of cryptography and complexity)
which we use in constructing our protocol: probabilistically checkable proofs (PCPs) and
hash trees. We'll first discuss PCPs, which will motivate a (failed) attempt at a protocol.
Then we’ll see how hash trees can fix the problems we encounter.

1.1 PCPs

The literature on PCPs started in the 1980s, and the topic remains an active area of
research today. They allow a verifier to be convinced of a statement by examining only a
“few” locations of a proof.

More formally, consider the following scenario: suppose a 3CNF ¢ € 3SAT is satisfiable.
One way a verifier can be convinced of this fact is for it to receive a satisfying assignment
w, against which the verifier checks the truth of every clause. Now suppose there is a 3SCNF
¢' for which there is a “gap”: either (1) ¢’ is satisfiable, or (2) any assignment to ¢’ satisfies
at most 99% of the clauses. To convince a verifier that ¢’ is satisfiable, one can write down
an entire satisfying assignment w’. The verifier can then pick a clause at random and check
if it is satisfied, looking at only the 3 bits of w corresponding to the literals appearing in
the selected clause. If the verifier repeats this experiment, say, 100k times, then it achieves
k¥ soundness while examining only 300k bits of w'.

In fact, there is a way to convert instances of 3SAT into instances of a “gap problem”
like the one described above.

Ne_

Theorem 1 There exist efficiently-computable functions f : ¢ — ¢ and g : (d,w) —
(¢',w'") such that:

1. |f(9)] < |gI*.

2. If ¢ is satisfiable, then ¢’ = f(P) is satisfiable; if ¢ is not satisfiable, then any assign-
ment to ¢' = f(¢) satisfies at most 99% of its clauses.

3. If w satisfies ¢, then g(¢p,w) = (f(¢),w'), where w' satisfies ¢' = f().

1.2 A First Try

This suggests the following interactive protocol for 3SAT: on common input ¢ and private
input w (which satisfies ¢) to P, P computes (¢, w') = g(¢,w) and V computes ¢' = f(p).
Then:

1. V chooses 100k clauses of ¢' at random (with replacement) and sends their indices
’il, ce ;ilOOk to P.

2. P sends the values of the 3 literals appearing in each of the clauses i1,...,%100%,
according to w'.

Finally, V checks that the chosen clauses are satisfied, and that the assignments to the
literals are consistent (e.g., if x3 appears in clause i1 and T3 appears in clause i7, then the
claimed values of z3 and 73 should be consistent). If so, V accepts, otherwise it rejects.

Note that the total communication is O(klogn), because specifying each clause index
requires O(logn) bits, and specifying the variable values requires only 3 bits per clause.

However, there is a huge problem with this protocol: it is not at all sound! Because
k < n, there may not be any variable which appears in more than one of the selected clauses.
This means a cheating prover can simply claim that all the relevant literals are true (after
seeing which queries the verifier makes), without making any contradictory claims.

8-2

In order to fix this, we need a way to bind the prover to a single witness w', before
the prover sees which clauses the verifier has selected. We have two requirements of this
binding procedure: (1) Bind(w') must be short, and (2) there must be a short way to prove
consistency of Bind(w') with one bit of w' at a time. It turns out that hash trees are the
answer.

1.3 Hash Trees

Recall the definition of collision-resistant hashing:

Definition 1 A collision-resistant hash family is an efficiently-computable function H :
{0,1}* x {0,1}* — {0,1}* such that, for all polynomial-sized circuit families {A;},

Prla « {0,1}; (5,9) + Aw(a); H(a,s) = H(a,y) and o # 4] < v(k)
where v is some negligible function.

This suggests letting Bind(w') = H(a,w"), and letting V pick the key « (since a cheating
V* gains nothing from picking a “weak key”). However, we don’t know how to prove
consistency of Bind(w') with a revealed bit of w', aside from revealing all of w' (which costs
too much communication).

Instead, Bind(w') will be a “tree-hash” of w' (this idea is originally due to Merkle):
first, break w’ into k-bit blocks, and assume wlog that there are 2/ such blocks (where
j = O(logn)). Imagine a complete tree of depth j with these blocks at the leaves. Every
node in the tree has a unique label, which corresponds to the branches taken on the path
from the root to that node. (For example, the leftmost leaf has label 00---0 (j zeros), the
root has label € (the empty string), and the right child of the root has label 1.) In addition,
every node has a value vy, where £ is the label of the node. We define vy recursively:

e the value at a leaf is the corresponding k-bit block of w/';

e otherwise, vy = H (e, vg||ver). That is, the value at a node is the hash of the values
at its two children (left child first).

