
Dialogue and Conversational Agents

Regina Barzilay

MIT

December, 2005

Outline

• Statistical NLU component

• Reinforcement learning for dialogue management

• Planning-based agent system

Statistical NLU component

• A fully statistical approach to natural language interfaces

• Task: map a sentence + context to a database query

User: Show me flights from NY to Boston, leaving tomorrow

System: [returns a list of flights]

Show: (Arrival-time)

Origin (City ”NY“)

Destination: (City ”Boston”)

Date: (November 27th, 2003)

Representation

•	 W=input sentence

•	 H=history (some representation of previous sentences)

•	 T=a parse tree for W

•	 F,S=a context-independent semantic representation for W

•	 M=a context-dependent representation for W (M depends

on both F, S and H)

Example

W = input sentence; H = history; T = a parse tree for W ; F, S = a

context independent semantic representation for W ; M = a

context-dependent semantic representation for W

User: Show me flights from Newark or New York to Atlanta, leaving

tomorrow

System: returns a list of flights

User: When do the flights that leave from Newark arrive in Atlanta

W = When do the flights that leave from Newark arrive in Atlanta

Show: (flights)

H=
Origin (City ”NY“) or (City ”NY“)

Destination: (City ”Atlanta”)

Date: (November 27th, 2003)

Example

W = input sentence; H = history; T = a parse tree for W ; F, S = a

context independent semantic representation for W ; M = a

context-dependent semantic representation for W

User: Show me flights from Newark or New York to Atlanta, leaving

tomorrow

System: returns a list of flights

User: When do the flights that leave from Newark arrive in Atlanta

W = When do the flights that leave from Newark arrive in Atlanta

Show: (Arrival-time)

F,S= Origin (City “Newark”)

Destination: (City ”Atlanta”)

Example

H=

F,S=

M=

Show: (flights)

Origin

Destination:

Date:

(City ”NY“) or (City ”NY“)

(City ”Atlanta”)

(November 27th, 2003)

Show: (Arrival-time)

Origin

Destination:

(City “Newark”)

(City ”Atlanta”)

Show: (Arrival-time)

Origin

Destination:

Date:

(City “Newark”)

(City ”Atlanta”)

(November 27th, 2003)

A Parse Tree

Each non-terminal has a syntactic and semantic tag,

e.g., city/npr

/top

/wh−question

/aux flight/np arrival/vp
time
/wh−head

do arrival location

When /vp−head /pp

location city

/prep /npr

in Atlanta

�

Building a Probabilistic Model

•	 Basic goal: build a model of P (M |W, H) – probability of a

context-dependent interpretation, given a sentence and a

history

•	 We’ll do this by building a model of P (M, W, F, T, S|H),

giving

P (M, W |H) =
�

P (M, W, F, T, S|H)
F,T ,S

and

argmaxM P (M |W, H) = argmaxM P (M, W |H)

= argmaxM P (M, W, F, T, S|H)
F,T ,S

Building a Probabilistic Model

Our aim is to estimate P (M, W, F, T, S|H)

• Apply Chain rule:

P (M, W, F, T, S|H) = P (F |H)P (T, W |F, H)P (S|T, W, F, H)P (M|S, T, W, F, H)

• Independence assumption:

P (M, W, F, T, S|H) = P (F)P (T, W |F)P (S|T, W, F) × P (M|S, F, H)

Building a Probabilistic Model

P (M, W, F, T, S|H) = P (F)P (T, W |F)P (S|T, W, F)×P (M |S,F, H)

•	 The sentence processing model is a model of

P (T, W, F, S). Maps W to (F, S, T) triple (a

context-independent interpretation)

•	 The contextual processing model goes from a (F, S, H)

triple to a final interpretation, M

Example

H=

F,S=

M=

Show: (flights)

Origin

Destination:

Date:

(City ”NY“) or (City ”NY“)

(City ”Atlanta”)

(November 27th, 2003)

Show: (Arrival-time)

Origin

Destination:

(City “Newark”)

(City ”Atlanta”)

Show: (Arrival-time)

Origin

Destination:

Date:

(City “Newark”)

(City ”Atlanta”)

(November 27th, 2003)

Building a Probabilistic Model

P (T, W, F, S) = P (F)P (T, W |F)P (S|T, W, F)

• First step: choose the frame F with probability P (F)

Show: (Arrival-time)

Origin

Destination:

