6.876/18.426: Advanced Cryptography February 19, 2003

Lecture 4: ZK Proofs and Proofs of Knowledge

Scribed by: Susan Hohenberger

1 Recap

Recall our working definition of a zero knowledge proof system. We say that (P,V) is a
ZKPS for language L if the following conditions hold:

1. Completeness: Vz € L Pr[(P,V)[z] = “Yes”] > 1 — negl(k).
2. Soundness: Vz € L VP' Pr[(P',V)[z] = “Yes"] < 1.

3. Zero Knowledgeness: (most general definition)
YWhor 3Sppt Vz € L Va € {0,1}* VIEWYSY (2;2,a) = S(z, a).

In this definition, we attempted to capture our intuition about what a zero knowledge
proof system should be. We wanted that for all knowledge that V' gets from talking to
P, there is some “easy” strategy to obtain this knowledge, and therefore V' learns nothing
important from talking to P (except the truth of the statement that they are discussing).
We learned in Lecture 3, that V' must still not learn anything important, even if she talks
to P using knowledge that she learned in an earlier conversation. We were able to satisfy
these intuitions, at least for the graph isomorphism protocol (IS0O), by adding an advice
string. So, are we done? Have we correctly defined a zero knowledge proof system? Let’s
test it on another example.

2 Another Example: Graph Non-Isomorphism

The language NISO consists of all pairs of graphs (G, H) such that G % H. Recall our
previous (IPS) proof system for proving membership in NISO.

1. V randomly selects either G or H (wlog, assume G is chosen). Next, V randomly
selects a permutation 7, and sets 7(G) — C. V sends C to P.

2. Since G 2 H and P has infinite time, P figures out which graph C' is isomorphic to,
and returns one bit to V indicating G or H.

3. If P was incorrect, V rejects, otherwise, V accepts.

Now, we ask the question: is this a zero knowledge proof or not? It is not immediately
clear. We reason that our definition captures our intuition; we have blind belief; we hope
that any bugs that arise from this protocol might become features in our definition. But,
alas, there is cause to worry. In the above protocol, P is deterministic, which seems very
dangerous. Can a malicious V' extract something from P? Unfortunately, the answer is yes.

4-1

2.1 Break in the Naive Protocol for NISO

To understand why the above protocol is not zero knowledge, let us first consider an example:

Suppose a company is selling three new aspirin pills. Your friend claims that
all three new pills are really made out of the same protein. You are a master
scientist, so you are able to test these pills. You are willing to compare two of
them and tell your friend, but you want to be paid extra for telling him anything
about the third pill. You worry, however, that in telling him about the first two,
you might reveal something to him about the last pill for free!

The same problem might arise in our previous protocol if V' behaves maliciously. Sup-
pose she was given three graphs G, H, C and she does not know anything about them. Now,
P might agree to prove that G % H, but no more. Here V' can take advantage of P by
sending C' instead of a random permutation of G or H according to the protocol. If G = C
or H = C, then P would not be able to tell that V' had cheated him, and V' would learn
something nontrivial about C. This is certainly not zero knowledge (assuming that testing
graph isomorphism is hard)!

An observation was made at this point that in this NISO protocol V' is allowed to
send many bits of information to P (i.e. C), but in the ISO protocol V' only sends one
bit. Another way to look at this is to say that in the ISO protocol, S only has to handle
two possible messages from V', while in this protocol, S must handle exponentially many
messages. Indeed, there is a real problem with this protocol, which we will fix shortly, but
we must be careful — even one bit of information (i.e. “She loves me, she loves me not.”)
can be a lot!

2.2 A New Protocol for NISO

We give a new protocol for proving membership in NISO. Our two biggest concerns from
the old protocol were (1) P was deterministic, and (2) a malicious V' could ask about a
graph C that was isomorphic to neither G nor H. We handle the second concern by putting
into the protocol pressure on V' to make the statement:

I know which of G or H the graph C is isomorphic to, but I'm checking that
you can tell, P.

Our new protocol that captures this idea is:

1. V' flips a coin to choose either G or H (wlog, assume G is chosen). Then V' randomly
chooses a permutation 7, and computes 7(G) — X. Now, V' flips another coin to
choose either G or H (say, H), randomly chooses a permutation 71, and computes
71 (H) — X;. This process is repeated until V' has computed X, X1, X, ... Xo, and
sends all these graphs to P.

