6.876/18.426: Advanced Cryptography March 3, 2003

Lecture 7: Variations on ZK

Scribed by: Joél Alwen

1 Recap

1.1 Current Definition of Zero Knowledge Proof Systems

We say that an interactive proof system P, V) is a Zero Knowledge Proof System (ZK PS)
for a language L iff:

1. Completeness: Vz € L Pr[(P,V)[z] = “YES”] > 1 — neg(k)
2. Soundness: Vz ¢ L VP’ Pr[(P',V)[z] = “YES” ] < 1

3. Zero Knowledge: VVjpt 3Sppt Vz € L Va € {0, 1}‘””‘0 VIEW\F;,\(/;) ~ S(z,a)

For an in depth discussion of the details of this definition see the previous lectures,
notably lecture 3 for a discussion on the importance of the advice string a and lecture 4
for the reasoning behind why the simulator S only needs to approximate the VI EW\E’,\(/;) .
Note though that for this lecture no knowledge of any of the subtleties is required as we
will be covering new, yet related, concepts rather then deepening any understanding of the

above idea itself.

1.2 Existence and Properties of ZKPS

In previous lectures we looked at the relation of various complexity classes to ZK. Our
first such result, NP C ZK, showed us that our definition of ZK PS is in fact a practical
and that such proofs exists for a class of interesting problems.

In the previous lecture we greatly expanded this result showing that /P C ZK which
gives a lot of power to ZKPS as IP is defined as the set of all languages L such that
both completeness and soundness hold true. This was shown by useing the result of
Goldwasser and Sipser that AM = IP and AM C ZK.

The last important result from the previous lecture tells us that ZKPS can also be
efficient. This was demonstrated with an example, namely Blum’s ZK PS for graph 3-
colorability, which gives a % probability (that z € L) in 3 rounds. A natural question which
arises from the quest for efficiency is “What happens when we parallelize ZK proofs?”

2 Parallelization of ZKPS

2.1 3-Colorability and Parallelization

First we describe a parallel version of Blum’s protocol (P*,V*) for the 3-colorability of G:
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1. P* begins by choosing a set of random permutations 7; for i € {1,...,k} and applying
them to the graph G resulting in a new set of isomorphic graphs H;. The permutation
only affects the labeling of the nodes thus all H; are still 3-colorable iff G is. Next P*
encrypts the coloring of every vertex of every H; and sends all this information to V*

2. V* flips enough coins to choose a random edge in each graph H;, and send the selection
back to P*.

3. P* reveals the coloring for the 2 nodes in H; on each of the edges selected by V* in
the previous step, along with a proof that these colors where truly the information
encrypted in the first step. V* then checks this proof, and if the colors of each pair of
nodes revealed are not equal then V* accepts G’s 3-colorability.

Though completeness and soundness are relatively straightforward to show (as they
are analogous to the serial protocol), Zero Knowledge is not. The proof of ZKness no
longer works as it does in the serial case since rewinding becomes a problem. The problem
begins with a malicious verifier V', which could, for example, use the hash of the first
sequence of encrypted colorings as a reply in step two. This raises another interesting
point. V! now has a so called “receipt” which it can use to prove that it has in fact talked
to P*, and can thus use the transcript of the conversation to prove z € L to any third
party. However, this does not automatically imply that any information has been leaked,
yet it does in some sense contradict the intuitive definition of a ZKPS. In other words
we have been presented with an interesting question: Does not having the property of Zero
Knowledge imply that some information must be leaked or is our definition of Z Kness too
strong?

As a result of not being able to rewind, we are not able to prove that (P*,V*) has the
Zero Knowledge property. Specifically we could not show

3Sppt VWhpr Vo € L Va € {0,1}*° VIEWP,\(/;) ~ SV (z,a)

which is called Black Box Zero Knowledge. BBZK is in fact stronger then our definition
of ZK as it allows for only a single S for all V’s. It is not intuitive however that not being
able to prove BBZ K implies not being able to prove the weaker ZK.

Goldreich and Krawczyk [GK96] proved that if 3-round BBZK can be proven then
the language L is trivial. (Here trivial means L € {PPT,PP}), though this only refers to
”3-round” BBZK where the soundness probability is negligible rather than 1/2. Thus we
can conclude that the parallel 3-colorability protocol is not ZK.

3 Exercises

This brings us the first problem set of the semester (Exercises 1). However subsequently an
entire alternate problem set is given (Exercises 2). Aditionally there is one more problem
which can be optionally substituted for any problem in either of the problem sets (Exercise
3). The assignment is due on Monday the 10 March, 2003.



3.1 Exercises 1

1. Define Low Enough Knowledge
The problems encountered above with parallelization prompt us to look for new defi-
nitions as a work around. Intuitively LEK can be understood as being an 1P where
P proves x € L via a witness w; for i = lori = 2. However V does not know which of
the two witnesses was used. Give a formal definition of LEK using the appropriate
notation.

2. LEK and Parallelization
Prove that LEK is closed under parallel composition.

3. Examples of LEK
Exemplify LEK.

3.2 Exercises 2

Under our definition zero knowledge interactive proofs are slanted. I.e. they are proofs for
sure, however the ZK property only holds under a complexity assumptions. The dual of
Z K Ps are ZK arguments, which are slanted in the opposite direction. L.e. they are ZK
for sure, however they are only maybe proofs.

