
6.871 Expert System: WDS ­ Web Design Assistant

System


Timur Tokmouline 

May 11, 2005 

1 Introduction 

Today, despite the emergence of WYSIWYG software, web design is a difficult and a neces­
sary component of our lives, and the hardest part of web design is, arguably, getting started.1 

The web has become an integral part of our daily lives: we do research, communicate with 
friends, read news ­ all online. As a result, publishing material on the web has become a 
necessity. In general web design of usable web pages is hard since it requires laying out 
the material in such an order that a visitor would be able to see the most important por­
tions right away. There are, in general, no answers as to what a good layout is. There 
are many qualitative suggestions. However, translating those qualitative suggestions into 
concrete actions on the portions of the website, to the best of my knowledge, has not yet 
been accomplished. 

The current array of WYSIWYG tools available to the consumers to ease the pain of web 
development is quite primitive since the consumer must tell the WYSIWYG editor exactly 
what to do. As such, the WYSIWYG tools, like Microsoft Frontpage, do not let the user 
get any closer to starting on a good web page design. The real hard task, figuring out a 
suggestion for a decent starting point, still remains a hard and unsolved problem. 

In this paper, we present a Web Design Assistant System, or WDS, that employs the 
Generate­Test­Debug approach [1] to randomly create and then iteratively improve web 
page layout of user­supplied content. WDS aims to facilitate web page design process by 
producing a reasonable starting point for web design, given content description from the 
user of the system. WDS evaluates the quality of a layout by simulating a visitor inspection 
on the layout. The results are reported to the debugger, which uses knowledge about web 
layout improvement to create a new layout, where more important items are more readily 
accessible to a typical user. From inspection of program output thus far, it seems that WDS 

1WYSIWYG is an abbreviation for ”what you see is what you get” style editors, such as Microsoft Word 
or Microsoft Frontpage. 

1 



6.871 Final Project	 Timur Tokmouline 2


does in fact generate a reasonable starting point for web design in that the resulting web 
page layout is not optimal but does place important items in places likely to be noticed by 
typical visitor. 

2	 The Task: Generating a Starting Point for Web De­

sign 

The task at hand is to generate a reasonable starting point for web design of a single web 
page. The user should be able to take the program output and improve that starting point 
into a usable web site. The program’s output is not expected to be a perfect, production­
ready webpage. Instead, the program output should make the most important features 
accessible to a visitor, who has a limited time to invest in detailed website reading. 

We make several important assumptions about the user of our program: 

•	 The user knows what the content is. The user knows what material will eventually 
placed on the web in form of a web site. 

•	 The user knows how to decompose the content into a sequence of paragraphs and 
images. 

•	 The user knows which portions of the content are more important than others. The 
user is not expected to know this exactly. In fact, we ask the user to take the best 
guess on ranking the different portions of the content. 

3	 An Example: Layout for a simple scientific abstract 

In this section, we give a detailed description of inputs accepted and corresponding outputs 
produced by the system. We do so by discussing an example that involves layout of a simple 
scientific abstract. 

3.1 Getting Started 

The assumed starting point is that the user has figured out the content to be placed on the 
web site and has decomposed this content into paragraphs of text and properly sized images. 
An example of the starting point is shown in Figure 1. 

3.2 User Input: Describing the content 

As shown in Figure 2, the user is asked to describe the items that make up the content one 
by one. We assume, for simplicity, that the web page has at most a total of 16 content items 



6.871 Final Project	 Timur Tokmouline 3


Figure 1: Step 1: The user has figured out the content and has decomposed the content into 
paragraphs and images. 

on it. For each particular item, the user enters the type of item, the item content, and the 
rank of this particular item. The type of content is either text or image. The item content 
depends significantly on the item type. 

•	 For a paragraph of text, the content is just the paragraph entered on a single line, as 
shown in Figure 2. 

•	 For an image, the content is a description of the dimensions followed by the picture 
source, as shown in Figure 3. In describing image data, we enter first the width in 
pixels, then height in pixels, and then the file source of the image. 

As demonstrated in Figure 2, the user then enters the rank for each image and text 
items. The rank is assumed to be an integer between 1 and 16. We do not expect the rank 
to perfectly reflect the ordering of items in importance ­ the rank is a subjective metric. 2 

When the user has completed entering the information about the items, the user enters 
­1 for item type. At that point in time, the content description step is complete. 

3.3 User Input: Characterizing a Typical Web Page Visitor 

It is hard to predict the audience of the web page, since the web design assistant program 
has no knowledge in the domain of the content. As shown in Figure 4, the user is therefore 

2We deal with the subjectivity of the metric by avoiding optimizing solutions. Rather we aim to perform 
reasonably in generating a starting point for web page design. 