2. P then flips 2k coins, one for each X;, and sends them to V'.

3. Now, V' must send one last message back to P. For each X; with a corresponding 0
from P, V' reveals m;. But for each corresponding 1, V' either reveals ¢;, such that
$i(X) — X;, or outputs L. Note that ¢; = m; - 7~ ' when X and X; share the same
root graph. (We will later see that it is important that V' not output too many Ls.
In fact, if V' does return ¢; for at least g of the X;s with 1s, then we allow P to abort
the conversation.!)

4. P sends back one bit, indicating whether X = G or X =& H. If P is incorrect, V'
rejects, otherwise, V accepts.

Is this protocol correct? Let’s take it one step at a time. First, we are glad to see that
P now acts randomly. But can a malicious V' still fool us with a graph C' isomorphic to
neither G nor H? We will address this issue shortly, but intuitively we are satisfied that
this protocol puts pressure on V' to make the statement:

I know if G = H or not, but if G =2 H, then you, P, would not be able to tell
what my mind thinks the answer is (i.e. you can not tell for certain my first
coin flip).

P can use the X;s, m;s, and ¢;s, as a way to check that V' is not trying to trick him with
an X isomorphic to neither H nor G. The m;s check that the X;s are not “junk”, while
the ¢;s give strong evidence that X is not “junk”. But, you say, wouldn’t a sneaky V' get
away with cheating (i.e. asking about an X not isomorphic to either G or H), if P selects
random coins such that it puts 1s next to all the g X;s placed strategically for cheating?
Yes; but the chance of this event occurring is exponentially small.

Thus, we have a good feeling that if V' goes through the protocol with P, then we can
conclude that V' knew the a mapping from X to G or H, and therefore is not trying to gain
information about an arbitrary third graph C. Now, let’s prove the correctness of this new
protocol under our working definition.

2.3 Proof of New Protocol

We will prove the completeness, soundness, and zero knowledgeness of our new NISO
protocol.

1. Completeness Vz € L Pr[(P,V)[z] = “Yes”] > 1 — negl(k).

When G % H, P can always decide if X =2 G or X = H (by running his exponential time
algorithm) and send back a correct answer, as long as he is confident that V is not trying to
cheat him. When V is honest, the chance that she looks like she is trying to cheat is exactly
the case where she is unable to answer at least g of her 1-queries, which we already saw

to be negligible. Thus, when both P and V play according to the rules, P convinces V of a

'Why is P allowed to abort? Because it is very unlikely that V' is behaving honestly. Consider that
when V'’ follows the protocol for choosing X;s honestly and P sends a random string, then we expect half the
graphs with 1s to be isomorphic to X, for an expected total of % Using Chernoff bounds, we can show that
Pr[number of graphs isomorphic to X < %] < O(e™®) (i.e. exponentially small). Therefore, if V' does not
produce approximately % correct ¢;s, then with high probability she is withholding information or trying to
cheat and P should walk away.

true statement with probability > 1 — Pr[V looks like she is cheating] = 1 — negl(k). Note
that we are really using the property that completeness hold with high probability, and not
absolutely, in our NISO example today.

2. Soundness Vz € L VP' Pr[(P',V)[z] = “Yes”] < 3.

Assume that G = H and V is honest, now we wish to show that P"’s chances of success-
fully fooling V are less than % To fool V, P’ must successfully guess her first coin flip, that
created X from G or H. He can obviously guess with probability %, but does he get any
information from an unwitting V to do better?

In the first pass, V sends X, X1, Xo,...,Xor. All of these graphs are isomorphic to
one another, chosen independently at random, and therefore, they reveal nothing about the
“real” root graph of X, since they have the same probability of being a descendant of either.
Now, P’ has a chance to send back an arbitrary string, and V will reveal «; for all 0-queries,
and either ¢; or L for all 1-queries. A m; shows a relation between X; and one of the input
graphs; it says nothing about X and therefore, it can reveal nothing about the first coin
flip. A ¢; shows a mapping to X; from X, but since both of those graphs are isomorphic to
G and H, this also reveals nothing. Lastly, 1; tells P that V did not know a mapping from
X to X;, and thus the “root” graph of X; is not the root graph of X in V’s mind. But P’
can see that X; 2 G = H, so what was the root graph of X;? There is no way for P to tell!
Again, P can do no better than guessing.

3. Zero Knowledgeness (most general definition)

Wher 3Sppr Vz € L Va € {0,1}* VIEWSY (2;,a) = S(z, a).

We will now make a habit out of the seemingly contrary practice of making this proof
easier on ourselves by actually proving something stronger. To be exact, we will instead
show:

3SppT YWhpr Yz € L Va € {0,1}* VIEWEY (z;x,a) = S(z, a)

We now construct such an S, that when given [(G, H),a] as input, can create a view,
talking to any verifier, that is identical to the view between that verifier and the prover.

