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1. Motivation and Problem Statement 
 
If we can help Math students learn how to integrate, by creating a knowledge-based 
system that does integration for them (and shows them how it did it), why can’t we do the 
same with Computer Science students and dynamic programming (and possibly other 
algorithmic techniques)? Inspired by this question, I decided to design and implement a 
system that would take the description of an algorithmic problem and construct a solution 
(algorithm) for it. Here are three examples of such problems: 
 
Example 1: 
You are given a sequence of N numbers and an integer K. Find a split of this sequence 
into K sub-sequences of consecutive numbers, so that the product of the sums of the 
numbers in the groups is maximized. 
 
Example 2: 
You are given N cylinders and each one has specified height, weight and base radius. 
You can use those cylinders to build a tower, by placing them one over another. In doing 
that you have to keep in mind that a heavier cylinder cannot stand over a lighter one and 
that a larger (by base radius) cylinder cannot stand over a smaller one. What’s the highest 
tower you can build, using the given set of N cylinders? 
 
Example 3: 
You are given the numbers from 1 to N and an integer P between 1 and N. The g-number 
of a sequence is defined as the number of monotonically decreasing sub-sequences in that 
sequence. For example in 5 2 4 9 7 3 1 10 8 6 the g-number is 4 (the 
monotonically decreasing sub-sequences are (5 2) (4) (9 7 3 1) (10 8 6). 
Find the number of permutations of the numbers from 1 to N that have a g-number equal 
to P. 
 
 
2. Input Language 
 
In order to describe the problem statements to my program, I had to create a simple, yet 
powerful language that could be used in my input files. Of course, ideally such a program 
would read the problem statements in natural language, but that is a really hard task, as 
we know. That is why I came up with a very simplified object-oriented language, inspired 
by Minsky’s frames and the C/C++ struct keyword. In this language we have three 
types of entities: primitive variables types, collections and structures. 
 
Primitive variable types are things like integers and floating point numbers. In the current 
version of the language there is only one primitive type: INT. Collections are simply 



groups of objects of the same type (either a primitive type, or a structure). At the moment 
I have two type types of collections: SET and SEQUENCE. The difference is that the 
latter is ordered, while the first one doesn’t have any notion about order (which doesn’t 
mean that you can’t take its elements and arrange them in some order later). 
 
Structures on the other hand are completely user-defined. They, similarly to the 
structs in C/C++ are collections of objects, which can be of different types (primitive 
types or collections). The main difference with the collections described above (besides 
the fact that you can have different types of items) is that you have only a finite number 
of items, while in SETs and SEQUENCEs you have an unbounded number in items (i.e. 
you specify the type of the items and that’s it, while in the structures you enumerate and 
name the items one by one). Here is an example of the definition of collections and 
structures for example problem 2 described above: 
STRUCT CYL INT HEIGHT INT WEIGHT INT BRAD 
STRUCT TOWER SET CYL POOL SEQUENCE CYL CHOSEN INT HEIGHT 
 
The first line defines CYL as a structure that has an integer HEIGHT, an integer 
WEIGHT and an integer BRAD. 
The second line defines TOWER as a structure that has a set of CYLs called POOL, a 
sequence of CYLs called CHOSEN and an integer HEIGHT. 
 
In addition to that we can specify relations between the items in a structure using the 
EQUATE command. It takes the structure name as its first argument and then it takes the 
name of one of its items. The next argument is an operation that is performed on the 
following arguments, which are also items from the structure. For example if we want to 
make item DEBT of a structure ACCOUNT equal to the sum of all items in the 
PAYMENTS collection of ACCOUNT, we include the following line: 
EQUATE ACCOUNT DEBT SUM PAYMENTS 
 
