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Handout 3: Useful Notation 

Notation 

Outputs: Say A is an Algorithm. 

•	 A(·) denotes an algorithm with one input. 

•	 A(·, ·) denotes an algorithm with two inputs. 

•	 A(x) denotes the probability distribution consisting of the output of algorithm A 
on input x. (Note: This distribution is concentrated on a single element if A is 
deterministic). 

Experiments: 

•	 x ← S, for a probability distribution S, denotes the probabilistic experiment which 
assigns to x an element selected according to the probability distribution S. 

•	 x ← F , for a finite set F, denotes the experiment which assigns to x an element 
selected according to the uniform probability distribution on set F . 

•	 We now introduce notation for an ordered sequence of experiments: 

((x, y) ← A(3); z ← B(y)) 

denotes the experiment which first assigns to the pair (x, y) an element selected 
from the probability distribution of the outputs of algorithm A on input 3 and then 
assigns to z an element selected from the probability distribution of the output of 
algorithm B on input y. (Note: That an experiment in a sequence can be dependent 
on other experiments earlier in the sequence). 

Output of Experiments 

•	 If p(·, ·) is a predicate, then the notation Pr[x ← S; y ← T : p(x, y)] denotes 
the probability that p(x, y) will be true after the ordered sequence of experiments 
(x ← S; y ← T ). 

•	 The notation {x ← S; y ← T : (x, y)} denotes the Probability distribution over 
{(x, y)} generated by the ordered sequence of experiments (x ← S; y ← T ). 
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Example 

Now, using this notation, let us formalize the statement ”Factoring an RSA modulus is 
hard”. We would like to transform this statement into a statement about the probability, 
for any given algorithm A, that, on input an RSA modulus n, A will output one of n’s 
factors. 

Let PRIMESk be the set of k­bit prime numbers. The probability that algorithm A 
successfully factors an RSA modulus can be written as follows: 

Pr[p ← PRIMESk ; q ← PRIMESk ; x ← A(pq) : x = p ∨ x = q] 

Now let us see what probability of this undesirable event is satisfactory. We would, 
of course, like it to be 0. But this is impossible, since we can design an algorithm 
that guesses a factor by uniformly selecting a k­bit number at random, and this simple 
algorithm succeeds with non­zero probability. Therefore, we must be satisfied if the 
probability is so small that we are so unlikely to observe the effects of the fact that it is 
non­zero, that for all practical purposes it is 0. Thus we would like it to be so small that 
no polynomial time algorithm can observe that it is non­zero. That is to say: 

s.t. ∀k > k0∀A∀c ∈ N ∃k0 

1 
Pr[p ← PRIMESk; q ← PRIMESk ; x ← A(pq) : x = p ∨ x = q] < 

kc 

Non­uniform families 

The only thing that remains to define in further detail is the notion of the algorithm A. 
We want it to capture all computation that is doable by a realistic device. For example, 
a probabilistic polynomial time Turing machine is a realistic device, since it has constant 
size and runs in polynomial time. But Turing machines don’t capture all realistic devices: 
a device whose size is polynomial in k is still realistic for inputs of size k. 

Let A be a Turing machine. Let A denote the size of the description of A. By {Ak } we | |
denote a set of Turing machines, such that there exists a polynomial p(k) such that for 
all k, < p(k). We call such a {Ak } a non­uniform family of Turing machines. |Ak |
Let PPTF be the set of all Probabilistic Polynomial Time non­uniform Families of 
Turning machines. Then the following formalizes the statement ”Factoring an RSA 
modulus is hard”: 

∀{Ak } ∈ PPFT ∀c ∈ N ∃k0 s.t. ∀k > k0 

1 
Pr[p ← PRIMESk ; q ← PRIMESk ; x ← Ak (pq) : x = p ∨ x = q] < 

kc 
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