6.871 Final Project Timur Tokmouline 4


Figure 2: Describing a Text Item: A single paragraph of text




6.871 Final Project Timur Tokmouline 5


Figure 3: Describing an Image Item: An image described by width, height, and content 
source file. 

Figure 4: Entering the Amount of Time The expected visitor will spend on the web page.




6.871 Final Project Timur Tokmouline 6


Figure 5: Correspondence between the 4x4 grid used by the program and the actual web 
page layout. 

asked to input the expected approximate amount of time (in seconds) that a typical visitor 
would spend on the web page. 

3.4 The program output ­ In Detail 

During the processing stage, the program randomly assigns the individual content items into 
a 4 by 4 grid, as shown in Figure 5. The cells of the grid do not overlap. The idea then 
is to move the items around in the grid until a desirable output is achieved. The program 
simulates a real user looking at the web page. The feedback from this inspection process is 
then used to improve the version of the web site. The program then selects a potentially 
different user and simulates this user looking at the improved web page. 

The process continues in this manner, iteratively, until it completes the number of cycles 
specified by the developer. For the sample run the number of cycles is 4. The output of the 
program at each iteration is shown in Figure 6. At each cycle, the program prints the type of 
the selected simulated user selected as well as the items this user has had time to inspect in 
the order the user had inspected the items. Based on this feedback from the simulated user, 
the web page is improved by moving some of the items into different places. The degree to 
which the web page has been changed between the iterations is noted by the Net Manhattan 
Distance. We will discuss this metric later, but its purpose is to give a cumulative impression 
of the degree to which the web page layout has changed. High Net Manhattan Distance value 
corresponds to a large change in the web page layout. 

It is worth noting here that the user selected during each iteration may be of different 
type. That is, they may not necessarily look at the items in the same order. Some users 
may spend more time looking at text items than on images. Some users may differentiate 



6.871 Final Project Timur Tokmouline 7


Figure 6: The Program Output: Successive iterations of simulated user inspection are fol­
lowed by ”debugging” improvements to the web layout in form of item movements inside 
the grid. Net Manhattan Distance indicates the degree to which the web page layout has 
changed between subsequent iterations. 



6.871 Final Project Timur Tokmouline 8


between small images, large images, and medium images. Improvement based on feedback 
of one user does not guarantee an improved performance by users chosen in later iterations. 

3.5 The program output ­ analysis 

The final output of the program is shown in Figure 7 and its translation into the pictoral 
representation containing the paragraphs and images is noted in Figure 5. We note that 
this output is not a candidate for publishing. However, it does communicate visually the 
suggested positions of the important features to the user, and is therefore a reasonable 
starting point for further improvement by the user. 

4 Approach: Generate Test Debug 

The approach selected for tackling the specific problem of the iterative improvement de­
scribed in the previous section is the Generate­Test­Debug (GDT) paradigm pioneered by 
Reid and Davis [1]. The essence of the approach is pictured in Figure 8. In short, the main 
idea of Generate­Test­Debug is to create a solution, to test the quality of the solution (possi­
bly by simulation), and to use the feedback from the testing stage to improve on the original 
solution, and then to test the new and improved solution. Generate­Test­Debug makes sense 
in this domain, since web design is, by nature, iterative [3] in that a web page usually starts 
out as a simple draft and is then improved after interactions with the user. 

The first stage, generate, is taken to be random allocation of all items (images and 
text paragraphs alike) into individual cells of a 4x4 grid. It is assumed that after enough 
iterations, the layout will approach a reasonable endpoint. 

The second stage, test, involves running a simulated user on a web page layout. This 
simulated user is run to determine the sequence of images and text paragraphs that were 
seen by the user. The output from this Test stage is then a listing of the items seen and the 
amount of time spent looking at each item. We note that before each iteration, we choose a 
different user type from a pool of n different user types with probability 1/n. 

The third stage, debug, serves its purpose by modifying the web page layout according 
to feedback from the simulated user in hope of improving the web page layout. In this stage, 
the items are shifted around the grid. The specifics of this process pertain to the knowledge 
and will be discussed in the next section. 

Finally, to evaluate the evolution of the web layout, we use a Net Manhattan Metric 
(NMM). The Net Manhattan Distances metric is a sum of all Manhattan Distances [5] 
between the positions of items on subsequent layout grids. That is, to compute NMM, 
we compare two 4x4 grids representing the web page layouts of two subsequent iterations, 
computing the manhattan distance between the position of each item on one board to the 



6.871 Final Project Timur Tokmouline 9


Figure 7: Visual representation of the final layout. The program prints out the grid repre­
sentation in its textual interface. The correspondence is drawn to an actual pictured layout 
for a qualitative evaluation of the result. 