In order to make the language more flexible we also have the FIELD keyword that can 
be used when describing an item. It means that we are not interested in the item whose 
name follows, but rather in an item of that item. Hence the parser looks for another name 
after the following name. Also, we have the ELEMENT keyword, which stands for an 
element of a collection (remember, items in collections are nameless because they are 
unbounded in number). This element is an abstract notion of an element in this group, not 
any particular element. Here is an illustration of these two keywords, which tells us that 
the height of a tower is equal to the sum of the heights of the cylinders in its chosen set: 
EQUATE TOWER HEIGHT SUM FIELD CHOSEN FIELD ELEMENT HEIGHT 
 
Finally, our language has commands that tell the program what objects are given to us 
and what objects are we trying to compute. There are the GIVEN command and the 
FIND / HAVING pair, which are illustrated below, again in the context of the tower of 
cylinders example: 
GIVEN SET CYL INP 
FIND TOWER POOL INP HAVING MAX HEIGHT 
 



In addition to those, my initial version of the language had means to define functions, so 
that things like the g-number from example problem 3 above could be described. Reading 
and understanding those language constructs was never implemented however (for 
reasons explained in section 4 below), so I will just give a quick example of this feature, 
without much explanation. It simply says that we add 1 to G every time an item in the 
BOARDS sequence is higher than the previous item (something that people usually write 
as G(X) = G(X-1) + (BOARDS(X) < BOARDS(X-1))  ) 
EQUATE FENCE G RECURSIVE BOARDS ADD G -1 SMALLER ELEMENT -1 ELEMENT 0 
 
This language seems to be powerful enough for the problems I tried my system on, 
though I have to admit that often it’s not trivial to convert a problem statement into an 
input file. Nevertheless, it’s almost always possible to do that and that was the goal of 
this project (ideally we would use natural language processing, but unfortunately we 
don’t have this available yet). 
 
 
3. System Architecture 
 
Having this object-oriented input representation, the most natural way to organize the 
state of the program is to create instances of those objects, defined in the input file, in 
memory and assign various properties to those objects. Initially we have the given objects 
with the property that they’re given, known, computed, whatever word you like. We also 
have the goal objects (the one defined with the FIND command) and they have the 
property that they are a goal. Then our system starts to reason in a rule-based manner. 
The knowledge base is a set of rules, which based on the given objects and their 
properties create other objects and/or assign new properties to objects. The execution of 
the program might terminate in two ways. If a goal object is computed it means we have 
a sequence of steps by which we can compute the goal from the initially given objects – 
these steps are the algorithm that our program will produce. The other condition for 
termination is the inability to trigger any of the rules, which would mean that our 
program cannot solve the given algorithmic problem. 
 
Actually, this reasoning strategy is very appropriate for this problem not only because it’s 
the most convenient for handling the input language. In fact, this is the type of reasoning 
that human experts do. Being such an expert myself, I can say that with certainty. Usually 
when given an algorithmic problem, one starts to think “Well, what can we infer from the 
input data?” Then at some point the thinking process switches backwards and one starts 
to think, “Well, what do I need in order to compute the desired output?” If the problem 
still cannot be solved, the mind goes back and forth between the two approaches, trying 
to intersect the two sets somehow. During the process, especially if it takes longer, a lot 
of new constructs (objects, in our language) are invented and a lot of hypotheses are 
formed, tested and proved or disproved. At the end, either an algorithm is found, or the 
problem is left open. Proofs of impossibility are extremely rare and they are very hard 
even for human experts. 
 



Our system does a very good job at simulating the “two meeting sets” way of thinking 
and the format of the conclusion (i.e. it either says “Here’s a solution” or “I don’t know; 
there might be a solution, but I cannot find it”). However, it does a poor job in creating 
new constructs (objects) and forming/testing/proving hypotheses for reasons explained in 
the following section. 
 
 
4. Hardness of the Problem 
 
While I was building the knowledge base of the program I realized that there are actually 
two types of problems. Those of the first type only deal with combinatorial and logical 
terms like sets, subsets, sequences, orders, sorts, maximums, minimums, aggregates, etc. 
Those from the second type deal with more than that: they usually have meaningful 
numbers involved with them and they usually deal with functions over those numbers. In 
a sense you have to go out of the finite domain of sets, unions and aggregates and into the 
infinite domain of numerical functions. 
 