We define Bind(w') = v, that is, the value at the root of the tree. To “unbind”
(prove consistency of) a specific bit of w', do the following: compute the label £ of the leaf
containing the desired bit (by simply dividing the index of the desired bit by k). Then for
every proper prefix p of £, reveal vy and v,;. That is, reveal the values of all the nodes
on the path from the root to the leaf, as well as all siblings of those nodes. To verify the
unbinding, first check that the desired bit of vy has the claimed value. Then, for each proper
prefix p of £, verify that v, = H (o, vpo||vp1). This is possible because the values v,o and
vp1 are given as part of the unbinding, and so is v, because either p = € (in which case
vp = Bind(w")), or p = p'0 or p = p'1 for some proper prefix p' of £.

The interesting thing about tree hashing is that being able to unbind a particular bit
in two different ways implies the ability to find a hash collision. For if a circuit can find
some Bind(w') = v, = ! relative to which it can unbind two different values v, and
v}, then for every proper prefix p of £ it produces values vpo,vpl,véo,vél that pass the

8-3

verification test. Take the shortest p such that v, = vy, but vy # vy or vy # vy,
(or both). There must be such a p, because v. = v, = Bind(w') but vy # v). Then
H (o, vpol[vp1) = vp = v, = H(, vpg||vy,1), 50 vpol|vpr and vyg|vy,; are distinct strings which
form a hash collision.

Finally, note that unbinding one bit reveals O(logn) values, each of which are k bits

long.

1.4 The Real Protocol

We now have all the ingredients we need to build an argument for 3SAT: on common
input ¢ and private input w (which satisfies ¢) to P, P computes (¢', w') = g(¢,w) and V
computes ¢' = f(¢). Then:

1. V chooses « + {0,1}* at random, and sends it to P.
2. P computes Bind(w') = v, by tree hashing w’ (with key «), and sends Bind(w') to V.

3. V chooses 100k clauses of ¢’ at random (with replacement) and sends their indices
’il, . a'ilOOk to P.

4. P unbinds the values of the 3 literals appearing in each of the clauses i1,...,%100k,
according to w'.

Finally, V checks that (1) the chosen clauses are satisfied, (2) that the assignments to the
literals are consistent, and (3) that the unbindings were valid. If so, V accepts, otherwise it
rejects.

Completeness is straightforward, from our prior discussion about gap problems. Sound-
ness arises from the fact that after the second round, there is only one value of each variable
that a cheating (polynomially-bounded) P* could successfully unbind. If ¢ were unsatisfi-
able, then at most 99% of the clauses in ¢’ would be satisfied by any particular assignment.
With high probability, V would choose one of the unsatisfied clauses and reject.

The communication complexity is 2k bits for the first two rounds, O(klogn) for the
third round, and O(k? logn) bits for the fourth round, for a total of O(k?logn).

2 Making it all Zero-Knowledge

Note that the above protocol is probably not zero-knowledge (hashing the witness w' may
leak some information about it; in addition, many of the bits of w’ are explicitly leaked).
However, we note that it is a public-coin protocol. Therefore we can employ the same
technique that we used to prove that IP C ZK: conduct an “encrypted” conversation, and
then prove (in zero knowledge) the NP statement that, were the conversation decrypted,
the original verifier would have accepted.

Let (Pq,V,) be the prover/verifier from the argument above. Then, assuming the exis-
tence of a public-key cryptosystem (G, E, D) (which follows from the existence of one-way
functions), we get the following zero-knowledge protocol: on common input ¢ and private
input w which satisfies ¢ to P, do the following;:

1. V sends the first message of V,(¢); that is, a random « < {0, 1}*.

8-4

2. P generates (pk,sk) < G(1*), and gets the first message R of P,(¢,w) (the root of
the hash tree). P sends pk, R. = Ep;(R) to V.

3. V sends the second message ¢ of V,(¢); that is, the random choices of clauses.

4. P gets the second message P of P, (¢, w) (the unbindings of the variables), and sends
P, = E,(P) to V.

5. P and V enter into a zero-knowledge proof of knowledge: P proves knowledge of an
sk such that V, would accept the transcript (o, Dgx(Re), ¢, Dgi(Pe))-

Completeness is again simple. Soundness follows from the fact that encryption is bind-
ing, and by the proof of knowledge of sk. Zero-knowledgeness follows from a simulator S
which encrypts random strings instead of the legitimate prover messages (which we don’t
know how to compute). Then in the last stage, S invokes the simulator for the ZKPOK
to complete the conversation. Note one subtlety here: in the last stage, the theorem is
actually false; that is, there does not exist an sk such that V, would accept. However, this
false theorem is indistinguishable from the true theorem that is proven by P (this follows
from the security of the encryption). Therefore, the output of the simulator on this false
theorem is indistinguishable from the output of the simulator on the true theorem, which
is indistinguishable from the conversation with P. By this hybrid argument, S produces a
good transcript.

Now we analyze the communication complexity: because the theorem and witness in
the final stage have length poly(k,logn), the entire protocol has complexity poly(k,logn).

8-5