6.871 Final Project Timur Tokmouline 10


Figure 8: Generate­Test­Debug approach mandates that the tester not only say if the solution 
works, but be more precise so that the feedback may be reused to improve the original 
solution. 

position of that same item on another board. We then sum the manhattan distances over 
all the items.3 

The main idea behind the Net Manhattan Distance is that it is larger when comparing 
two layouts that are more different. Consequently, if the debug stage changed the layout 
significantly, NMM will be quite high. The main idea of comparing NMM over the course of 
multiple iterations is to see how well a debugging scheme adapts the web page layout ­ there 
should not be significant changes made by the debugger on consistent basis. In other words, 
we don’t want to be in need of significant changes to the layout to accomodate different 
users. A debugging scheme that consistently has a high NMM does not serve the system well. 
4 

5 Knowledge 

Following the structure of the Generate­Test­Debug (GDT) approach describ ed in the pre­
vious section, the knowledge in the application is split into 3 portions. The Generate stage 
is executed only initially and its only purpose is to randomly allocate Image and Text items 
into the 4 by 4 grid ­ we assume that it carries no knowledge.5 The Test stage contains 

3The assumption here is that none of the items were lost or gained during the debugging phase between 
the two iterations. 

4We’ll discuss the application of the Net Manhattan Distances in more detail in the Evaluation Section, 
where we justify our choice of the different parameters. 

5We note that making this stage more intelligent may lead to better results. But we leave this to future 
work. 



6.871 Final Project	 Timur Tokmouline 11


Figure 9: According to poynterextra.org, first­time visitors to a news site tend to 
look first in the upper left corner. They then look in the ring pattern surround­
ing the upper left corner. Finally, they look in the remaining outside ring region. 
Please see their website for the figure. 

the knowledge about how a user looks at a web page. Finally, the Debug stage contains 
knowledge of how to improve the web page layout between successive evaluations by the 
simulated users. The rest of the assumptions are (in one way or another) encoded into the 
framework ­ the infrastructure that bridges the user input and the three stages of the GDT. 

5.1 Knowledge in Framework 

The bulk of knowledge contained in the framework concerns assumptions about how different 
portions of a web page come together to form one meaningful web page. Namely, the 
framework encapsulates the following assumptions: 

•	 Maximum of 16 items are allowed on the website. This is not an unrealistic assumption 
­ if a visitor inspects items one by 1, it seems nonsensical that the typical visitor would 
go through the entire web page. Part of the reason for this is the availability of other 
web sites with similiar content just a click away. 

•	 The visitor does not scroll down to see the contents at the bottom of the page. Ac­
cording to one usability study [2], this assumption turns out to be a valid as well. 

•	 Manipulation of items within a 4x4 grid can lead to a reasonable starting place. This 
assumption draws strength from the fact that we wish to communicate relative posi­
tions of the items in a setting where a new visitor is able to go through a reasonable 
amount of the more important items (as ranked by the user). The 4x4 grid may be a 
coarse layout infrastructure, but it serves its purpose as long as the user is able to see 
tthe places that will most likely attract a new visitor. 

5.2 Knowledge in Tester 

The knowledge enclosed in the Tester stage mainly consists of concepts needed to simu­
late user viewing a web page. The simulated viewer can be defined by the following three 
concepts: 

•	 an ordering of the 16 squares in which the simulated web page visitor looks at the 
individual areas of the 4x4 grid that represents web page layout. The assumption is 
that the viewer never looks in two grid­squares at once ­ this seems to be the valid 



6.871 Final Project	 Timur Tokmouline 12


assertion since the eyes usually concentrate on a single point. One study done by 
poynterextra.com indicates that the viewing pattern of first time news article viewers 
is distributed according to the pattern shown in Figure 9 [6]. 

•	 To simulate the reality that the web page will be visited by different people, we select a 
different type of a visitor every iteration. In more detail, we select a different ordering 
of the 16 squares from a pool of n different ordering types with probability 1/n. Making 
each ordering equally likely is sensible since we don’t have apriori information about 
the type of user that will be visiting the web site (except for the ring­shaped pattern 
with priority increasing toward the upper­left corner). 

•	 an upper bound on the amount of time the simulated visitor spends on the site. This 
parameter is defined by the user ­ the system leverages the user’s expectation about 
the type of potential visitors. 

•	 a viewer function that maps individual items (images and text paragraphs) to the 
individual amounts of time it takes for the user to inspect these items. 