1. Define ZK Arguments
Give a formal definition of ZK arguments using the proper notation.

2. Requirements of 7K Arguments
Give a detailed definition of what is needed to implement ZK Arguments? (Not just
“Perfect bit commitment is required.” but a detailed definition of how such a bit
commitment should work, for example.)

4 /K Argument Example

4.1 Bit Commitment

Intuitively, a commitment scheme can be understood as a protocol between two parties A
and B, where, in the initial phase, A commits i.e, sends a value to B with the property
that B does not know what the value is until the second phase has been completed. This
property is often called hiding. In the second phase A reveals what the value was, along
with a proof that this is in fact what was originally committed too. A commitment scheme
must be binding in the sense that A can only decommit to one value. A bit commitment
protocol, is a protocol where A commits to a single bit.

The following is an example (AppT, BppT) of a bit commitment protocol. It is based on the
assumption that the discrete logarithm problem (DLP) is hard. I.e. find an z such that
g* = r(mod p)

1. Intialization B begins by selecting a random prime p, and a corresponding generator
g, as well as a random integer r € {1,...,p — 1}. B sends all three values to A.
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2. Commitment A chooses a random integer z. Then A commits to her bit b by sending
g% *r® mod p to B.

3. Decommitment Later on when A wants to decommit she sends z to B. B then checks
that the value he received 2’ is the same as the z that was originally committed to by
checking that g% * r? = ¢ * r® mod p.

It is clear that A can not decommit a commitment to both a 0 and a 1 since this would
mean A has found both an z and a z such that ¢°* = y = r * g* mod p. That would imply
solving the DLP for a random integer r € {1,...,p — 1} since r = g* % mod p.

However there is still one problem that needs fixing. The distribution of the commitment
can be skewed if g is not in fact a generator. The problem arises from the fact that A is
in PPT and with out knowing the factors of ¢(p) there is no known efficient algorithm for
determining if g is a generator for p. r is chosen at random and, because multiplication by
an element of {1,...,p — 1} mod a prime p is a permutation, r * g* is again a random number
between 1 and p— 1. However if g is not a generator then g will only range over a (possibly
small) subset of the numbers in {1,...,p — 1}. Thus if B chooses r ¢ {g'|i = 1,....p — 1}
then, if the commitment of A is divisible by r, it is definitely a 1. (i.e. B now has an easy
distinguisher.)

To fix this B first has to generate p in a such a way that B knows the factors of
#(p) = p — 1. This can be done in PPT using either Bach’s algorithm [B88], or by looking
for what are called safe primes (also known as co-Sophie Germain primes). I.e. primes
p = q*2+ 1 where ¢ is also prime. Experiments have shown that such primes are quite
common, and have the added benefit that the complexity of solving the DLP mod such
primes increases for all known DLP solving algorithms.

The revised algorithm works as follows:

1. Initialization B begins by generating a random prime p along with the factors of
p — 1, a corresponding generator g, as well as a random integer r € {1,...,p — 1}. B
sends all of these numbers to A.

2. Commitment A checks whether g is a generator (see Exercise 3) and if so, chooses
a random integer z. Then A commits to her bit b by sending g% * 7® mod p = 2’ to B.

3. Decommitment Later on when A wants to decommit, she sends z to B. B then
b—

checks that 2’ is actually a commitment to z by checking that g% * 7’ = 2z’ mod p.
Since raising a generator to a random r € {1,...,p — 1} is a permutation, A can be sure
that the distributions of a commitment to 0 and a commitment to 1 are truly even and
the same. Note also that this scheme has perfect hiding. I.e. even a By, could not find b
given only the commitment since for any commitment y there exists a pair (z, z) such that
g* =y =rx%g° mod p.

4.2 Exercise 3

This exercise may replace any one problem in exercises 1 or 2. Prove that, given the factors
of p — 1, it can efficiently be tested whether g is a generator for a given prime p.
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4.3 3-COL ZK Argument

Using the above protocol for bit commitment we can now construct a ZK argument (P,V)
for 3 colorability of a graph G.

1. V begins by generating a prime p along with the factors of p — 1, a corresponding
generator g, and a random integer r € {1,...,p — 1}. V then sends all these values to
P.

2. P checks that g is in fact a generator (see Exercise 3) and, if this is the case, generates
a random 3-coloring of the vertices and commits to this coloring. (i.e. if a node is red
then P commits to 0 and 0 for that node, if it is white then to 0 and 1 and if it is blue
then to and 1 and 0. P sends its commitments for all nodes to V.

3. V chooses a random edge e and sends this back to P.

4. P sends the decommitment for the coloring of the two nodes on e. If they are different
and valid colors and they are the colors which P originally committed to then V
accepts the proof.

Thus if P cheats then they have a ﬁ chance of being caught.

The fact that this protocol is a ZK argument relies on how the bit commitment works.
Namely even By, can not find b given only the commitment. However an A, can cheat
(decommit to both a 1 and a 0).
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