6.876/18.426: Advanced Cryptography February 24, 2003

Lecture 5: ZK proofs for all of NP

Scribed by: Dah-Yoh Lim

1 Recap

Recall that (P, V) is a ZKPS for a language L iff the following conditions hold:

1. Completeness: Vz € L, Pr[(P,V)[z] = “Yes”] > 1 — negl(k).
2. Soundness: Vz ¢ L,VP' Pr[(P',V)[z] = “Yes”] < 1/2.

3. Zero Knowledgeness:
YWepr, ISppT, Y € L,Va € {0,1}P°%2) VIEWEV (z;2,a) = S(z, a).

2 Two Examples and Counting

So far, we’ve had two examples: NISO and ISO. In this lecture we will dramatically
enlarge the set of examples for which Z K proofs exists. To do this, we relax the requirement
of statistical indistinguishability of the two distributions VIEWEY (;2,a) and S(z,a), to
computational indistinguishability.

Informally, this means that we no longer require that the simulator S (without interact-
ing with anyone) generate exactly the same distribution (over all the possible transcripts)
as the view of the verifier V (when interacting with the prover P). We just want them to
“look” the same to any efficient algorithm (i.e. probabilistic polynomial time). If two dis-
tributions are computationally indistinguishable, then they look the same given a random
poly-sized sample and probabilistic poly time. Note that if two distributions are statisti-
cally indistinguishable, then they look the same given a random poly-sized sample and an
infinite amount of time, so statistical indistinguishability is strictly stronger than computa-
tional indistinguishability. Let’s begin by defining computational indistinguishability more
precisely.

2.1 Computational Indistinguishability
Probability Ensembles A probability ensemble A is a family A = { Ay }ren such that Ay

s a probability distribution on some finite domain.

Computational Indistinguishability Let {Ay}xen and {By}ren be two probability en-
sembles. For any poly-sized family of tester circuits T, let p?’ be Pr(o « A : T(1%,0) = 1)
and pf’T be Pr(o < By : T(1¥,0) = 1). Then {A}}ren and {By}ren are computationally
indistinguishable under T iff for any positive polynomial poly(), and for all sufficiently large

5-1

k’s
AT B,T 1 . T . C . . .
lp,” —p | < TTIGR We write { Ay} = {By} for computational indistinguishability under

T. Iff for all poly-sized family of circuits T, {Ax} < {By}, then we say that {Ag}ren and
{Bk}ken are computationally indistinguishable, and write {Ay}~{By}.

Nonuniform vs Uniform Testers. Note that here we have stated computational
indistinguishability under all poly-sized families of circuits instead of the usual all PPT
Turing machines. This is in anticipation of what we would need later in the lecture. A
poly-sized circuit family is just a collection of PPT Turing machines that have poly length
descriptions, i.e. for each input length, you can have a different PPT Turing machine
(“nonuniform” across the input lengths), whereas originally, we have a single machine for
all the input lengths (“uniform”).

In particular, a poly-sized family of circuits can have different polynomially long advice
strings hardwired in it’s circuit for different input lengths; the class of languages recognized
by such families of circuits is termed P/poly. Later when we attempt to prove ZKness of a
certain protocol, the verifier will play the role of a tester, and the advice it has is exactly
a, the auxiliary input to it.

Is P/poly more powerful than P? It’s definitely not weaker. Even undecidable unary
languages are in P/poly- since there is only one string of any given length, we simply hard-
wire an advice string indicating whether the corresponding unary string is in the language.
So is P/poly more powerful than NP? Probably not: if NP C P/poly, then the polynomial
hierarchy collapses [KL80].

Discussion. Notice that two distributions can have completely different support (set
of elements that are assigned positive probability), and yet be computationally indistin-
guishable. An example is the secure! encryptions of any pair of messages mg and m- if the
ciphertexts produce weren’t computationally indistinguishable, then the tester for it breaks
the (secure) encryption.

3 A ZK proof system for an NP complete language

Now let’s try to go beyond the two examples of ZK proof systems that we know. First
we note that Z Kness is a property of proof systems, so the underlying language must be
efficiently provable, say an NP language. To get them all in one shot, let’s try to give a
ZK proof system for an NP complete language, graph 3-coloring. Then by first applying
standard Cook reductions from the language at hand to 3-coloring and then executing the
ZK proof system for 3-coloring, we can get ZK proof systems for all languages in NP.

The graph 3-coloring problem is, given a graph G = (V, E), is there a way to color the
vertices using only a total of 3 colorings so that no edge is connected to two vertices of
the same color? More rigorously, does there exist a function f : V' — {1,2,3} such that
f@@) # f(j) whenever (i,5) € E?