Of course, the difference is not as big as the difference between finite and infinite and in 
fact you can use the same paradigm described in the previous section to solve both types 
of problems. The finite/infinite distinction I am writing about comes from the fact that in 
the first type of problems the things you can infer (or the rules that you have to write) are 
very limited in number. An example of such a rule is: if you have polynomial number of 
options for the elements of a set, then you have polynomial number of options for its 
aggregates, but exponential number of options for its subsets. The number of such rules is 
small simply because the combinatorial and logic terms are finite in number: set, 
sequence, union, intersection, product of the elements… you continue the list with some 
more terms and you’re done. But when you enter the world of numerical functions you 
have a whole set of new dependencies, equations, deductions, proofs, etc. with every new 
input file that you get. And yes, you can write rules for each one of those proofs and 
deductions and have your program do them, but you will always be able to find new and 
new problems that your program cannot solve and that require new hypotheses and 
equations that your program has never seen. 
 
This is best illustrated by an example. Let’s consider our example problem 3 from 
Section 1 above. Here is the description of the problem in our input language. It has the 
simplest description among all dynamic programming problems I created an input file 
for: 
STRUCT FENCE SEQUENCE INT BOARDS INT GRPS 
EQUATE FENCE GRPS RECURSIVE BOARDS ADD GRPS -1 SMALLER 
ELEMENT -1 ELEMENT 0 
GIVEN SET INT INP 
GIVEN INT P 
FIND COUNT FENCE BOARDS SET2SEQ INP GRPS P 
 



The description of the problem is short. The solution of the problem is also short. If we 
denote the answer to our problem by A(N, P), we have the recurrent formula: 
A(N, P) = P*A(N-1, P) + (N-P+1)*A(N-1, P-1) 
 
From this recurrent formula on, the dynamic programming is trivial. So what we have to 
do is take this short and simple problem statement and come up with this short and simple 
recurrent formula. Doing that, however, is neither short, nor simple. 
 
Here is how it works for humans. Let’s consider all size-N permutations, which have a g-
number equal to P. Consider the highest number in the permutation. It has N possible 
positions. Moreover, it is always the first number in its monotonically decreasing sub-
sequence. What if we remove that number? We would end up with the same problem, but 
having size-N-1 permutation and g-number equal to P or P-1. We would get P if 
removing the number doesn’t unite the two sub-sequences around it. There are P such 
positions in the permutation (those which are right before sub-sequences), thus if we 
multiply P by A(N-1, P) we would get the number of size-N permutations with g-number 
P, which match this case. In the other case, where removing the highest number does 
unite two sequences, we have N-P+1 possible positions for that number. Hence 
multiplying N-P+1 by A(N-1, P-1) will give us the number of sequences from this 
branch. Hence, the answer of A(N,P) is the sum of the two formulas above. 
 
As you can see, the solution involves defining the recurrent function A(N, P), which 
would probably be easy for our program, since this is the function it has to compute. 
Then it has the idea of finding a recurrent formula, which could easily be hard-coded in 
our program, since this is the major paradigm of dynamic programming. Then it has to 
construct the recurrent formula in three steps. First, it has to consider the highest element 
and consider removing it (i.e. creating a new FENCE object, whose only difference with 
the given object is the lack of the highest element). These considerations could probably 
be rules in the knowledge base, so they’re OK. But then the program has to compute the 
relation between the two values. It has to understand that there are two cases for how the 
removal of the highest element affects the result of the formula. It also has to consider 
each of the two options and come up with formulas that represent the result in each of 
those branches. It then has to weigh in the “probabilities” of entering those branches (i.e. 
the number of ways you can enter them) and multiply the recurrent formulas by these 
weights. This, I claim, is very hard for a rule-based system with a finite knowledge base. 
Writing rules for this kind of manipulations (taking a function that counts the number of 
times an element in a sequence is higher than its predecessor, subdividing that function 
into cases and computing and “proving” values for those cases) is possible, but it means 
writing very, very case-specific rules. And since the set of algebraic functions is infinite, 
the number of different manipulations and proofs one can come up with is also infinite 
and thus you will always have to come up with new and new rules in order to make your 
rule-based system work correctly… until you turn it into a lookup table. 
 
