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Lecture 2: The Notion of Zero-Knowledgeness

Scribed by: Loizos Michael

1 Recap

Recall from the last lecture the language ISO = {(G, H)|G = H}, which contains all pairs
of graphs which are isomorphic to each other. Also recall the Interactive Proof System for
IS0 defined as follows. On input (Gp,G1) € IS0:

1. The prover P randomly generates a graph C that is isomorphic to both Gy and G; and
sends C to the verifier V. This can be clearly done by choosing a random permutation
7 and setting C = 7(G1).

2. The verifier V randomly chooses a bit b and sends b to the prover P.

3. The prover P computes the permutation o for which ¢(Gy) = C and sends o to
the verifier V. This permutation always exists and is computable by the prover P.
In fact, c = 7 if b =1 and 0 = wo ¢ if b = 0, where ¢ is the permutation for
which ¢(Gy) = G1. Recall from last lecture that permutation ¢ is computable by the
computationally unbounded prover P.

4. The verifier V checks whether o(Gy) = C and accepts if and only if this is the case.

Notice the asymmetry in the definition of the protocol. The behavior of the two inter-
acting parties is well defined in the case where (Go,G1) € IS0, but nothing is mentioned
about the case where (Go, G1) ¢ IS0O. This should be anticipated, since we are defining a
protocol for proving that two graphs are isomorphic to each other; so it does not make sense
to speak of the case where the two graphs are not isomorphic. However, we can imagine
that in the latter case, an honest prover P would aboard the protocol, possibly sending a
message of the type “These two graphs are not isomorphic to each other”. This leads to
the following question. Since the protocol is not defined when (Gy, G1) € IS0, what is the
behavior of a malicious (or dishonest) prover in that case? Well, in this case we can say
that the malicious prover P’ will actually try to deceive the verifier V into believing that the
two graphs are isomorphic to each other. As we have seen in the last lecture, the verifier
V is “protected” against such malicious provers by the soundness of an Interactive Proof
System. Let us recall the two constituents parts of an IPS (for a more detailed discussion
refer to the previous lecture).

Definition: A pair of interacting Turing Machines (P,V) is an Interactive Proof System
for a language L, if the following properties are satisfied:

1. Completeness: Vz € L, Pr[(P,V)[z] = Yes] = 1.
2. Soundness: Vz ¢ L,VP', Pr[(P',V)[z] = Yes] < 1/2.
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2 Preliminaries

We have seen last time that the presented IS0 protocol is an IPS. In fact, we finished by
saying that this protocol has an additional property: “it leaks no information”. Intuitively,
this is what we will call the zero-knowledgeness property of an IPS. An IPS (P,V) for
a language L has the zero-knowledgeness property, if the only knowledge that a verifier
gets out of its interaction with a prover that tries to prove that some z is in L is that
the statement is indeed true and nothing more. We defer a more formal definition of this
property, until some background notions are first defined.

2.1 Asymmetry of the Zero-Knowledgeness Property

Notice again the asymmetry in the definition of the ZK property. Nothing is mentioned
about the conveyed knowledge in the case where a string x is not in L. In a similar way as
earlier, we can claim that we do not care about that case, since the protocols we examine
are concerned about proving that a string belongs in a language and not that a string is
outside a language. If this is not convincing, then we simply have to accept this treatment of
“half of the world” as part of the definition of the ZK property. After all, this bias towards
the positive instances is not foreign to Computer Science. The well-known complexity class
NP is biased towards the languages whose elements have an easily verifiable witness, i.e.
if an element is in the language, then we have an easy way to verify that. The definition
says nothing about the case where an element is not in the language. In fact, it is believed
that for some languages in NP (the N P-complete languages), there does not exist an easy
(efficient) way to verify that an element not in the language is indeed not in the language.
This follows from the belief that the complexity classes NP (all the languages for which
the elements in a language can be easily verified to belong in the language) and coN P (all
the languages for which the elements not in a language can be easily verified not to belong
in the language) do not coincide.!

As a last comment to the asymmetry in the definition of the ZK property, observe later
in the lecture where a formal definition is given, that we are only concerned with cases
where a (possibly dishonest) verifier interacts with an honest prover. According to our
comments from the previous section, if an element is not in the language then the honest
prover can simply aboard the protocol. This gives, trivially, no information to the verifier,
other than the fact that the element does not belong in the language. This argument should
be sufficient to convince that even if we insist in considering the case where an element does
not belong in the language, the definition of the ZK property can be trivially extended to
encompass that. After all, what we want is a proof that reveals nothing except that the
theorem is true.