Informally, if we have a map of the US, where the vertices are the cities and the edges
are the roads connecting the cities, and P is trying to convince V that the graph so produced
is 3-colorable, here is how the protocol works:

!“secure” as per the definition of Goldwasser and Micali [GM84]

. P asks V to leave the room.

. P 3-colors the graph using a randomly selected coloring scheme (out of a total of

3! = 6), and covers the colorings of the vertices by putting paper plates on them. (We
assume the prover knows a coloring of the graph, or finds one, and then permutes the
colors randomly.)

.V comes in, and picks a random edge, (%, 7).

P uncovers the two plates covering the vertices ¢ and j, thus revealing their colors.
V checks that they are of different colors. If not, V rejects.

They play this game |E|? times. Each time, P recolors the graph using a randomly
selected coloring scheme, and V choses again some edge at random. If V gets to the
end without rejecting, V accepts.

Now let’s argue that this is a ZK proof system for 3-coloring.

1.

3.1

Efficiency: Since what the verifier does is just to select random edges and check
proper colorings, one basic iteration (steps 1 to 5) is efficient (for the verifier). More-
over, the number of edges is less than the input size, so we are simply repeating the
game for a polynomial number of times.

. Completeness: Clearly, if the graph was 3-colorable and P follows the protocol, then

there will be no edges connecting two vertices of the same color, and thus V will be
convinced with probability 1.

. Soundness: If the graph is not 3-colorable, no matter what P’ does, there is at least

an edge that connects vertices of the same color. V will catch this with probability

ﬁ in each iteration of the game; over |E|? iterations, the probability of catching P is

exponentially close to 1, i.e. the soundness error is exponentially small.

ZKness: Very informally, the simulator S simply puts paper plates on the vertices
first (without coloring any of them). When V chooses some edge (i,j) at random
(according to the random tape which S controls), S rewinds V, then colors i and j
with different random colors (leaving the others as is), puts paper plates on all the
verticies, and replays V, which again asks for the same edge. S reveals the edge, which
passes the V’s check.

Implementing the “Paper plates”

Now what is this “paper plate” thing in our argument? Notice that what we required was
that, with the vertices covered by the plates, V has no clue of the coloring of the vertices.
Also, with V present now in the room, P cannot recolor the vertices. The paper plates can
be easily uncovered by P to show that the edge chosen by V is properly colored.

For simplicity, let’s use a probabilistic Encryption scheme (G, E,D) as our paper plate.
Then the protocol would be:

1. P 3-colors the graph using a randomly selected coloring scheme. Say that we encrypt
the colors R, W, B bit by bit, and the encoding is such that R — 00 W — 01, B — 10,
and 11 is unused. So if the first vertex was colored R, the second B,..., P sends over
E(0)E(0)E(1)E(0)... (the concatenation of the various encryptions). In general, for
vertex i, if b}, b? is the encoding of it’s color, then the i-th pair of ciphertexts sent to

1771

V will be E(b}, R})E(b?, R?) where R;’s are the random strings used in the encryption.

2. V receives v = |V| pairs of strings, (Ef, EZ,..., E}, E2). Picks a random edge, (i,7),
and sends over to P.

3. P rejects if garbage (i.e. an edge not in the graph) is received; else sends over
bl b? R},R2 bl b2 R},RJZ- thus revealing their colors.

77 71? 7 ? ,]’]7

4. V checks that they are of different colors: (b},b?) # (bjl-, bj2)

V checks that the revealing was proper:

(
£},) - B2,
E(b;,R}) = Ejl,cmd
E(b2, R?) = EZ2.
V checks that the colors are not illegal: (b},b?) # (1,1) and (b}, b?) #(1,1).

If any check fails, V rejects.

5. They play this game |E|? times. Each time, P recolors the graph using a randomly
selected coloring scheme, and V choses again some edge at random. If V gets to the
end without rejecting, V accepts.

3.2 Proof of ZKness

Since the efficiency, completeness, and soundness all continues to hold, we only have to show
that the proof system is Zero Knowledge. Again, we will actually prove something stronger
— black-box Zero Knowledge — by reversing the quantifiers, namely that there exists SppT,
for all Vppt, the simulated distribution is computationally indistinguishable from the view
of Vppr:

3Sppr, Whpt, Vo € L,Va € {0,111 VIEWEY (2;1,a) = SV (2, a).
S: On input (G, a), where G is a graph and a is the auxiliary input,

1. S generates at random a (PK, SK) pair using the generation algorithm of the encryp-
tion scheme.

2. S flips some amount of coins, and puts this random string, r, on V"’s random tape; S
passes the auxiliary input a, to V' as well.

3. S randomly selects an edge (i,), and randomly chooses two distinct colors, one for 4
and the other for j. All the other vertices are, say, colored red.

5-4

4. S encrypts the colorings of the vertices properly (though most are red), exactly as is
done by P, and sends the encryptions to V' (together with the PK).

