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Handout 6: Equivalence of GM and Semantic Security

The TA's came up with a simple proof that if a cryptosystem is GM-secure, it is also
semantically secure. Below is their original write-up of this proof.

Notation: Note that in this write-up, the cryptosystem in question is denoted as C,
the key-generation algorithm is also denoted as C and the public key is denoted by E.
Furthermore, when FE is a public key, the notation E(m) is used to denote the encryption
of message m using public key E. (This notation is quite natural if you think of the
key-generation procedure as producing the code of the encryption algorithm with the
public-key hard-coded in.)

GM Security — Semantic Security

We show that — Semantic Security = — GM-Security. Let {M,,} be message spaces,
f be a polynomial-time computable function, and {A,} be circuits such that for a fixed
¢ > 0 and infinitely many n

Pr{A,(E,a) = f(m) | m = My, E « C("), 0= E(m)] >+ - (1)

where p = Eg._can)[pe] is the expected prediction probability without the knowledge of
Q.

Consider the following algorithm 7, : (E, mg, my,a) — {0, 1}.
1. Let g« A, (E,q).
2. If B = f(mo) but 8 # f(my), output 0.
3. If B = f(my) but 5 # f(myg), output 1.

4. Otherwise, output a random value from {0, 1} with probability % each.

The test is very intuitive. We simply run A,, on the challenge . Since we expect A, to
correctly predict the value of f, we compare its output 5 with f(mg) and f(m;). Note
that the test is clearly polynomial time since all the steps (including computations of f)
are polynomial time.



If exactly one of the tests succeed, we output the corresponding message. Otherwise, we
flip a coin as we did not learn anything. For specific mg and my, let

q(mo,my) = Pr[T,(E,mo,my,a) =i |i €, {0,1}, E «— C(1"), 0 «— E(m;)]

be the probability that T, distinguishes encryptions of mgy and m;.

We show that T, violates the GM-security of C by finding two particular messages mgy and
my that are distinguished by T,, i.e. q(mg,m1) > 5+ 55 (same c as in (1)). To show the
existence of such mg and m; we use the probabilistic method. We pick both mg and my in-
dependently at random according to the given probability distribution M, (that violates the
Semantic Security in (1)). We then argue that 7), has non-negligible expected advantage
in distinguishing a random encryption of mg or my, i.e. ¢ := Epyy iy [q(mo, m)] > %4— 27116.
Hence, the required my and m; exist.

It remains to prove the bound on g. We note that since the algorithm 7;, is symmetric in
mo and mq, q equals to the expected probability that 7, outputs 0 if « is an encryption
of my, i.e. without loss of generality we can assume that ¢ = 0. Now, our experiment
can be viewed as the following. Pick mg < M,,, E «+ C(1"), a «— E(my), § — A,(F, a).
Now we pick a brand new message m, < M, and run steps 2—4 of T},. q is the probability
that we output 0. Before computing ¢, we claim that

Pr[3 = f(mo)] > 5+ ni Pr[6 = f(my)] < (2)

Indeed, the first bound follows directly from (1), as § «+— A, (E,a) and a «— E(my). For
the second bound, we observe that for any fized E, the message m; is chosen independent
of mg, a «— E(myg) and, therefore, 5 «+ A, (E, «). Hence, for any fixed E the probability
that f(my) equals to 3 is at most the probability that it equals to any pre-specified
element, which is at most pg. Since for a fixed F, our probability is stochastically
dominated by pg, we can take the expectation over E to obtain the claimed bound.

Now, using the fact Pr[A A B] + Pr[A A B] = Pr[A], we can compute the probability ¢ of
outputting 0 in the following way:

¢ = Pr[3=f(mo) NG F# f(m)] + %(Pr[ﬁ = f(mo) = f(ma)] + Pr[B & {f(mo), f(m1)}])
= 5 (Pr[8 = f(mo) A B # f(ma)] + Pr[B = f(mo) A G = f(ma)]) +
5 (Pr[B = f(mo) A B # f(ma)] + Pr[B # f(mo) A5 # f(ma)])

(Pr(B = f(mo)) +Pr[ # f(my)]) = = + = (Pr[8 = f(mo)] — Pr[8 = f(my))
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This concludes the proof. [