The Sentence Processing Model

P (T, W, F, S) = P (F)P (T, W |F)P (S|T, W, F)

•	 Next step: generate the parse tree T and sentence W

•	 Method uses a probabilistic context-free grammar, where

markov processes are used to generate rules. Different

rule parameters are used for each value of F

The Sentence Processing Model

flight
/np

/det flight flight−constraint
/rel−clause/corenp

P(/det flight/corenp flight−constraints/rel−clause|flight/np)
= P(/det|NULL, flight/np) *P(flight/corenp|/det,flight/np)
* P(flight−constraints|relclause|flight/corenp,flight/np)
* P(STOP|flight−constraints/relclause,flight/np)

•	 Use maximum likelihood estimation

Count(corenp, np)
PML(corenp|np) =

Count(np)

•	 Backed-off estimates generate semantic, syntactic parts of

each label separately

The Sentence Processing Model

•	 Given a frame F , and a tree T , fill in the semantic slots S

Show: (Arrival-time)

Origin

Destination:

Show: (Arrival-time)

Origin Newark

Destination: Atlanta

• Method works by considering each node of the parse tree

T, and applying probabilities P (slot-fill-action|S,node)

The Sentence Processing Model: Search

P (T, W, F, S) = P (F)P (T, W |F)P (S|T, W, F)

•	 Goal: produce n high probability (F, S, T, W) tuples

•	 Method:

–	 In first pass, produce n-best parses under a parsing model

that is independent of F

–	 For each tree T , for each possible frame F , create a

(W, T, F) triple with probability P (T, W, |F). Keep the top n

most probable triples.

–	 For each triple, use beam search to generate several high

probability (W, T, F, S) tuples. Keep the top n most

probable.

The Contextual Model

H=

Show: (flights)

Origin

Destination:

Date:

(City ”NY“) or (City ”NY“)

(City ”Atlanta”)

(November 27th, 2003)

F,S=

Show: (Arrival-time)

Origin

Destination:

(City “Newark”)

(City ”Atlanta”)

M=

Show: (Arrival-time)

Origin

Destination:

Date:

(City “Newark”)

(City ”Atlanta”)

(November 27th, 2003)

The Contextual Model

•	 Only issue is whether values in H, but not in (F, S), should be

carried over to M.

Show: (Arrival-time)

Origin (City “Newark”)

M=

Destination: (City ”Atlanta”)

Date:	 (November 27th, 2003)

•	 Method uses a decision-tree model to estimate probability of

”carrying over” each slot in H which is not in F, S.

Reinforcement Learning for Dialogue

Management

•	 Automatic Optimization of Dialogue Management

(Litman&Kearns&Singh&, 2000)

•	 Uses reinforcement learning to learn a high-level dialogue

strategy

System: Welcome to NJFun. How may I help you?

User: I’d like to find um winetasting in Lambertville in

the morning

System: Did you say you are interested in Lambertville?

User: Yes

System: Did you say you want to go in the morning?

User: Yes

System: I found a winery near Lambertville that is open

in the morning. It is [. . .]. Please give me feedback by

saying “good”, “so-so” or “bad”

User: Good

The NJFun System

•	 Three attributes needed: activity, location, time

e.g., wine-tasting, Lambertsville, Sunday

•	 Basic strategy: first get activity attribute, then

location, finally time, then make a database query

Dialogue Strategies

At any point in the dialogue, the following choices can

be made:

• System initiative vs. user

System initiative: Welcome to NJFun. Please say an

activity name or say “list activities” for activities I

know about.

User initiative: Welcome to NJFun. How may I help

you?

• Confirmation/no confirmation of attribute values

Confirmation: Did you say you are interested in

Lambertville?

�

The Abstract Model

•	 We have a set of possible states, S

•	 For each state s � S, there is a set of possible actions,

A(s)

•	 Given an action a in state s, the probability of

transitioning to state s � is P (s |s, a)

•	 For a state-action pair (s, a), the reward received is R(s, a)

(e.g., R(s, a) = 1 if the action leads to the dialogue being

successfully completed, R(s, a) = 0 otherwise)

•	 A dialogue is a sequence of n state/action pairs,

(s1, a1), (s2, a2) . . . (sn , an)

Why Reinforcement Learning?

•	 Problem is to learn a mapping from states to actions

•	 Why isn’t this a regular supervised learning

problem?

