
6.867 Machine learning 

Final exam (Fall 2003) 

December 14, 2003 

Problem 1: your information 

1.1. Your name and MIT ID: 

1.2. The grade you would give to yourself + brief justification (if you feel that 
there’s no question your grade should be an A, then just say A): 

A ... why not?
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Problem 2 

2.1.	 (3 points) Let F be a set of classifiers whose VC-dimension is 5. Suppose we have 
four training examples and labels, {(x1, y1), . . . , (x4, y4)}, and select a classifier f̂  

from F by minimizing classification error on the training set. In the absence of any 
other information about the set of classifiers F , can we say that the prediction f̂(x5) 
for a new example x5 has any relation to the training set? Briefly justify your answer. 

Since VC-dimension is 5, F can shatter (some) five points. These points could be 
x1, . . . , x5. Thus we can find f1 ∈ F consistent with the four training examples and 
f1(x5) = 1, as well as another classifier f ∈ F also consistent with the training −1 

examples for which f−1(x5) = −1. The training set therefore doesn’t constrain the 
prediction at x5. 

2.2. (T/F – 2 points) Consider a set of classifiers that includes all linear 
classifiers that use different choices of strict subsets of the components 
of the input vectors x ∈ Rd . Claim: the VC-dimension of this combined 
set cannot be more than d + 1. 

T 

A linear classifier based on a subset of features can be represented as a 
linear classifier based on all the features but we have simply set some 
of the parameters to zero. The set of classifiers here is therefore simply 
linear classifiers in Rd . 

2.3. (T/F – 2 points) Structural risk minimization is based on comparing 
upper bounds on the generalization error, where the bounds hold with 
probability 1 − δ over the choice of the training set. Claim: the value 
of the confidence parameter δ cannot affect model selection decisions. 

F 

The δ parameter changes the complexity penalty in a manner that de­
pends on the VC-dimension and the number of training examples. It 
can therefore affect the model selection results. 

2.4.	 (6 points) Suppose we use class-conditional Gaussians to solve a binary classification 
task. The covariance matrices of the two Gaussians are constrained to be σ2 I, where 
the value of σ2 is fixed and I is the identity matrix. The only adjustable parame­
ters are therefore the means of the class conditional Gaussians, and the prior class 
frequencies. We use the maximum likelihood criterion to train the model. Check all 
that apply. 
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( ) For any three distinct training points and sufficiently small σ2 , the classifier 
would have zero classification error on the training set 

( ) For any three training points and sufficiently large σ2, the classifier would always 
make one classification error on the training set 

( ) The classification error of this classifier on the training set is always at least that 
of a linear SVM, whether the points are linearly separable or not 

None is the correct answer. The classifier is trained as a generative 
model, thus it places each Gaussian at the sample mean of the points in 
the class. The prior class frequencies will reflect the number of points 
in each class. 

•	 Since points in one class can be further away from their mean than

from points in the other class, the first option cannot be correct.


•	 For the second option we can assume that the variance σ2 is much

larger than the distances between the points. In this case the Gaus­

sians from each class assign roughly the same probability to any

training point. The prior class frequencies favor the dominant

class, therefore resulting in one error. This does not hold, how­

ever, when all the training points come from the same class. Thus

you got 2pts for either answer to the second.


•	 The last option is incorrect since SVM does not minimize the

number of misclassified points when the points are not linearly

separable; the accuracy could go either way, albeit typically in

favor of SVMs.
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Problem 3 

3.1.	 (T/F – 2 points) In the AdaBoost algorithm, the weights on all the T 
misclassified points will go up by the same multiplicative factor. 

You can verify this by inspecting the weight update. Note that the ad­
aboost algorithm was formulated for weak classifiers that predict ±1 
labels. The weights of all misclassified points will be multiplied by 
exp(−αyˆ ih(xi; θ̂k)) = exp(α̂) before normalization. 