2.2 Knowledge Act

We now proceed to define the necessary background that will enable us to give a formal
definition for the ZK property. There are some simple rules that we will follow when we

!The intersection NP N coNP of the two complexity classes is not considered, since we do not know of
any complete problem for this class, i.e. we cannot fully characterize the “strength”/“power” of this class.
In other words, it may be that P # NP but P = NP NcoNP.
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wish to prove that an IPS satisfies the ZK property. These rules will be collectively called
the “Knowledge Act” and as the name colorfully suggests, they will “regulate” what we
consider knowledge? to be.

Definition: We will refer to the following rules as the Knowledge Act:

1. Randomness comes for free.

2. Polynomial time computation comes for free.

What the Knowledge Act implies is that by learning the result of a random process or
the results of a polynomial time computation we gain no knowledge. Why? Well, consider
the following two scenarios:

You walk down the street and some person approaches you saying that he will
sell you a 100-bit random string for $1000. Do you accept the offer?

You walk down the street and some person approaches you saying that he will
sell you the product of two prime numbers of your choice for $1000. Do you
accept the offer?

We would definitely reject the first offer on the basis that we can generate our own
100-bit random string for free by simply flipping a coin! Similarly, we would also reject
the second offer on the basis that the proposed product can be easily computed for free;
everyone can efficiently multiply two prime numbers.

What do all these mean? That we do not need to “buy” something that can be com-
puted efficiently, since we can simply compute it ourselves. Recall that efficiently means
in probabilistic polynomial time. And that is exactly what the Knowledge Act states: (a)
probabilistic (randomness) and (b) polynomial time come for free. In the same way that
we would not “buy” something that is PPT computable, by the Knowledge Act anything
that is PPT computable does not convey any knowledge.

So far we have defined what does not convey knowledge. To make things totally clear
let us consider yet another scenario:

You walk down the street and some person approaches you saying that he will
sell you the output of an exponential time computation for $1000. Assume for
example that the person is selling an isomorphism between two (isomorphic)
graphs. Do you accept the offer?

Now we should think carefully before rejecting this offer. In fact we want to consider this
offer (although we might want to bargain for the price!). An exponential time computation
is hard to perform and we could not simply carry it out by ourselves.3

*Note that information and knowledge are two completely distinct concepts. Indeed, from Information
Theory we know that a random bit string contains much information. On the other hand, by the Knowledge
Act a random bit string does not convey any knowledge. So we should be careful when using the words
“information” and “knowledge”, as they are not synonyms. Nevertheless, since this course is concerned with
knowledge and not information, we might some times use the word “information” when actually referring
to knowledge.

3Here we assume that we are acting as a PPT algorithm, since ultimately the goal is to have the verifier
of an IPS play the role of the potential buyer.
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What this example illustrates is that hard computations (i.e., not PPT computable) do
not come for free. In the same way that something that is not PPT computable is not free,
by the Knowledge Act anything that is not PPT computable conveys knowledge.

3 Proving Zero-Knowledgeness

Having provided the required background and intuition, we proceed to show how one might
go about proving that an IPS satisfies the ZK property. We will not present the final result
from the beginning. Rather we will iteratively improve our proposed scheme and in parallel
refine and formalize the definition of the ZK property.

3.1 Knowledge in an Interactive Proof System

As we have discussed, ultimately we wish to prove that an IPS does not convey any knowl-
edge, other than the fact that an element belongs in a language. This raises the following
question. What else could possibly be conveyed by a proof other than the fact that the
proven result is actually a valid one? This question can be answered without even consid-
ering Interactive Proof Systems. Indeed, consider a static proof (i.e., a traditional proof)
of a statement. What knowledge do you get by reading the proof? Well, for one you learn
that the statement proven is actually true. But you get more than that. You also learn a
way to prove that the statement is correct. After reading the proof you can go and convince
another person that the statement is correct. This ability or knowledge was acquired by
reading the proof.

In a more abstract way, we can view this additional knowledge being conveyed in an
interactive proof. Consider for instance the 1SO TIPS we have seen earlier. The outcome
(P,V)[z] of the interaction of the prover P and the verifier V on an element z € L is: (a) a
proof that the element indeed belongs in L and (b) a set of messages (collectively called a
conversation) that were exchanged between the two interacting parties. We will denote this
set of messages with VIEWp y([z].* Since we are concerned with what the verifier learns
from such an interaction, we will restrict VIEWp y[z] to the messages send by the prover
P, since the verifier’'s messages are already known to the verifier!

