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Outline

• A Problem with Mycin
• Brief review of history of uncertainty in AI
• Bayes Theorem
• Some tractable Bayesian situations
• Bayes Nets 
• Decision Theory and Rational Choice
• A recurring theme: battling combinatorics 

through model assumptions
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A Problem with Mycin

• Its notion of uncertainty seems broken
– In Mycin the certainty factor for OR is Max

• CF (OR A B) = (Max (Cf A) (Cf B))

• Consider 
– Rule-1 IF A then C, certainty factor 1
– Rule-2 If B then C, certainty factor 1 
– This is logically the same as

If (Or A B) then C, certainty factor 1
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More Problems

• If CF(A) = .8 and CF(B) = .3
A C
B C
A or B C

• IF A B, A C, B D, C D there will also be a 
mistake: (why?)

B

C

A D

6.871 - Lecture 10 Then CF (C ) = .8 + .3 * (1 - .8) = .8 + .06 = .86
CF (OR A B) = (Max .8 .3) = .8 and CF(C ) = .8
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Some Representations  of Uncertainty

• Standard probability
– too many numbers

• Focus on logical, qualitative
– reasoning by cases
– non-monotonic reasoning

• Numerical approaches retried
– Certainty factors
– Dempster-Schafer
– Fuzzy

• Bayes Networks
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Background

D S
D

Conditional Probability of S given D

P(S | D) = P(S & D)
P(D)

U

)(*)|()&( DPDSPDSP =
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Reviewing Bayes Theorem
Symptom S

1)()( =∑i
ii DPthatsuchDstateshealthDiseases

Conditional Probability of S given D

D S
D

U

P(S | D) = P(S & D)
P(D)

P(D | S) =
P(S& D)

P(S)
P(S) = P(S & D) + P(S & D )

P(S) = P(D)P(S | D) + P( D)P(S | D)

P(D | S) = P(S | D)P(D)
P(S)
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P(Di | S) =
P(S | D i) × P(Di )

P(S)

P(S) = P(D j) × P(S | Dj )
j
∑
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Understanding Bayes Theorem
Has it and 
tests for it

10  • .95 = 9.5

Has Cancer?

Test?

Test?

Yes: 10

No: 990

Positive: .95

Has it and 
doesn’t test for it

Doesn’t 
have it 
but tests 
for it

990  • .05 = 49.5

Doesn’t have it and 
doesn’t test for it

Number that test positive 
If you test positive your probability of having cancer is?
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Independence, Conditional 
Independence

• Independence: 
P(A&B) = P(A) • P(B)
– A varies the same within B as it does in the 

universe

• Conditional independence within C
P(A&B|C) = P(A|C) • P(B|C)
– When we restrict attention to C, A and B are 

independent
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Examples

B

A’

DA

C

B
A and B are independent A’ and B are dependent
A and B are conditionally
dependent, given C

A’ and B are conditionally
independent, given C.
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Naïve Bayes Model

D

S1

SK

• Single disease, multiple symptoms
• N symptoms means how many probabilities?
• Assume symptoms conditionally independent

– now P(S1,S2|D) = P(S1|D) * P(S2|D)
• Now?

6.871 - Lecture 10 11



Sequential Bayesian Inference

• Consider symptoms one by one
– Prior probabilities P(Di)
– Observe symptom Sj
– Updates priors using Bayes Rule:

– Repeat for other symptoms using the resulting posterior as 
the new prior

• If symptoms are conditionally independent, same as doing it all 
at once

• Allows choice of what symptom to observe (test to perform) next 
in terms of cost/benefit.

P(Di) =
P(Sj | Di) × P(Di )

P(Sj )
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Bipartite Graphs

D1

D2

D3

S1

S2

S3

S4

• Multiple symptoms, multiple diseases
• Diseases are probabilistically independent
• Symptoms are conditionally independent
• Symptom probabilities depend only the diseases 

causing them
• Symptoms with multiple causes require joint 

probabilities P(S2|D1,D2,D3)
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Noisy OR
Another element in the modeling vocabulary
Assumption: only 1 disease is present at a time
• Probability that all diseases cause the symptom is just the 

probability that at least 1 does
• Therefore: Symptom is absent only if no disease caused it.