1. S interacts with V' in a black box manner. First, S flips a fair coin repeatedly and
places the resulting string onto V’s random tape.

2. Now, V' awakens, creates X, X1, Xo, ..., X9, in any manner she likes, and sends them
to S.

3. S flips 2k coins and sends the resulting bit string to V'.

4. Now V' will send a final message. It is the job of S to test that for each 0-query, V'
correctly returned a m; such that m;(G) — X; or m;(H) — X;. If this is not true, S
aborts. Next, S must count the number of 1-queries for which ¢;s were returned. If
there are less than g of them, S also aborts. Lastly, S checks that for each 1-query

with a ¢;, it holds that ¢;(X) — Xj; if not, abort.

5. At this point, S should output a bit, indicating if X &2 G or X = H. But, assuming
P # NP, he does not know the answer, and guessing is not good enough. So, S puts
his conversation with V' on hold. He now starts a new conversation with V” on the
same graphs (G, H), giving V" the same random tape as V'.

4-4

6. Since all the input is the same for both V' and V", they choose the same root graph
for X, and send the same X, X1, Xo,..., Xor to S.

7. S uses its cleverness here, creates and sends a new random string to V”. Then it
eagerly awaits the reply.

8. Once V" replies, S runs all the checks in step 4. If they all pass, S scans the two
response strings that it has from the two verifiers. If it finds a position j in which
one verifier gave m; (for a 0-query) and the other verifier gave ¢; (for a 1-query), then
it celebrates. S can now solve for the root graph of X, by computing ﬂ;1(¢;1(X))s
which will equal either G or H. Tt returns to V' and sends back the correct answer.
However, if no such position j occurs between these two message strings, then S takes
two steps. First, S does a constant amount of work on the exponential algorithm that
decides membership in NISO on (G, H). Secondly, he aborts his conversation with

V" and starts up a new clone of the verifier on the same input and random string.

9. S will always respond correctly to V/; either by finding a match in two response strings,
or by solving the exponential time NISO algorithm, a few steps at a time.

Okay! To convince ourselves that this achieves zero knowledgeness, we should focus on
two main concerns (all other parts of the definition are fairly easy to confirm): (1) will
S finish in probabilistic polynomial time, and (2) is the conversation between S and V'
indistinguishable from what we would expect from P and V'?

Concern 1: Does the simulator run in probabilistic polynomial time?
First, let’s define what we mean by PPT. Generally speaking, there are two types:

1. Strict polynomial time, with coin flips.

2. Expected polynomial time, with coin flips.

Unfortunately for us as cryptographers, we must allow S to be the latter for our NISO
example to succeed.? If S is so unlucky as to never find a match , then his worst-case running
time will be exponential. But what about his expected running time? Each conversation
between S and a verifier is polynomial in time; the question is how many conversations will
be necessary?.

Let p be the probability that the verifier knows the answer to an entire bit string from
S. First, it is obvious that we need two good answers from V' (either by opening a new
session or rewinding). In this case, we have a formula for the E[runtime of S]:

1
Pr[V aborts]1l + Pr[V does not abort]E[time to second right answer| = (1 —p) + p— <2
p

But we actually need something more than just that V/ responds correctly twice. We
need to be sure that the responses are to two different random strings. Let n be the number

2See the paper by Barak and Lindell[BL02] on the uncomposability of expected polynomial time, the
heartache it causes in cryptography, and our current inability to do without it.

4-5

of strings of length k for which V' knows a valid response. Then the E[runtime of S]:

k
Pr[V knows response| E[time to ask diff string] = (ﬁ) (2) =
2k) \n—1 n—1

If V' only knows the valid response for 1 string, then the expected runtime of S is oo!
So this is obviously a problem. Also, what if V' responds correctly to two different strings,
but in the only position in which they differ, she returns L for the 1-query?

We need for her to give us m; and ¢; information about the same X;; we want to prove
that we will get this information after a polynomial number of expected queries. Suppose
that the probability that when the verifier V' is given a random string challenge it makes a
valid response is p, so it should only take us an expected 1/p trials for each valid response to
a random string we need to get. All we need is that the verifier V' correctly answers a new
random challenge which is a 0 in a place where V' gave a ¢; before. Since, on expectation,
1/6 of the bits are ones where this is possible, the probability that a second, correctly
answered, random challenge doesn’t give the information we need is 1/ 2k/3 we can see that
it is very likely we’ll recover the answer of V' in polynomial time.