The proper way to view a conversation produced by the interaction of two parties on
some common input, is as if the two parties choose a string from a set of strings over some
distribution, through their interaction. Thus, a conversation is a string being chosen from
some distribution. VIEWp y[z] then is to be viewed as a distribution over all the possible
sequences of messages sent by the prover P in the set of interactions that can be produced
by (P,V)[z] and not as the sequence of a specific interaction.

Based on the above, in order to obtain zero knowledge from an IPS (P, V)[z] we need
to prove that VIEWp y[z] can be easily (i.e., PPT computable) generated by the verifier
V, in the case where = € L. Notice how the Knowledge Act allows us to compute anything
in PPT for free. Also notice how the asymmetry we have encountered in our first intuitive
definition of the ZK property, carries on to this slightly more formal definition.

4This is not our final definition of a view, but rather a bad one used for educational purposes. However,
it will suffice for now.



3.2 Subconscious / Simulator

Striving for a more formal definition of the ZK property we proceed to examine the single
most important notion in proving that an IPS conveys zero knowledge: that of the subcon-
scious or the simulator. We present this notion by examining how one would apply it in
proving that the ISO IPS satisfies the ZK property, or equivalently that if the two input
graphs Gy and G are isomorphic then the verifier can easily generate the conversation that
results from (P, V)[(Go, G1)].

As a first step we “kill the prover”. Since we are trying to show that the verifier can
single-handedly produce a conversation, then the prover should not be used and we can
safely dispense of it. Next, we consider that the verifier is in a “subconscious” state, call
it Sppr. In this state, the verifier acts as a PPT algorithm who is trying to construct a
conversation, whose behavior we define below. To avoid confusion, from now on we will
refer to the conversation produced by the ISO IPS we have seen earlier as the “original
conversation” and to the conversation produced by Sppt as the “simulated conversation”.
Also remember that we work under the assumption that the two input graphs Gy and G,
are isomorphic.

In the original conversation, the prover P selects a random graph C' isomorphic to Gy and
(1, then the verifier V chooses a random bit b and finally the prover P returns a permutation
7. In the simulated conversation the order of events is slightly different. Sppt first chooses
a random permutation 7, then chooses a random bit b and finally computes C' = 7(Gy).
Notice that in both conversations C is a randomly chosen graph that is isomorphic to
both Gy and G;. The bit b is also chosen at random in both conversation. The fact
that the two events occur in reverse order in the two conversations does not matter, since
the random choices are independent of each other and thus they cannot affect each other,
regardless of the order they are computed. The only open end is that while in the simulated
conversation the permutation 7 is selected randomly, we do not know how 7 is selected in
the original conversation. Since the protocol does not specify it, it would be possible that
the prover selects the first permutation in lexicographical order. To completely close this
end, we simply “polish” our original I SO protocol so as to select C' at random, by choosing
a random permutation 7. In total, the original and the simulated conversation have the
same probability of occurring.® Actually, what we have presented here is one round of a
conversation. It clear that one could repeat the same line of reasoning to create k rounds.

Once more we are tempted to ask what happens in the case where the two input graphs
Go and G; are not isomorphic. We can still produce a valid simulated conversation, but
such a conversation is meaningless since it will never appear. Recall that we are considering
an honest prover and we have already seen that such a prover will simply abort the protocol,
thus not producing any conversation. In any case, whatever our treatment is for this case,
such valid simulated conversations occur with negligible probability.

Summing up, we do not know what the behavior of the prover will be in the case where
x ¢ L (since our protocol does not define it) and thus the best we can deliver is for Sppt to
produce the same distribution over conversations in the case where z € L.

A corollary of our preceding discussion is the following.

5The notions outlined here are considered to be hard and will be dealt with in the next several lectures.
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Corollary: The simulated (false) conversation and the original conversation are indistin-
guishable.

Intuitively, if the conversations were distinguishable, then we could write down a con-
versation and check whether it is produced by the prover P or not (i.e. whether it is an
original or simulated conversation) and accordingly decide whether the two input graphs
Go and G are isomorphic in PPT.

3.3 Formal Definition of Zero-Knowledgeness

Our first attempt for a formal definition comes from our discussion in the previous subsec-
tion, where only an honest verifier was considered.