3.2.	 (3 points) Provide a brief rationale for the following observation about AdaBoost. 
The weighted error of the kth weak classifier (measured relative to the weights at the 
beginning of the kth iteration) tends to increase as a function of the iteration k. 

The weighting on the training examples focuses on examples that are hard to classify 
correctly (few weak classifiers have classified such examples correctly). After a few 
iterations most of the weight will be on these hard examples and the weighted error 
on the next weak classifier will be closer to chance. 

Consider a text classification problem, where documents are represented by binary (0/1) 
feature vectors φ = [φ1, . . . , φm]T ; here φi indicates whether word i appears in the document. 
We define a set of weak classifiers, h(φ; θ) = yφi, parameterized by θ = {i, y} (the choice 
of the component, i ∈ {1, . . . ,m}, and the class label, y ∈ {−1, 1}, that the component 
should be associated with). There are exactly 2m possible weak learners of this type. 

We use this boosting algorithm for feature selection. The idea is to simply run the boosting 
algorithm and select the features or components in the order in which they were identified 
by the weak learners. We assume that the boosting algorithm finds the best available weak 
classifier at each iteration. 

3.3.	 (T/F – 2 points) The boosting algorithm described here can select T 
the exact same weak classifier more than once. 

The boosting algorithm optimizes each new α by assuming that all the 
previous votes remain fixed. It therefore does not optimize these coef­
ficients jointly. The only way to correct the votes assigned to a weak 
learner later on is to introduce the same weak learner again. Since we 
only have a discrete set of possible weak learners here, it also makes 
sense to talk about selecting the exact same weak learner again. 
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3.4.	 (4 points) Is the ranking of features generated by the boosting algorithm likely to 
be more useful for a linear classifier than the ranking from simple mutual information 
calculations (estimates Î(y; φi)). Briefly justify your answer. 

The boosting algorithm generates a linear combination of weak classifiers (here fea­
tures). The algorithm therefore evaluates each new weak classifier (feature) relative 
to a linear prediction based on those already included. The mutual information cri­
terion considers each feature individually and is therefore unable to recognize how 
multiple features might interact to benefit linear prediction. 
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Problem 4
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Expert 1
Expert 2

Gating

Figure 1a)	 Figure 1b) 

Figure 1: Time dependent observations. The data points in the figure are generated as 
sets of five consecutive time dependent observations, x1, . . . , x5. The clusters come from 
repeatedly generating five consecutive samples. Each visible cluster consists of 20 points, 
and has approximately the same variance. The mean of each cluster is shown with a large 
X. 

Consider the data in Figure 1 (see the caption for details). We begin by modeling this data 
with a three state HMM, where each state has a Gaussian output distribution with some 
mean and variance (means and variances can be set independently for each state). 

4.1.	 (4 points) Draw the state transition diagram and the initial state distribution for 
a three state HMM that models the data in Figure 1 in the maximum likelihood 
sense. Indicate the possible transitions and their probabilities in the figure below 
(whether or not the state is reachable after the first two steps). In order words, your 
drawing should characterize the 1st order homogeneous Markov chain govering the 
evolution of the states. Also indicate the means of the corresponding Gaussian output 
distributions (please use the boxes). 
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4.2.	 (4 points) In Figure 1a draw as ovals the clusters of outputs that would form if 
we repeatedly generated samples from your HMM over time steps t = 1, . . . , 5. The 
height of the ovals should reflect the variance of the clusters. 

4.3.	 (4 points) Suppose at time t = 2 we observe x2 = 1.5 but don’t see 2 
the observations for other time points. What is the most likely state at 
t = 2 according to the marginal posterior probability γ2(s) defined as 
P (s2 = s x2 = 1.5). |

We have only two possible paths for the first three states, 1,2,3, or 1,3,1. 
The marginal posterior probability comes from averaging the state oc­
cupancies across these possible paths, weighted by the corresponding 
probabilities. Given the observation at t = 2 (mean of the output dis­
tribution from state 2), the first path is more likely. 