• Reduces probability table size: if n diseases and k 
symptoms, from k2^n to nk

1 - P(S2|D1,D2,D3) = (1 - P(S2|D1)) 
* (1 - P(S2|D2)) 
* (1 - P(S2|D3))  
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Polytrees

• What if diseases do cause or influence each other?

• Are there still well behaved versions?
• Polytrees: At most one path between any two nodes

– Don’t have to worry about “double-counting”
• Efficient sequential updating is still possible

D1

D2

D3

S1

S5S2

S4

S3
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Bayes Nets

B

A

ED

C

• Directed Acyclic Graphs
• Absence of link conditional independence
• P(X1,...,Xn) = Product P(Xi|{parents (Xi)})
• Specify joint probability tables over parents for each node

Probability A,B,C,D,E all true:
P(A,B,C,D,E) = P(A) * P(B|A) * P(C|A) * P(D|B,C) * P(E|C)
Probability A,C,D true; B,E false:
P(A,B’,C,D,E’) = P(A) * P(B’|A) * P(C|A) * P(D|B’,C) * P(E’|C)
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Example
Burglary Earthquake

Alarm Radio Report

Phone Call
P(Call|Alarm) t f

t
f

.9 .01

.1 .99

P(RadioReport|Earthquake) t f
t
f

1 0
0 1

P(Alarm|B,E) t,t t,f
t
f

.8 .99

.2 .01

f,t f,f
.6 .01
.4 .99

16 vs. 32 probabilites
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Computing with Partial Information

• Probability that A true and E false:

B

A

ED

C

• Graph separators (e.g. C) correspond to factorizations
• General problem of finding separators is NP-hard

P(A, E) = P( A,B,C, D, E
B ,C, D
∑ )

= P( A)P(B | A)P(C | A)P(D | B,C )P(E | C)
B ,C, D
∑

= P(A) P(C | A)P(E | C) P(B | A) P(D | B,C)
D
∑

B
∑

C
∑

Normally have to do 2^3 computations of the entire formula.
By factoring can do 2^3 computations of last term, 2 of second 2, 2 of first
Sum over c doesn’t change when D changes, etc.
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Odds Likelihood Formulation
• Define odds as
• Define likelihood as:

O(D) = P(D)
P(D)

=
P(D)

1− P(D)

L(S | D) = P(S | D)
P(S | D)

Derive complementary instances of Bayes Rule:

P(D | S) = P(D)P(S | D)
P(S) P(D | S) = P(D)P(S | D)

P(S)
P(D | S)
P(D | S)

=
P(D)P(S | D)
P(D)P(S | D)

O(D | S) =O(D)L(S | D)Bayes Rule is Then:

6.871 - Lecture 10
In Logarithmic Form: Log Odds = Log Odds + Log Likelihood
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Decision Making
• So far: how to use evidence to evaluate a situation.

– In many cases, this is only the beginning
• Want to take actions to improve the situation
• Which action?

– The one most likely to leave us in the best condition
• Decision analysis helps us calculate which action that is

6.871 - Lecture 10
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A Decision Making Problem
Two types of Urns: U1 and U2 (80% are U1)

U1 contains 4 red balls and 6 black balls
U2 contains nine red balls and one black ball

Urn selected at random; you are to guess type.
Courses of action:

Refuse to play  No payoff, no cost
Guess it is of type 1 $40 if right, -$20 if  wrong
Guess it is of type 2 $100 if right, -$5 if  wrong
Sample a ball $8 for the right to sample
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Decision Flow Diagrams
Decision Fork

6.871 - Lecture 10

Chance Fork

R

B

g1

g2

g1

g2

Refuse to Play

Make an 
Observation

-$8.00

(R)

(B)

(R, g1) $40.00

-$20.00

-$5.00

$100.00

$40.00

-$20.00

-$5.00

$100.00

$0.00

No
Observation

g1

g2

$40.00

-$20.00

-$5.00

$100.00 22



Expected Monetary Value
• Suppose there are several possible outcomes

• Each has a monetary payoff or penalty
• Each has a probability

• The Expected Monetary Value is the sum of  the products of the 
monetary payoffs times their corresponding probabilities.