5.3 Knowledge in Debugger 

The debugger contains the knowledge about improving the web page layout between the 
subsequent simulated user inspections of the web page. In particular, the debugger relies 
heavily on the update function that maps the previous location and the feedback from the 
simulated viewer to a new location of the item within the grid. 

6 What Works 

Given the assumptions listed in the previous section, I designed a Web Design Assistant 
System (WDS). Given my experimentation with WDS thus far, WDS performs well in its 
designated domain: 

•	 From what I have seen thus far, the system produces an arrangement of items within 
a grid that highlights the more important items by placing them into a region where 
expected visitor is expected to see them first. This result is sensible since this was the 
original goal of the system. 

•	 As a consequence, the result produced by WDS is not perfect but is a decent starting 
place for further design. Namely, the output from WDS highlights the places the more 
important items need to be placed in. 



6.871 Final Project	 Timur Tokmouline 13


7 What Doesn’t Work 

Just like any expert system, WDS has the following drawbacks: 

•	 Just because the user has seen an item doesn’t imply that the user understo od the 
content of the item ­ reading a text doesn’t imply understanding the text. As usability 
ultimately aims to relay information to the visitor, we cannot say that results of WDS 
are necessarily usable. The results highlight locations where the simulated user is 
highly likely to see the important items ­ WDS doesn’t guarantee that the actual user 
would understand the items. 

•	 Building on the previous point, WDS has no knowledge of the domain described by the 
website. Namely, WDS cannot parse and understand the content of the individual web 
items. As such, WDS cannot assist in breaking down the text into more understandable 
pieces. 

•	 WDS describes website layout coarsely using a 4x4 grid. WDS has no knowledge of 
how to resize components, such as images. As figuring out the appropriate component 
sizes is usually a significant part of web design, WDS falls quite short in that area. 

8 Current System Parameters 

Currently, the system is using a One − Square − Improvement update function, shown in 
Figure 12 and a ImgDetail viewing function shown in Figure 11. Finally, the system uses 
the set of simulated user grid sequences shown in Figure 10. This set consists of 10 sequences 
that conform to the pattern exposed by poyterextra.org [6] and 1 that does not. 

9 Lessons Learned 

Building systems that intend to help users with designing usable web pages is hard. The 
usability knowledge is available in qualitative form (for example at usability.gov [2]), but it 
is not entirely clear how to quantify it. As a consequence, figuring how to use the standard 
knowledge representation techniques to represent the usability knowlegde is hard. In some 
sense, knowledge of how users look at a webpage is not expert knowledge ­ rather, it relates 
to the very basic questions of how the human visual system works and the issues with 
generalizing this knowledge to take into account a typical user. When coding the application 
and writing this very paper, I started to realize that my research wasn’t just drawing on 
forms of usability knowledge but on different machine learning techniques (for example, how 
to avoid overfitting the webpage to a particular user type during the debugging stage). It 



6.871 Final Project Timur Tokmouline 14


seems that it becomes increasingly hard to separate knowledge from the inference engine 
(the framework) when one starts dealing with the workings of the visual system. 

10 Conclusion 

We presented WDS, a web design assistant system whose purpose is to make web page design 
easier by generating a starting point for the user, given simple descriptions of the content. 
WDS aims to accomplish its goal using the Generate­Test­Debug [1], which integrates knowl­
edge about how the user inspects content on the web page, knowledge about how to improve 
a webpage, and an assumption that web page may be decomposed into a sequence of images 
and text paragraphs. 

References 

[1] R. Davis,Generate Test Debug. 

[2] usability.gov http://usability.gov/guidelines/layout.html#six 

[3] Gould, Boies, and Lewis. 1991. 

[4] http://9rules.com/whitespace/design/the_hardest_part.php 

[5] 6.034 Recitation 4 Notes. 

[6] http://www.poynterextra.org/eyetrack2004/main.htm 



6.871 Final Project Timur Tokmouline 15


Figure 10: Currently Used Sequences: Each sequence represents a different types of user. 
The top 10 sequences represent users who conform to the ring­like website inspection pattern, 
progressing from top­left corner to the lower right corner. The last sequence doesn’t obey 
the same pattern. 



6.871 Final Project Timur Tokmouline 16


Figure 11: Currently Employed Viewer Function: at this point, the viewer functions exist 
only as java functions. Yet they still encapsulate knowledge of how long it takes to view 
each element. This viewer function differentiates amongst the different types of images, with 
larger images taking longer to view. 



6.871 Final Project Timur Tokmouline 17


Figure 12: The Currently Employed Update Function: also exists as a java fuction. Though 
it only encapsulates specific knowledge about where to place a particular item based on 
viewer feedback. This particular function computes the preferred direction and tries to place 
the item at most 1 square from its original position. 