One interesting question that arose in class was: why not just save time by running the
protocol with V", guessing the correct answer, seeing whether or not V" accepted, and then
giving an answer to V' accordingly. Do you know what a poker face is? Maybe V" has a
good poker face. What does it mean for V" to accept? V" may not give an indication if she
liked the response from S or not, and S must simulate the view regardless of V"’s behavior.
Afterall, V" could be a robot, and whether or not she would even have emotions to show,
is well outside the scope of this class.

Concern 2: VIEW\E’,V' (z;z,a) = S(z,a)??

We look at the views of S and the true P; are they the same? Yes, they are. Observe
that S and P both generate a random string, then they both abort if V' responds in a
suspicious manner. Otherwise, they will both always return the correct answer. P can
do this, because he has infinite time; and S can do this, because he can either check that
W;I(qﬁ;l(X)) — G or ﬂ}l(qﬁ;l(X)) — H, or run the brute force algorithm, a few steps at
a time, whenever he gets into trouble. Thus, S has the same odds as P in producing the
{(conversations, coins)} that this protocol creates.

We already argued that S “gets into trouble” an exponentially small amount of the time.
With that idea in mind, we ask the question: why not just let S abort when he gets into
trouble instead of running exponentially long? One objection might be that S would no
longer be always acting like P, since P never aborts unless V' behaves suspiciously. But,
we know this difference in behavior would only occur an exponentially small amount of
the time, so it is unlikely that S will ever get caught acting differently than P. In fact,
this is good enough. Previously, we have been working with an idea called Perfect Zero
Knowledge, in which the views of S and P must be identical. An example of Perfect Zero
Knowledge was our 150 proof. Let X and Y be two distributions over a finite set D.

Definition: X and Y are perfectly indistinguishable if Ya € DPr[X = a] = Pr[Y = a]
Theorem: Let Zy and Z; be perfectly indistinguishable. Then YAPr[b < {0,1};a «
Zy; b« Afa) : U =b] = 1.

4-6

Now, we introduce a concept called Statistical Zero Knowledge, in which the views
of S and P need only be statistically indistinguishable. The intuition here is that even
an unbounded adversary, given only polynomially many samples from either distribution
VIEW?EY (z;x,a) or S(z,a), can not tell which it is with an advantage better than negligi-
ble.

Definition: X and Y are statistically indistinguishable probability distributions over set D
if Y ep |Pr[X = a] — PrlY = a]| < negl(k).

Theorem: Let X and Y be statistically indistinguishable. Then, for any polynomial p,
given p(k) independently chosen samples, no adversary can tell X from Y with advantage
better than negligible.

Thus, for all practical purposes, two statistically indistinguishable distributions, notated
2 are the same, since any polynomially bounded verifier can not tell them apart. We add
this notation into our definition for a ZK PS. Notice that three different forms of fuzziness
in our working definition were all used by this NISO example: (1) completeness with
high probability (> 1 — negl(k)), (2) expected polynomial time (PPT), and (3) statistical
indistinguishability. The good news is that we are making our notion more precise!

Zero Knowledgeness: (most general definition)
YWhor 3Sppt Vz € L Va € {0,1}* VIEWYY (z;2,a) = S(z, a).

3 Zero Knowledge Proofs of Knowledge

What else can we learn from the N1SO example? Recall the situation. The verifier got the
prover to convince her that G 2 H, by in turn convincing the prover that the graph X that
she was using in her test was indeed isomorphic to G or H. But the beauty here, is that
the verifier was able to convince the prover of this fact without revealing the root graph of
X. One might say that the verifier gave a “zero knowledge proof of knowledge” about X.

Let’s consider a second example: discrete logs. Let G be a group of prime order p. Let
g € G be a generator for this cyclic group. We choose a random y such that 1 <y <p—1.
Now, we know that there ezists an = such that ¢ mod p = y, but finding that z is a different
story, generally considered to be very hard. If you know an z such that g* mod p = y, how
could you convince me of that without telling me which z you have in mind?

Our take-home assignment from this lecture is to try to formalize in a definition the
intuition behind a Zero Knowledge Proof of Knowledge (ZKPOK). The idea is “I know a
secret 7, but I want to prove to you that I know it without revealing which 7 I know.”
Good luck!

References

[BL02] Boaz Barak and Yehuda Lindell Strict Polynomial-time in Simulation and Extrac-
tion. Proceedings, 34th Annual ACM Symposium on Theory of Computation (STOC),
pp. 484-493, 2002.

