6.875/18.425J Cryptography and Cryptanalysis

February 7, 2005

Handout 4: Problem Set #1

This problem set is due on: Wednesday, February 16, 2005. Note that Problem 5 is optional. If you turn in a solution to Problem 5, your lowest score among the five problems will be dropped when determining your grade for this problem set.

Problem 1

Suppose p is a prime and g and h are both generators of \mathbb{Z}_p^* . Prove or disprove the following statements about equality of probability distributions:

A:
$$\{x \leftarrow Z_p^* : g^x \mod p\} = \{x \leftarrow Z_p^* ; y \leftarrow Z_p^* : g^{xy} \mod p\}$$

B: $\{x \leftarrow Z_p^* : g^x \mod p\} = \{x \leftarrow Z_p^* : h^x \mod p\}$
C: $\{x \leftarrow Z_p^* : g^x \mod p\} = \{x \leftarrow Z_p^* : x^g \mod p\}$
D: $\{x \leftarrow Z_p^* : x^g \mod p\} = \{x \leftarrow Z_p^* : x^{gh} \mod p\}$

B:
$$\{x \leftarrow Z_n^* : g^x \mod p\} = \{x \leftarrow Z_n^* : h^x \mod p\}$$

C:
$$\{x \leftarrow Z_p^* : g^x \mod p\} = \{x \leftarrow Z_p^* : x^g \mod p\}$$

D:
$$\{x \leftarrow Z_p^* : x^g \mod p\} = \{x \leftarrow Z_p^* : x^{gh} \mod p\}$$

Problem 2

Suppose that the Prime Discrete Logarithm Problem is easy. That is, suppose that there exists a probabilistic, polynomial time algorithm A that, on inputs p, g and $g^x \mod p$, outputs x if p is a prime, g is a generator of Z_p^* and $g^x \mod p$ is prime. Show that there exists a probabilistic polynomial-time algorithm, B, that solves the Discrete Logarithm Problem.

Problem 3

We define the Lily problem as: given two integers n and S determine whether S is relatively prime to $\phi(n)$. Prove that if it is hard to determine on inputs two integers n and e whether e is relatively prime with $\phi(n)$, then the RSA function is hard to invert.

Problem 4: Factoring

Let O_n be an oracle that on input x returns a square root of $x \mod n$, if one exists, and \bot otherwise. Prove that there exists a probabilistic polynomial-time algorithm that on input an integer n and access to O_n outputs n's factorization.

Problem 5: Factoring and OWF (OPTIONAL)

Prove that if factoring is hard, then one-way functions (as defined in class) exist.