The above is enough to discourage me from trying to attempt solving the second type of 
dynamic programming problems, but what actually made me give up was the following 
example. Let’s consider this problem: 



 
Example 4: 
A bracket sequence (BS) is a sequence of bracket characters and it has two properties: 
length and depth. A valid BS is defined as follows: 
- The empty sequence is a valid BS with length 0 and depth 0. 
- If A is a valid BS, then (A) is a valid BS with length A.length+2 and depth A.depth+1 
- If A and B are valid BS, then AB is a valid BS with length A.length + B.length and 
depth max(A.depth, B.depth) 
Problem: find the number of different bracket sequences of given length and depth. 
 
The solution to this problem is also a dynamic program, which employs a recurrent 
formula… but on another function. The trick to finding a good solution is to introduce a 
new function: incomplete BS (IBS). This is a BS, but it might have some open brackets, 
which aren’t closed. These IBS have three properties instead of two: depth, length and 
number of open brackets outstanding. Defining a recurrent formula on the number of IBS 
with given values for these three parameters is much, much easier than doing it for the 
original function with two parameters. 
 
But how do you get a computer program to invent a new, more complicated class, object 
or function and use it to solve a problem for the simpler version of that class, object or 
funtion?! I don’t know. In fact even experts don’t know how sometimes, because even 
they fail at solving these problems sometimes, especially this type, which requires more 
creativity. 
 
Example problem 3 was given on a Bulgarian national competition in informatics for 
high school seniors (note: Bulgarians are good at this stuff) and only 18 out of the 54 
contestants were able to solve it. Example problem 4 (the last one) was given to the top 
10 Bulgarian high school juniors and only one of them was able to solve it correctly. This 
convinced me that solving this type of problems, especially those that require the creation 
of new classes of objects, is beyond the scope of knowledge-based, automatic dynamic 
programming solvers. In fact, solving these problems seems much closer to solving 
general math problems, then solving integration. 
 
Given the above, I decided to limit my scope to the problems of the first type (those 
dealing only with set combinatorics and logic) and get rid of the recursive function 
definition in the EQUATE command that was used to describe the numerical functions 
of the problems of the second type. 
 
 
5. Knowledge Base and Property Propagation 
 
Having limited our scope to primitive variable types, collections and user-defined 
structures that encapsulate those primitive types and collections, we can go ahead and 
define the possible properties of the objects and the rules that propagate these properties. 
The main property of an object is whether it can be computed from the input data. In fact, 
it is not just whether it can be computed, but rather whether it can be computed in a 



reasonable amount of time. Since in theoretical computer science reasonable often means 
polynomial, I’ve decided to separate the degrees of computability of a given object into 
three classes: KNOWN, POLYSIZE and EXPONENTIAL. The first one is assigned to 
objects, which are either part of the input data, or are directly computed from it. 
POLYSIZE are objects for which we have polynomial number of options, based on the 
input data. For example if we are given a sequence and an object is a prefix of that 
sequence, we know that we have only a linear (i.e. polynomial) number of possibilities 
for what this prefix might be. The last degree of computability, EXPONENTIAL stands 
for objects for which we have exponential number of possibilities. For example a subset 
of a set (without any other constraints) is EXPONENTIAL even though the set might be 
KNOWN. 
 