Definition (First Attempt): An IPS (P, V) for a language L has the zero-knowledgeness
property, if 3SppT,Vz € L, VIEWP,V[I] = S[z].

What this definition says is that, there is a way (3SppT) to imitate the prover P such that
if z € L the probability distributions of the simulated (S[z]) and the original (VIEWp v[z])
conversations are indistinguishable (equal). To see why this is the correct way to define the
ZK property, consider the following scenario:

You are a criminal reporter and a crime has just taken place. You are considering
whether you should even bother getting out of bed and interview the inspector
for the crime. Under which circumstances you would decide that staying in bed
is the best solution?

An obvious answer (and the one we are looking for) to the question is that you would not
bother interviewing the inspector if you could produce by yourself (simulate) an interview
(conversation) that cannot be distinguished from an actual (original) interview with the
inspector. Since no one could tell the difference between the two interviews, you might as
well continue your sleep and later create a simulated interview for the newspaper you work
for.

It seems that our first attempt contains some correct ideas, but is not still completely
correct. Since we view the verifier as trying to get as much as possible out of a conversation
with the prover, we wish to relax the condition that the verifier follows a predetermined
protocol (i.e. that the verifier is honest). Conceivably, a devious verifier could extract
more knowledge from a conversation. Since we wish to define zero-knowledgeness, then
no one (not even a dishonest verifier) should be able to get additional knowledge from a
conversation. These ideas lead to the following refined definition.

Definition (Second Attempt): AnIPS (P, V) for a language L has the zero-knowledgeness
property, if YV', 35401, Vo € L, VIEWp v [z]S[z].

Unlike the previous definition, this allows for an arbitrary verifier (VV'). For each such

verifier, the definition is identical to our earlier definition. That is, there is a way (3Sppt)
that depends on the verifier, to imitate the prover P such that if x € L the probability
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distributions of the simulated (S[z]) and the original (VIEWSp \/[z]) conversations are in-
distinguishable (equal). Notice that when we refer to the simulated and original conversation
here, we mean conversations in which V' plays the role of the verifier.

Notice the same motive we have in the definition of soundness for an IPS. Both in the
definition of soundness and in the definition of the ZK property we treat the prover and
the verifier asymmetrically. In soundness we require that the result holds for all provers
(no prover can prove a wrong statement). In zero-knowledgeness we require that the result
holds for all verifiers (no verifier can gain additional knowledge).

Continuing our previous example, the reporter would have no reason to talk to the
inspector, if the former was behaving according to some known (to the inspector) protocol,
since then the inspector would be in position to answer in such a way as to reveal no
knowledge. However, if the reporter could behave maliciously and use some tricks, then it
could be possible that the inspector would fall into the trap and accidentally reveal some
knowledge. What our new definition says is that even in this case the inspector P can
outsmart the malicious reporter and convey no knowledge, other than what the smart and
easily computable (V' is still assumed to be PPT) reporter can compute in a lazy way (using
S', thus V/ can stay in bed!) and easily computable (S’ is assumed to be PPT) way.

So, our second definition for the ZK property seems to be the correct one, in the sense
that it captures what we intuitively expect, according to the Knowledge Act. It is as if we
have now defined the perfect island, but can we ever hope to go there, or is our island a
utopia®? Are there Interactive Proof Systems that can satisfy the ZK property, or can we
never achieve this stricter definition of the ZK property (as opposed to our first attempt
which is attainable as our example on the I.SO IPS shows in the previous subsection)?

It turns out that we can attain the ZK property and in fact in most cases by using the
same ideas as in proving the weaker (first attempt) definition of ZK property. That is, by
trying to construct an IPS that satisfies the property than an honest verifier cannot gain
any additional knowledge from the protocol, we often end up with an IPS that satisfies more
than that and in particular it satisfies the stricter / stronger / more constraint definition
of the ZK property.

3.4 Black-Box Simulators

Before seeing a way in which one can prove that an IPS satisfies the ZK property, we will
try to get some insight on what a zero knowledge IPS looks like. As always we will proceed
by examining the ISO IPS.