•	 The reward is delayed: we might take several

actions in sequence, and the only supervised

information comes at the end of the dialogue

(success or failure)

–	 we need to infer the utility of each action in each

state from this indirect or delayed form of

supervision

�

�	 � �

Policies

•	 A policy � : S � A is a function that maps states to

actions

•	 Define

Q(s, a) = R(s, a) +
�

P (s |s, a) maxQa� (s , a)
s

•	 Q(s, a) is the expected reward when action a is taken in

state s

•	 If P (s � |s, a) is known, Q(s, a) can be calculated, and

optimal policy is �(s) = argmaxa Q(s, a)

Main point: If P (s �|s, a) can be learned from training

examples, then optimal policy can be computed

Learning in this Model

•	 User builds the skeleton of a dialogue system:

–	 A set of possible states

–	 A set of possible actions in each state

•	 Training stage:

–	 Interact with a user, with a random choice of actions

in each state

–	 Result: a training set of example dialogues

((s1 , a1), (s2, a2) . . . (sn , an) sequences)

–	 From these sequences, estimate P (s �|s, a), and

compute the optimal policy

States in the Dialogue System

•	 Has the system greeted the user?

•	 Which attribute is the system trying to obtain? (activity,

location or time)

•	 For each of the 3 attributes (activity, location, time):

–	 Has the system obtained the attribute’s value?

–	 What is the system’s confidence in the attribute’s value?

–	 Number of times the system has asked about the attribute

–	 Type of speech recognition grammar most recently used in

the attribute query

States in the Dialogue System

•	 greet=0 if user has to be greeted, 1 otherwise

•	 attr represents attribute being queried; 1/2/3
=activity/location/time, 4 = done with attributes

•	 conf represents confidence in the attribute value.
0,1,2=low/miidle/high confidence in the speech recognizer;
3=recognition system has received “YES” as an answer to a
confirmation; 4=system has received “NO”

•	 val=1 if attribute value has been obtained, 0 otherwise

•	 times=number of times system has asked about the attribute

•	 gram=type of grammar used to obtain the attribute value

•	 hist=0 if system has had problems in understanding the user
earlier in the conversation; 1 otherwise

States in the Dialogue System

feature greet attr conf val times gram hist

values 0,1 1,2,3,4 0,1,2,3,4 0,1 0,1,2 0,1 0,1

• An example state: 1240101

• In total, there are 62 possible states

Actions in the System

Possible Choices:

•	 Greeting vs. asking user about activity/location/time

•	 Type of prompt: user initiative vs. system initiative

System initiative: I know about amusement parks,

aquariums, cruises, Please say a name from the list

User initiative: Please tell me the activity type. You can

also tell me the location and time.

•	 Type of grammar used in the speech recognizer:

restrictive vs. non-restrictive

System initiative: I know about amusement parks,
aquariums, cruises, Please say a name from the list

� use a speech recognizer grammar which only allows
items from the list

User initiative: Please tell me the activity type. You can
also tell me the location and time.

� use a speech recognizer grammar with a much
broader set of possible utterances

Actions in the System

Choices:

•	 Greeting vs. asking user about activity vs. asking user

about location.

•	 User initiative vs. system initiative

•	 Restrictive vs. non-restrictive

Action

GreetS

GreetU

REAsk1S

Ask2U

Description

attribute=greeting, system initiative

attribute=greeting, user initiative

attribute=activity, system initiative, restrictive gram.

attribute=location, system initiative, unrestrictive gram.

Actions in the System

An Example

•	 Initial state is always

•	 Possible actions in this state:

GreetU: Welcome to NJFun. How may I help you?

GreetS: Welcome to NJFun. Please say an active name or

say “list activities” for a list of activities I know about

In this state, system learns that GreetU is optimal

action

•	 Results in the following reply from the user:

System: Welcome to NJFun. How may I help you?

User: I’d like to find um winetasting in Lambertville in the

morning

An Example

System: Welcome to NJFun. How may I help you?

User: I’d like to find um winetasting in Lambertville in the morning

•	 At this point, state is

greet attr conf val times gram hist

1 1 2 1 0 0 0

(user has been greeted, current attribute is activity, confidence in
answer=2, val=1 (activity value has been obtained) etc.)

•	 Possible actions in this state:
ExpConf1: Did you say you are interested in winetasting?
NoConf: say nothing, move directly to the state

greet attr conf val times gram hist

1 2 2 1 0 0 1

In this state, system learns that NoConf is optimal action

System: Welcome to NJFun. How may I help you?