In addition to that property we have another property, which exists only for POLYSIZE 
objects. It represents something like an ID of the POLYSIZE set to which these objects 
belong. For example if you have sub-sequences of the same sequence they are all 
POLYSIZE objects. However, the union of POLYSIZE objects is EXPONENTIAL. 
Hence, you would generally not be able to compute any aggregate over those objects 
(like product of some of their properties). However, if these sub-sequences are 
consecutive sub-sequences of the same sequence (i.e. a split of that sequence), then they 
have the notion of order among one another. That is why, they are assigned a common 
group ID by the SPLIT operator. Then, when the PRODUCS operator (or some other 
aggregate with similar properties) takes these sequences, it will figure out that they have 
order among them and it will know that by dynamic programming and the divide & 
conquer technique in can compute the aggregate in polynomial time. 
 
Now, having defined those, all we have to do is provide a knowledge base of operators, 
which can propagate those properties among objects, which are connected by collections 
and/or structures. Whenever an object with the GOAL property becomes POLYSIZE or 
KNOWN, we know that we can compute that object and hence we can compute the goal, 
which means success for our program. 
 
A complete list of the knowledge base is in the appendix. The more simple rules are plain 
propagation like the PREFIX operator that takes a sequence and a number K and returns 
a size-K prefix of that sequence. This operator (rule) looks at the properties of the 
sequence and the integer K and if they both are POLYSIZE or better, it assigns the worst 
of the two values as the value for the prefix. Hence if the sequence is KNOWN, but K is 
POLYSIZE, the prefix is POLYSIZE. Also, if K is KNOWN, but the sequence is 
POLYSIZE, the prefix is also POLYSIZE. Of course, if both are KNOWN, the prefix is 
also KNOWN. The group ID of the prefix (if it’s POLYSIZE) is also transferred from the 
sequence. 
 
Examples of more complicated rules are the SPLIT and PRODUCT operators I described 
above. PRODUCT takes collections of elements, or multiple elements of collections (it 
works no matter whether you give it a collection or the elements of that collection) and 
marks the product as POLYSIZE if all of the elements are either KNOWN or POLYSIZE 
and if all of those that are POLYSIZE have the same group ID. 



 
One last thing to be said about the rules and the propagation of properties is that the items 
of a collection or a structure automatically receive the properties of their 
collection/structure, if they are better than theirs. For example when a set becomes 
KNOWN, all of its elements become KNOWN as well, and so these elements (or some 
sorted subset of them) can be given to an aggregate like PRODUCT. 
 
 
6. Reasoning Depth and Examples 
 
While I’ve taken the easier half of dynamic programming problems that has only a 
handful of operators and rules, the depth of the reasoning is still infinite. For example if 
one takes two simple problems and makes the output of the first be the input to the 
second, this will make my program do twice as deep reasoning. If the user repeats this 
process again and again, we would end up with more and more reasoning, without any 
theoretical bound. 
 
Note, however, that this doesn’t mean our program will never stop. In the case where the 
program creates new objects this might be the case (because it might also create newer 
and newer objects out of the ones it has just created), but our program is limited only to 
the non-numerical, non-creative side of dynamic programming. Thus when it has a set of 
objects and it goes through all of them without propagating anything, it would just give 
up and tell the user that he/she has to solve the problem him/herself. 
 
Here are the input files of the first two examples in Section 1, followed by the input file 
that combines them into one big problem (one that sets the number of sub-sequences in 
the first example to be equal to the height of the highest tower). 
 
Example 1: 
STRUCT GROUP SEQUENCE INT ELS INT SM 
EQUATE GROUP SM SUM ELS 
STRUCT DIV SEQUENCE INT BIG INT PARTS SET GROUP SMALL INT 
BENEFIT 
EQUATE DIV FIELD SMALL FIELD ELEMENT ELS SPLIT PARTS BIG 
EQUATE DIV BENEFIT PRODUCT FIELD SMALL FIELD ELEMENT SM 
GIVEN SEQUENCE INT INP 
GIVEN INT K 
FIND DIV BIG INP PARTS K HAVING MAX BENEFIT 
 