5. If V' doesn’t respond or sends garbage, S aborts, which is exactly what P would have
done. Otherwise, S rewinds V’, and repeats the process until V/ happens to choose
the same edge that it properly colored.

6. S outputs (G,a,r,(E}, E?, ..., E;, E}), b}, b7, R}, R?, b, b5, R}, R7). Note that we do
not have to include the messages that V' sent because these are completely determined
by the inputs, the random string, and the messages that V' has received.

Claims:

1. (Claim 0) If V' sends garbage when interacting with S, whereas it sends a random
edge when interacting with P, then this V' can be used as a distinguisher for E(0)
and E(1), which contradicts the security of the encryption scheme. (Basically, the
only difference between what S sends and what P sends is that P encrypts an actual
3-coloring, while S does not. A simple hybridization between S’s message and P’s
shows how to reduce this to breaking a bit encryption.)

2. (Claim 1) There is a probability of \lf\ that V' will choose the edge that S picked, so
S will be able to proceed in the simulation. Again, if this is not true (or rather, if the
probability is more than negligibly different from ﬁ), then V' is able to distinguish
what the simulator sends from what the prover sends, and thus break the encryption
scheme.

To present this hybrid argument with a little more detail, suppose that a 0-hybrid
acts as the simulator and the (]V| — 2)-hybrid acts as the real prover. The i-hybrid
first picks a random edge and a random pair of good colors for the endpoints of that
edge, then matches that up to the real 3-coloring to get a permutation of the colors.
Then, the first 7 vertices in the graph (in some deterministic order) other than the two
endpoints of the chosen edge are colored as they would be in the 3-coloring under the
chosen permutation of the colors, while the remaining vertices in the graph would be
colored red. Once all the colors are chosen, everything is encrypted, et cetera. Clearly,
V' chooses the given edge with probability 1/|F| given input from the (|V|—2)-hybrid
since there is no information about that edge contained in the coloring at all. Thus,
if the probability in the 0-hybrid case is significantly different there would be some
pair of adjacent hybrids which can be distinguished.

This should provide enough of a proof that the reader can fill in the rest independently.
For claim 0, the only adjustment to this argument we need to make is that given the
(|V| — 2)-hybrid, the input is exactly the same as the real prover’s input, so of course
the probability is 1/2.

NOTE: It may seem like the simulator knows the coloring in this argument, but this
is actually misleading. The way the logic works is this: we assume that a cheating
verifier that falls into this case exists, and we assume there is a 3-colorable graph that
the verifier works with. We prove this verifier can be used to break the underlying
encryption, and our method for doing THIS knows the 3-coloring for that graph.

5-5

However, this is okay; our reduction is no longer trying to prove zero-knowledgeness,
but is rather giving a contradiction.

3. (Claim 2) VIEWESY (z;%,a) = SV (z,a), conditional on the case that S was able to
answer V’s challenge.

Again, the only difference between the output from the S when it succeeds and from
the P is that the S encrypts something that is not a 3-coloring of the graph. As we
have already shown, if any A can distinguish the two, A can be used to show that the
underlying encryption scheme is not secure.

4 Concluding

We have seen that if secure encryption schemes exists, then all languages in N P have Zero
Knowledge proof systems. Actually, bit commitment schemes suffices, and they exist iff one
way functions exist, which is the lowest assumption one has to make in cryptography, since
the existence of one way functions implies P # N P, which is still unresolved.

Next time, we are going to prove even more, namely that all languages in I P, the class
of languages having interactive proofs, have Zero knowledge proof systems. So whatever
you can prove, you can do so in Zero Knowledge.

We end by reflecting on what we’ve done. Do we really need to enlarge our hypothesis
(i.e. change the requirement of statistical indistinguishability to computational indistin-
guishability) to get Zero Knowledge proof systems for all of NP? By a result of Fortnow
[For89], we know that if NP C PZK or NP C SZK?, then the polynomial time hier-
archy collapses, an event considered extremely unlikely. So, the step we took (going to
computational zero-knowledge) is probably necessary to get all of NP.

References

[For89] L. Fortnow. The complexity of perfect zero-knowledge. In S. Micali, editor, Ran-
domness and Computation, volume 5 of Advances in Computing Research, pp. 327-343,
1989.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between uniform and
non-uniform complexity classes. Proc. 12th ACM Symp. on Theory of Computing, pp
302-309, 1980.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer
and System Sciences 28, pp. 270-299, 1984.

PZK is the class of languages with perfect Zero knowledge proof systems, i.e. the simulator must
generate exactly the same distribution, and SZK is the class of languages with statistical Zero Knowledge
proof systems, i.e. the simulator must generate a statistically indistinguishable distribution from the verifier’s
view.