User: I’d like to find um winetasting in Lambertville in the morning

System: Did you say you are interested in Lambertville?

User: Yes

System: Did you say you want to go in the morning?

User: Yes

System: I found a winery near Lambertville that is open in the morning.

It is [. . .]. Please give me feedback by saying “good”, “so-so” or “bad”

User: Good

greet attr conf val times gram hist

0 1 0 0 0 0 0

1 1 2 1 0 0 0

1 2 2 1 0 0 1

1 3 2 1 0 0 1

1 4 0 0 0 0 0

Action

GreetU

NoConf

ExpConf2

ExpConf2

Tell

Turn

S1

-

S2

S3

S4

Reward

0

0

0

0

1

Experiments

•	 Each user asked to solve a particular task:

e.g., You feel thirsty and want to do some winetasting in the

morning. Are there any wineries close by your house in

Lambertville?

•	 Collected 311 complete dialogues

Randomly picked between possible actions in each state

•	 54/62 states had more than 10 training examples

Used examples to compute the optimal dialogue policy

•	 Gathered 124 complete test dialogues under the optimal strategy

•	 Performance: 64% task completion in test (i.e., under the

computed policy), 52% task completion in training phase (i.e.,

under the randomized policy)

Planning-based Conversational Agents

•	 Idea: Model Gricean inference to design intelligent

conversational systems

•	 Methods: Use planning and reasoning methods

–	 Involves planning, plus various extensions to logic to

create logic for Belief, Desire, Intention

Plan-based agent interpreting user

utterance

C: I need to travel in May
A: And, what day in May did you want to travel?
C: OK, uh, I need to be there for a meeting that’s from the 12th

C: to the 15th

Inference chain:

•	 Systems knows that one precondition for having a meeting is

being at the place where the meeting is

•	 One way of being at a place is flying there

•	 Booking a flight is a precondition for flying there

System abduces that user wants to fly on a date before the

12th

Plan-based agent producing user

utterance

C: I need to travel in May
A: And, what day in May did you want to travel?
C: OK, uh, I need to be there for a meeting that’s from the 12th

C: to the 15th

Inference chain:

•	 The system must know enough information about the flight to

book it

•	 Knowing the month (May) is insufficient information to specify a

departure or return day

System asks the client about the needed dates

BDI Logic

•	 B(S,P) = “speaker S believes proposition P”

•	 KNOW(S,P) = P and B(S,P)

•	 KNOWIF (S,P) = “S knows whether P” = KNOW (S,P) or

KNOW (S,notP)

•	 W(S¡P) “S wants P to be true”, where P is a state or the

execution of some action

•	 W(S,ACT(H))=S wants H to do ACT

How to represent actions

•	 Preconditions:

–	 Conditions that must already be true in order to

successfully perform the action

•	 Effects:

–	 Conditions that become true as a result of successfully

performing the action

•	 Body:

–	 A set of partially ordered goal states that must be

achieved in performing the action

The action of booking a flight

•	 BOOK-FLIGHT (A,C,F)

•	 Constraints: Agent(A)&Flight(F)&Client(C)

•	 Precondition: Know (A, dep-time(F))& Know(A,

dep-time(F)) &Know(A,origin(F))&Has-Seats(F)& W(C,

BOOK, A, C, F)& . . .

•	 Effect: Flight-Booked(A,C,F)

•	 Body: Make-Reservation (A,F,C)

Speech acts

• INFORM(S,H,P)

• Constraints: Speaker(S) & Hearer(H) & Proposition(P)

• Precondition: Know(S,P) & W(S,INFORM(S,H,P))

• Effect: Know(H,P)

• Body: B(H(W(S,Know(H,P))))

Speech acts

• REQUEST-INFORM(A,C,I)

• Constraints: Agent(A) & Client (C)

• Precondition: Know(C,I)

• Effect: Know(A,I)

• Body: B(C(W(A,Know(A,I))))

How a plan-based agent works

While conversation is not finished

•	 If user has completed a turn

–	 Then interpret user’s utterance

•	 If system has obligations

–	 Then address obligations

•	 Else if system has turn

–	 Then if system has intended conversation acts, then call
generator to produce utterances

–	 Else if high-level goals are unsatisfied, then address goals

–	 Else release turn or attempt to end conversation

•	 Else if no one has turn or long pause

–	 Then take turn

Summary

• Statistical NLU component

• Reinforcement learning for dialogue management

• Planning-based agent system