Example 2: 
STRUCT CYL INT HEIGHT INT WEIGHT INT BRAD 
STRUCT TOWER SET CYL POOL SEQUENCE CYL CHOSEN INT HEIGHT 
EQUATE TOWER CHOSEN SORTEDSUBSET POOL FIELD POOL FIELD 
ELEMENT WEIGHT FIELD POOL FIELD ELEMENT BRAD 
EQUATE TOWER HEIGHT SUM FIELD CHOSEN FIELD ELEMENT HEIGHT 
GIVEN SET CYL INP 
FIND TOWER POOL INP HAVING MAX HEIGHT 



 
Composite Example: 
STRUCT GROUP SEQUENCE INT ELS INT SM 
EQUATE GROUP SM SUM ELS 
STRUCT DIV SEQUENCE INT BIG INT PARTS SET GROUP SMALL INT 
BENEFIT 
EQUATE DIV FIELD SMALL FIELD ELEMENT ELS SPLIT PARTS BIG 
EQUATE DIV BENEFIT PRODUCT FIELD SMALL FIELD ELEMENT SM 
 
STRUCT CYL INT HEIGHT INT WEIGHT INT BRAD 
STRUCT TOWER SET CYL POOL SEQUENCE CYL CHOSEN INT HEIGHT 
EQUATE TOWER CHOSEN SORTEDSUBSET POOL FIELD POOL FIELD 
ELEMENT WEIGHT FIELD POOL FIELD ELEMENT BRAD 
EQUATE TOWER HEIGHT SUM FIELD CHOSEN FIELD ELEMENT HEIGHT 
 
STRUCT COMPOSITE DIV A TOWER B SEQUENCE INT BIG INT BENEFIT 
SET CYL POOL INT HEIGHT 
EQUATE COMPOSITE FIELD A BIG EQUALS BIG 
EQUATE COMPOSITE BENEFIT EQUALS FIELD A BENEFIT 
EQUATE COMPOSITE FIELD B POOL EQUALS POOL 
EQUATE COMPOSITE FIELD A PARTS MAX FIELD B HEIGHT 
GIVEN SEQUENCE INT BIGINP 
GIVEN SET CYL CYLINP 
FIND COMPOSITE BIG BIGINP POOL CYLINP HAVING MAX BENEFIT 
 
If you run the program on the above examples you will notice that it solves example 1 in 
3 steps and example 2 in 2 steps. However it, takes 9 steps to solve the composite 
examples (it adds 4 steps to propagate the parameters and the results from one sub-
problem to another). This matches our expectations of the potentially infinite reasoning 
depth. 
 
 
7. Lessons Learned 
 
Working on this project changed my mindset with respect to solving dynamic 
programming. I’ve always viewed it as applying a subset of a set of standard techniques, 
but now I realize that it cannot really be encapsulated in a set of techniques (rules). For 
example creating a new function (class of objects) that has more parameters than the 
original one is not something that can be encapsulated in any rule or piece of code of 
reasonable complexity (i.e. something of the order of the things we studied in this class). 
I can say that now I respect the field I’m good at much more than before. 
 
Also, it wasn’t before trying to create this automated dynamic programming solver that I 
realized there are actually three different types of dynamic programming: one which 
requires creativity; one that doesn’t, but requires ability for algebraic manipulation and 
ability to prove hypotheses in this area; and a third type, which doesn’t require any of 



these, but it can still capture many interesting problems that are challenging for some 
Computer Science students (as mentioned in the Motivation section on the top). 
 
Finally, this project gave me valuable experience with creating rule-based systems, which 
taught me some things I couldn’t get from the lectures and papers. For example, the fact 
that writing rules without having a nice, clean chart of what value of what property means 
what, messes things up completely and causes plenty of problems, I had to learn the hard 
way. 
 
Lastly I’d like to thank Prof. Davis for the opportunity to proceed with such ambitious 
project. I really did learn a lot from it and I’m grateful that I was allowed to do so in this 
class. 