Notice in the 150 IPS that what the prover sends to the verifier is a random isomorphism
C of one of the input graphs and a random permutation 7. That is, all the verifier gets to
see from the prover is just the output of a PPT computable function, i.e. either random
strings, or things that can be efficiently computed. We have intuitively argued that this
IPS satisfies the ZK property. This is consistent with our definition of the Knowledge Act,
since the prover conveys only information that comes for free (i.e. can be easily computed
by the verifier) and thus this information conveys no knowledge. In fact, this is not a
simple coincidence. In any zero knowledge IPS we expect that the messages coming from
the prover will only comprise of the outputs of PPT computable functions, for otherwise we

5The word “utopia” comes from the Greek work “ovromia” which means “a non-existent place”.
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cannot hope to simulate the prover by a PPT algorithm, namely SppT, and thus we cannot
hope to prove that the IPS satisfies the ZK property. To state it once more in a more direct
way, in every IPS that satisfies the ZK property, the prover only sends messages that are
PPT computable.

Now, let us see how we can prove that an IPS satisfies the ZK property. Recall that we
wish to consider any (possibly malicious) verifier V/. Since the verifier V' is not bound by
the IPS protocol, it can choose its messages in any way it likes. In particular, in the 15O
IPS, the verifier V' does not have to select its bit b at random, but can choose it (actually,
compute it) based on what it has already observed (i.e. it adapts its behavior based on the
previous messages in the conversation). Even so, we will see that there is nothing much
the malicious verifier V' can do compared to the honest verifier V and thus no verifier can
extract additional knowledge from the ISO IPS.

Formally, a verifier V' is a PPT Turing Machine with two tapes; a random tape R and
a work tape W. The Turing Machine can only read from tape R and always moving its
head towards the right, while it can read or write on tape W moving in both directions. We
also wish for the computation to end in a finite number of steps. Notice that this approach
treats the verifier V' as a black-box. We do not know and we do not care how the verifier
V' works internally. We only care of its output on an input. We can now use this black-box
verifier V' as a subprocess of a simulator S,p and use the latter simulator to prove that an
IPS (P,V) has the following property:

IShpr, VW, Vz € L, VIEWp \[2]S" [2].7

Notice that this property is stronger than the ZK property. In other words, if we can
prove that an IPS systems has this property (in which case we will say that the IPS has a
black-box simulation), then this implies that the IPS also has the ZK property. Indeed, if
an TIPS has a black-box simulation then there exists a global algorithm Spp1 (not depending
on the verifier V'), which can imitate the prover P, while if an IPS simply satisfies the ZK
property then this algorithm depends on the verifier.

We might ask why not use the existence of a black-box simulation as the definition
of the ZK property; after all this is what we will be proving. Well, the definition of the
ZK property is adequate for capturing the intended behavior and there is no reason to
strengthen it. Besides, it is possible that some day we might come up with a way to prove
the ZK property for an IPS directly, without being able to prove the stronger property of
an IPS having a black-box simulation.® Keeping the definition of the ZK property as is
ensures that in that case our proof will be sufficient.

3.5 An Example

We finally can apply all the ideas in the previous subsection to see how a black-box simula-
tion can be constructed for the case of the I.SO IPS. What we need to show is how we define
the simulator algorithm Sppt, given a black-box for a verifier V', such that the simulator

"Here AP means that algorithm A uses algorithm B as an oracle. That is, A can ask a query and get
an answer from B. From a complexity point of view, each query to B is only charged as a signle step of
computation, even if B takes exponential time to perform its computation.

8In fact, this has been done to a small degree, and we intend to get to this later in the class
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produces a conversation indistinguishable from the original conversation between P and V'.
On input (Go,G1) € IS0, the first step is to fill the random tape R of V' with a random
string. Then to produce a single round ¢ of a conversation:

1. The simulator Shpt selects a random bit b;, a random permutation 7; and computes
C; = mi(Gp,). That is the simulator Sppt creates a possible round of a conversation.

2. The simulator Sppr sends (feeds) C; to the black-box verifier V/ and gets the output
d;, which is what the verifier V' would have returned if it were an actual conversation
and it received C; from the prover P.

3. The simulator Sppr checks whether b; = d; and if yes, it keeps the created round.
Otherwise, it ignores the created round and repeats the scheme. Essentially, what the
simulator Sppt does here is that it checks whether the simulated round could have
been produced by the interaction of the prover P with the actual verifier V'. It is easy
to see that the verifier V' accepts the round if and only if b;d;.

Remark: In the third step, we could ask that in addition to rejecting a round, the verifier
V' should be reset back to the state it had before the round started and thus to forget that
the failed round ever took place. This however is unnecessary, given that even if the verifier
V' keeps track of all the failed rounds, he still has no way of predicting the random choices
that the simulator Spp1 (in the simulation) or the prover P (in an actual conversation) send
to it.