.8

.2

$40

-$20

EMV = .8 · $40 + .2 ·  -$20  =  $32 +  (-$4)  =  $28

• EMV is a normative notion of what a person who has no other biases 
(risk aversion, e.g.) should be willing to accept in exchange for the 
situation.  You should be indifferent to the choice of $28 or playing the 
game.

• Most people have some extra biases; incorporate them in the form of a 
utility function applied to the calculated value.

• A rational person should choose the course of action with highest EMV.
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Averaging Out and Folding Back

$16.00

$28.00

• EMV of chance node is probability weighted sum over all 
branches

• EMV of decision node is max over all branches
.8

.2

.8

.2

$40.00

-$20.00

-$5.00

$100.00

$32.00

-$4.00

-$4.00

$20.00

$28.00

Action
State A1 A2            A3 Probability
U1 40 -5 0 .8
U2 -20 100 0 .2

EMV 28 16 0 1

6.871 - Lecture 10
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The Effect of Observation

R

B

a1
a2

a1
a2

$40.00

-$20.00
-$5.00

$100.00
$40.00

-$20.00
-$5.00

$100.00

U1
U2

Bayes theorem used to calculate probabilities at chance 
nodes following decision nodes that provide relevant 
evidence.

P(R) = P(R|U1) • P(U1) + P(R|U2) • P(U2)

P(U1|R) = P(R|U1) • P(U1) / P(R)

Action
State A1 A2            A3 Probability
U1 40 -5              0 .8
U2 -20 100              0 .2

EMV 28 16              0  1
P(r|u1)= .4 P(U1)=.8 P(R|u2)=.9 P(u2)=.2 P(r)=.5
P(U1|r)= .4 * .8 / .5 = .64

6.871 - Lecture 10
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Calculating the Updated Probabilities
Initial Probabilities

P(Outcome|State) State
Outcome U1 U2
Red .4 .9
Black .6 .1

.8 .2

Joint (chain rule)
P(Outcome & State) State Marginal Probability
Outcome U1 U2 of Outcome
Red .4 • .8 = .32 .9 • .2 = .18 .50
Black .6 • .8 = .48 .1 • .2 = .02 .50

Updated Probabilities

P(State |Outcome) State
Outcome U1 U2
Red .64 .36
Black .96 .04
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Illustrating Evaluation

U1 U2
R .64 .36 .5
B .96 .04 .5

+25.60

-7.20

-3.20

+36.00

+18.40

16.40

38.40
37.60

+32.80

-4.04

4.00
-0.04

18.80

35.2027.20

-.80

.5
R

B

a1

a2

a1

a2

$100.00

$40.00

-$20.00

-$5.00

$40.00

-$20.00

-$5.00

$100.00

.64

.36

.64

.36

.96

.04

.96

.04

-$8.00

.5
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Final Value of Decision Flow Diagram

R

B

a1

a2

a1

a2

Refuse to Play

Make an 
Observation

-$8.00

(e1,R)

(e1,B)

(e1,R, a1) $40.00

-$20.00

-$5.00

$100.00

$40.00

-$20.00

-$5.00

$100.00

$0.00

No
Observation

a1

a2

(e1,R, a1) $40.00

-$20.00

-$5.00

$100.00

27.20

$28.00

$28.00
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.1 .2 .5 .2 Several Competing Hypotheses
Each with a Probability rating.

Maximum Entropy

• Suppose there are several tests you can make.
– Each test can change the probability of some (or all) of  the 

hypotheses (using Bayes Theorem).
– Each outcome of the test has a probability.
– We’re only interested in gathering information at this point
– Which test should you make? 

• Entropy = Sum  -2 · P(i) · Log P(i), a standard measure
• Intuition

– For .1, .2, .5, .2 = 1.06
– For .99, .003, .003, .004 = .058
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Maximum Entropy
• For each outcome of a test calculate the change in entropy.

– Weigh this by the probability of that outcome.
– Sum these to get an expected change of entropy for the test.

• Chose that test which has the greatest expected change in 
entropy.
– Choosing test most likely to provide the most information.

• Tests have different costs (sometimes quite drastic ones like life 
and death).

• Normalize the benefits by the costs and then make choice.
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Summary

• Several approaches to uncertainty in AI
• Bayes theorem, nets a current favorite
• Some tractable Bayesian situations
• A recurring theme: battling combinatorics 

through model assumptions
• Decision theory and rational choice
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