Appendix A. Complete Knowledge Base 
 
Here is a complete list of the knowledge base of my simplified dynamic programming 
solver. Please note that even though the paper mentions the possibility of having rules 
that transfer the GOAL property “backwards”, I have not implemented such rule. The 
reason is that in our set of simplified dynamic programming problems the “forward” and 
“backward” rules are essentially the same – they only go in different directions. 
 
Each of the rule descriptions below starts by a line having the name of the operator that 
the rule corresponds to, as well as the types of the domain and the range of the operator. 
Then follows a description of the logic of the rule (i.e. how the know and the 
groupID variables of the destination variable are computed from the know and the 
groupID variables of the source variables). 
 
 
EQUALS (anything -> anything) 
know(dest) = know(src) 
groupID(dest) = groupID(src) 
 
 
UNION (2 or more collections -> collection) 
know(dest) = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then groupID(dest) = this value 
else groupID(dest) = 0 
 
 
INTERSECTION (2 or more collections -> collection) 
know(dest) = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then groupID(dest) = this value 
else groupID(dest) = 0 
 
 
PREFIX (integer, sequence -> sequence) 
know(dest) = smallest of know(src) 
groupID(dest) = groupID(src_sequence) 
 
 
SUFFIX (integer, sequence -> sequence) 
know(dest) = smallest of know(src) 
groupID(dest) = groupID(src_sequence) 
 
 
SPLIT (integer, sequence -> set of sequences) 
know(dest) = POLYSIZE 
groupID(dest) = new UNIQUE_ID 



 
 
SAMPLE (integer, set -> set) 
know(dest.elements) = POLYSIZE 
groupID(dest.elements) = new UNIQUE_ID 
 
 
SORTEDSET (set, anything -> sequence) 
know(dest) = know(src) 
groupID(dest) = groupID(src) 
 
 
SORTEDSUBSET (set, anything -> sequence) 
know(dest.elements) = POLYSIZE 
groupID(dest.elements) = new UNIQUE_ID 
 
 
PRODUCT (1 or more collections -> int) 
tmpKnow = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then tmpGroupID = this value 
else tmpGroupID = 0 
if (tmpKnow = KNOWN or (tmpKnown = POLYSIZE and tmpGroupID 
> 0)) then { 
    known[dest] = POLYSIZE 
    groupID[dest] = tmpGroupID 
} 
 
 
SUM (1 or more collections -> int) 
tmpKnow = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then tmpGroupID = this value 
else tmpGroupID = 0 
if (tmpKnow = KNOWN or (tmpKnown = POLYSIZE and tmpGroupID 
> 0)) then { 
    known[dest] = POLYSIZE 
    groupID[dest] = tmpGroupID 
} 
 
 
COUNT (1 or more collections -> int) 
tmpKnow = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then tmpGroupID = this value 
else tmpGroupID = 0 



if (tmpKnow = KNOWN or (tmpKnown = POLYSIZE and tmpGroupID 
> 0)) then { 
    known[dest] = POLYSIZE 
    groupID[dest] = tmpGroupID 
} 
 
 
MIN (1 or more collections -> int) 
tmpKnow = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then tmpGroupID = this value 
else tmpGroupID = 0 
if (tmpKnow = KNOWN or (tmpKnown = POLYSIZE and tmpGroupID 
> 0)) then { 
    known[dest] = POLYSIZE 
    groupID[dest] = tmpGroupID 
} 
 
 
MAX (1 or more collections -> int) 
tmpKnow = smallest of know(src) 
if (groupID(src that are know()=POLYSIZE) is the same for 
all such collections) then tmpGroupID = this value 
else tmpGroupID = 0 
if (tmpKnow = KNOWN or (tmpKnown = POLYSIZE and tmpGroupID 
> 0)) then { 
    known[dest] = POLYSIZE 
    groupID[dest] = tmpGroupID 
} 
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