4.4.	 (2 points) What would be the most likely state at t = 2 if we also saw 3 
x3 = 0 at t = 3? In this case γ2(s) = P (s2 = s x2 = 1.5, x3 = 0). |

The new observation at t = 3 is very unlikely to have come from state 
3, thus we switch to state sequence 1,3,1. 

4.5.	 (4 points) We can also try to model the data with conditional mixtures (mixtures 
of experts), where the conditioning is based on the time step. Suppose we only use 
two experts which are linear regression models with additive Gaussian noise, i.e., 

1 � 1	 � 
P (x|t, θi) = � 

2πσi 
2 

exp − 
2σi 

2 (x − θi0 − θi1t)
2 

for i = 1, 2. The gating network is a logistic regression model from t to binary 
selection of the experts. Assuming your estimation of the conditional mixture model 
is successfully in the maximum likelihood sense, draw the resulting mean predictions 
of the two linear regression models as a function of time t in Figure 1b). Also, with 
a vertical line, indicate where the gating network would change it’s preference from 
one expert to the other. 

4.6.	 (T/F – 2 points) Claim: by repeatedly sampling from your con- T 
ditional mixture model at successive time points t = 1, 2, 3, 4, 5, the 
resulting samples would resemble the data in Figure 1 

. 

See the figure. 
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4.7.	 (4 points) Having two competing models for the same data, the HMM and the 
mixture of experts model, we’d like to select the better one. We think that any 
reasonable model selection criterion would be able to select the better model in this 
case. Which model would we choose? Provide a brief justification. 

The mixture of experts model assigns a higher probability to the available data since 
the HMM puts some of the probability mass where there are no points. The HMM 
also has more parameters so any reasonable model selection criterion should select 
the mixture of experts model. 
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Problem 5

x1 x2 x3 

y1 y2 y3 

x1 x2 x3 

y1 y2 y3 

a) Bayesian network (directed) b) Markov random field (undirected) 

Figure 2: Graphical models 

5.1.	 (2 points) List two different types of independence properties satisfied by the Bayesian 
network model in Figure 2a. 

1) x1 and x2 are marginally independent.

2) y1 and y2 are conditionally independent given x1 and x2.

Lots of other possibilities.


5.2. (2 points) Write the factorization of the joint distribution implied by the directed 
graph in Figure 2a. 

P (x1)P (x2)P (x3)P (y1|x1, x2)P (y2|x1, x2, x3)P (y3|x2, x3). 

5.3.	 (2 points) Provide an alternative factorization of the joint distribution, different 
from the previous one. Your factorization should be consistent with all the properties 
of the directed graph in Figure 2a. Consistency here means: whatever is implied by 
the graph should hold for the associated distribution. 

Any factorization that incorporates all the independencies from the graph and a few 
more would be possible. For example, P (x1)P (x2)P (x3)P (y1)P (y2)P (y3). In this 
case all the variables are independent, so any independence statement that we can 
derive from the graph clearly holds for this distribution as well. 
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5.4.	 (4 points) Provide an independence statement that holds for the undirected model 
in Figure 2b but does NOT hold for the Bayesian network. Which edge(s) should 
we add to the undirected model so that it would be consistent with (wouldn’t imply 
anything that is not true for) the Bayesian network? 

x1 is independent of x3 given x2 and y2. In the bayesian network any knowledge 
of y2 would make x1 and x3 dependent. Adding an edge between x1 and x3 would 
suffice (cf. moralization). 

5.5.	 (2 points) Is your resulting undirected graph triangulated (Y/N)? Y 

5.6.	 (4 points) Provide two directed graphs representing 1) a mixture of two experts 
model for classification, and 2) a mixture of Gaussians classifiers with two mixture 
components per class. Please use the following notation: x for the input observation, 
y for the class, and i for any selection of components. 

i

y

X

i

y

X

A mixture of Gaussians model, 
A mixture of experts classifier, 

where i = 1, 2 selects the Gaussian 
where i = 1, 2 selects the expert. 

component within each class. 

10


Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