A colorful example that gives some intuition on the above algorithm is the following.
We try to achieve a goal. If it succeeds, we simply continue onwards. If it fails, we behave
like an ostrich! We put our head in the ground and pretend it never happened.

Using the above algorithm, the simulator Sppt can construct a k-round conversation.
Notice that the idea presented in the algorithm is in fact very general. One could pass any
test / exam using a similar approach, as it is illustrated in the following scenario:

You are allowed to take an exam as many times as necessary. What you do then,
is you select a random chapter in the book (that contains, say, ten chapters)
and you only study that. If the exam happens to be on that chapter, then you
pass the test. Otherwise, you repeat the whole scheme from the beginning.

Here the test maker plays the role of the possibly malicious verifier. The test maker
is determined to make you fail the test and will use whatever means possible in creating
the exam, including keeping a track of all your previous attempts. Now, since you always
choose one chapter at random, then no matter what the test maker does, you always have
a 1/10 probability of passing the test. In particular, you expect that you will pass the
test in 10 tries. In the same way, the simulator Sppt chooses the random bit b; at random
and “passes the test” if the test d; happens to match its selection. No matter how the
verifier V' chooses d;, there exists a 1/2 probability of “passing the test” and this happens
in an expected number of 2 tries. In total, we create a k-round conversation in an expected
number of 2k tries.

One important distinction is that unlike our scenario where the test maker gets no
information from you prior to the exam, here the verifier V' gets a graph C;m;(Gy,) whose
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creation involves b;. However, this does not help the verifier V' since C; is a random graph
isomorphic to both Gy and Gy, since (Gy,G1) € ISO. Thus, the verifier V' has no way of
determining the graph Gy, from which C; was computed and thus has no way of determining
b;.

The above gives the required black-box simulation. Still there remains an open issue. It
is conceivable that the process of eliminating failed rounds might skew the distribution over
the possible resulting simulated conversations so it would no longer be indistinguishable
from the distribution over the original conversations. For example, if the professor were to
ask every student in the class with short hair to leave, then the distribution of the remaining
students in the class with respect to the length of their hair is no longer random, but skewed.
This is not exactly the case in the pruning of failed rounds. Unlike the “short-hair” pruning,
the pruning of failed rounds is done totally at random. Recall that a round is pruned if and
only if b; # d; and b; is chosen at random. So in some sense we only forget things that we
didn’t know and thus the distribution is not affected. The following scenario makes things
totally clear:

the TA closes his eyes, while the professor writes a random string on the board.
Then the TA (without looking at the board) successively keeps or rejects (at will)
each bit in the string. If we only consider the bits that the TA kept, then we
have a randomly chosen string!

In the scenario above, the professor plays the role of the simulator S’PPT and the random
string on the board stands for all the random b}s the simulator Spp creates. the TA plays
the role of the verifier V' and the fact that he cannot see the bits on the board resembles the
fact that the verifier V/ has no information about the bs of the simulator Sppy. The choices
of the TAon whether to keep a bit or to reject it correspond to the verifier V' selecting a bit
d; as its output and comparing it with b;, keeping the former if and only if b; = d;. As a
variation that will bring the example closer to the algorithm, the TA announces a bit value
(0 or 1) andthe professor keeps the corresponding bit on the board if and only if it matches

the TA'sbit value. In this variation,the TA'sbit value is d; and the bit b; on the board is kept

if and only if b; = d;. In the same sense that rejecting bits based onthe TA'schoices does
not affect the distribution of the resulting bit-string, neither does rejecting rounds based
on the verifier’s response affect the distribution of the resulting conversation. In both cases
the pruning is blind and thus preserves the distribution.

4 Summary

Concluding, in today’s lecture we have seen that the proposed ISO IPS that was introduced
at the end of the last lecture satisfies the ZK property. That is, in addition to the fact that
there exists a very easy prover algorithm P and a very easy verifier algorithm V which
together constitute an IPS for 1SO, we have also seen that there exists a fixed simulator
algorithm S’ independent of the input (Go, G1) € IS0 and the verifier V', that can simulate
a conversation. Thus, in the case where (Gy,G1) € ISO, no one can extract knowledge
from the ISO IPS, other than what one could have computed in a “lazy and easy” way.
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