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6.875/18.875 Cryptography and Cryptanalysis February 23, 2005 

Handout 6: Equivalence of GM and Semantic Security 

The TA's came up with a simple proof that if a cryptosystem is GM­secure, it is also 
semantically secure. Below is their original write­up of this proof.


Notation: Note that in this write­up, the cryptosystem in question is denoted as C,

the key­generation algorithm is also denoted as C and the public key is denoted by E.

Furthermore, when E is a public key, the notation E(m) is used to denote the encryption

of message m using public key E. (This notation is quite natural if you think of the

key­generation procedure as producing the code of the encryption algorithm with the

public­key hard­coded in.)


GM Security = ⇒ Semantic Security 

We show that ¬ Semantic Security = ⇒ ¬ GM­Security. Let {Mn} be message spaces, 
f be a polynomial­time computable function, and {An} be circuits such that for a fixed 
c > 0 and infinitely many n 

1 
Pr[An(E, α) = f(m) | m ←Mn, E ← C(1n), α ← E(m)] ≥ p̃ + (1) 

nc 

where ˜ = EE←C(1n)[pE ] is the expected prediction probability without the knowledge of p 
α. 

Consider the following algorithm Tn : (E, m0, m1, α) → {0, 1}. 

1. Let β ← An(E, α). 

2. If β = f(m0) but β = f(m1), output 0. 

3. If β = f(m1) but β = f(m0), output 1. 

4. Otherwise, output a random value from {0, 1} with probability 1 each. 
2 

The test is very intuitive. We simply run An on the challenge α. Since we expect An to 
correctly predict the value of f , we compare its output β with f(m0) and f(m1). Note 
that the test is clearly polynomial time since all the steps (including computations of f) 
are polynomial time. 
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If exactly one of the tests succeed, we output the corresponding message. Otherwise, we 
flip a coin as we did not learn anything. For specific m0 and m1, let 

q(m0, m1) = Pr[Tn(E, m0, m1, α) = i | i ∈r {0, 1}, E ← C(1n), α ← E(mi)] 

be the probability that Tn distinguishes encryptions of m0 and m1. 

We show that Tn violates the GM­security of C by finding two particular messages m0 and 
1 m1 that are distinguished by Tn, i.e. q(m0, m1) ≥ 1 + (same c as in (1)). To show the 
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existence of such m0 and m1 we use the probabilistic method. We pick both m0 and m1 in­
dependently at random according to the given probability distribution Mn (that violates the 
Semantic Security in (1)). We then argue that Tn has non­negligible expected advantage 

1 1in distinguishing a random encryption of m0 or m1, i.e. q := Em0 ,m1 [q(m0, m1)] ≥ + .
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Hence, the required m0 and m1 exist. 

It remains to prove the bound on q. We note that since the algorithm Tn is symmetric in 
m0 and m1, q equals to the expected probability that Tn outputs 0 if α is an encryption 
of m0, i.e. without loss of generality we can assume that i = 0. Now, our experiment 
can be viewed as the following. Pick m0 ←Mn, E ← C(1n), α ← E(m0), β ← An(E, α). 
Now we pick a brand new message m1 ←Mn and run steps 2–4 of Tn. q is the probability 
that we output 0. Before computing q, we claim that 

1 
Pr[β = f(m0)] ≥ p̃ + ; Pr[β = f(m1)] ≤ p̃ (2) 
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Indeed, the first bound follows directly from (1), as β ← An(E, α) and α ← E(m0). For 
the second bound, we observe that for any fixed E, the message m1 is chosen independent 
of m0, α ← E(m0) and, therefore, β ← An(E, α). Hence, for any fixed E the probability 
that f(m1) equals to β is at most the probability that it equals to any pre­specified 
element, which is at most pE . Since for a fixed E, our probability is stochastically 
dominated by pE , we can take the expectation over E to obtain the claimed bound. 

¯Now, using the fact Pr[A∧B] + Pr[A∧B] = Pr[A], we can compute the probability q of 
outputting 0 in the following way: 

1 
q = Pr[β = f(m0) ∧ β = f(m1)] + (Pr[β = f(m0) = f(m1)] + Pr[β �∈ {f(m0), f(m1)}])�
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= (Pr[β = f(m0) ∧ β = f(m1)] + Pr[β = f(m0) ∧ β = f(m1)]) + 
2 
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(Pr[β = f(m0) ∧ β = f(m1)] + Pr[β = f(m0) ∧ β = f(m1)])
2 
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= (Pr[β = f(m0)] + Pr[β = f(m1)]) = + (Pr[β = f(m0)] − Pr[β = f(m1)])
2 

�
2 2 

(2) 1 1 1 1 1 
+ ( ̃

c
p + 

nc 
) − p̃ = +≥ 
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This concludes the proof. � 
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