Dialogue and Conversational Agents

Regina Barzilay
MIT

December, 2005

Outline

e Statistical NLU component
e Reinforcement learning for dialogue management

e Planning-based agent system

Statistical NLU component

e A fully statistical approach to natural language interfaces
e Task: map a sentence + context to a database query

User: Show me flights from NY to Boston, leaving tomorrow
System: [returns a list of flights]

Show: (Arrival-time)
Origin (City "NY“)
Destination: (City "Boston”)

Date: (November 27th, 2003)

Representation

W=input sentence

H=history (some representation of previous sentences)
T=a parse tree for W

ES=a context-independent semantic representation for W

M=a context-dependent representation for W (M depends
on both F, S and H)

Example

W = input sentence; H = history; T = a parse tree for W; E S = a
context independent semantic representation for W; M = a

context-dependent semantic representation for W

User: Show me flights from Newark or New York to Atlanta, leaving
tomorrow

System: returns a list of flights

User: When do the flights that leave from Newark arrive in Atlanta

W = When do the flights that leave from Newark arrive in Atlanta
Show: (flights)

Origin (City "NY“) or (City "NY*)
Destination: (City "Atlanta”)
Date: (November 27th, 2003)

Example

W = input sentence; H = history; T = a parse tree for W; E S = a
context independent semantic representation for W; M = a

context-dependent semantic representation for W

User: Show me flights from Newark or New York to Atlanta, leaving

tomorrow
System: returns a list of flights
User: When do the flights that leave from Newark arrive in Atlanta

W = When do the flights that leave from Newark arrive in Atlanta

Show: (Arrival-time)
ES=| Origin (City “Newark”)
Destination: (City "Atlanta”)

ES

Example

Show: (flights)

Origin (City "NY*) or (City "NY*)

Destination: (City "Atlanta”)

Date: (November 27th, 2003)
Show: (Arrival-time)
Origin (City “Newark”)
Destination: (City "Atlanta”)

Show: (Arrival-time)

Origin (City “Newark”)
Destination: (City "Atlanta”)

Date: (November 27th, 2003)

A Parse Tree

Each non-terminal has a syntactic and semantic tag,
e.g., city/npr

/top

/wh—question

/ e

: Jaux flight/np arrival/vp
time
/wh-head T
do arrival location
When Ivp—head Ipp
location city
Iprep /npr

in Atlanta

Building a Probabilistic Model

e Basic goal: build a model of P(M|W, H) — probability of a
context-dependent interpretation, given a sentence and a
history

e We’ll do this by building a model of P(M, W, F,T,S|H),
giving
P(M,W|H) =Y P(M,W,F,T,S|H)
F,T,S

and
argmazy P(M|\W, H) = argmaxy P(M, W |H)

— argmax Z P(M,W,F,T,S|H)

F,T,S

Building a Probabilistic Model

Our aim is to estimate P(M, W, F,T,S|H)

e Apply Chain rule:

P(M,W,F,T,S|H) = P(F|H)P(T,W|F, HYP(S|T, W, F, HYP(M|S, T, W, F, H)

e Independence assumption:

P(M,W,F,T,S|H) = P(F)P(T, W|F)P(S|T, W, F) X

Building a Probabilistic Model

P(M,W,F,T,S|H) = P(F)P(T,W|F)P(S|T, W, F)x

e The sentence processing model is a model of
P(T,W,F,S). Maps W to (F,S,T) triple (a
context-independent interpretation)

e The contextual processing model goes from a (F, S, H)
triple to a final interpretation, M

ES

Example

Show: (flights)

Origin (City "NY*) or (City "NY*)

Destination: (City "Atlanta”)

Date: (November 27th, 2003)
Show: (Arrival-time)
Origin (City “Newark”)
Destination: (City "Atlanta”)

Show: (Arrival-time)

Origin (City “Newark”)
Destination: (City "Atlanta”)

Date: (November 27th, 2003)

Building a Probabilistic Model

P(T,W,F,S) = P(F)P(T,W|F)P(S|T,W, F)

e First step: choose the frame F' with probability P(F)

Show: (Arrival-time)
Origin

Destination:

The Sentence Processing Model

P(T,W,F,S) = P(F)P(T,W|F)P(S|T,W, F)
e Next step: generate the parse tree 1" and sentence W

e Method uses a probabilistic context-free grammar, where
markov processes are used to generate rules. Different
rule parameters are used for each value of F

The Sentence Processing Model

flight
/np

/det flight flight—constraint
[/corenp /rel—clause

P(/det flight/corenp flight—constraints/rel—clause|flight/np)

= P(/det|NULL, flight/np) *P(flight/corenp|/det,flight/np)
* P(flight—constraints|relclauselflight/corenp,flight/np)
* P(STOP|flight—constraints/relclause,flight/np)

e Use maximum likelihood estimation

Count(corenp, np)
Count(np)

Purr(corenp|np) =

e Backed-off estimates generate semantic, syntactic parts of
each label separately

The Sentence Processing Model

e Given a frame F', and a tree T, fill in the semantic slots S

Show: (Arrival-time)
Origin

Destination:

Show: (Arrival-time)
Origin Newark
Destination: Atlanta

e Method works by considering each node of the parse tree
T, and applying probabilities P(slot-fill-action|S,node)

The Sentence Processing Model: Search

P(T,W,F,S)=P(F)P(T,W|F)P(S|T,W, F)
e Goal: produce n high probability (F, S, T, W) tuples

e Method:

— In first pass, produce n-best parses under a parsing model
that is independent of F’

— For each tree T, for each possible frame F’, create a
(W, T, F) triple with probability P(T, W, |F"). Keep the top n
most probable triples.

— For each triple, use beam search to generate several high
probability (W, T, F, S) tuples. Keep the top n most
probable.

The Contextual Model

Show: (flights)
He Origin (City "NY“) or (City "NY*)
Destination: (City "Atlanta”)
Date: (November 27th, 2003)
Show: (Arrival-time)
ES=| Origin (City “Newark”)
Destination: (City "Atlanta”)
Show: (Arrival-time)
M Origin (City “Newark”)

Destination: (City "Atlanta”)

The Contextual Model

e Only issue is whether values in H, but not in (F, S), should be
carried over to M.
Show: (Arrival-time)

Origin (City “Newark”)
Destination: (City "Atlanta”)

e Method uses a decision-tree model to estimate probability of
“carrying over” each slot in H which is not in F, S.

Reinforcement Learning for Dialogue
Management

e Automatic Optimization of Dialogue Management
(Litman&Kearns&Singh&, 2000)

e Uses reinforcement learning to learn a high-level dialogue
strategy

System: Welcome to NJFun. How may I help you?
User: I’d like to find um winetasting in Lambertville in
the morning

System: Did you say you are interested in Lambertville?
User: Yes

System: Did you say you want to go in the morning?
User: Yes

System: I found a winery near Lambertville that is open
in the morning. It is [...]. Please give me feedback by
saying “good”, “so-so” or “bad”

User: Good

The NJFun System

e Three attributes needed: activity, location, time
e.g.,

e Basic strategy: first get activity attribute, then
location, finally time, then make a database query

Dialogue Strategies

At any point in the dialogue, the following choices can
be made:

e System initiative vs. user
System initiative: Welcome to NJFun. Please say an
activity name or say “list activities” for activities I
know about.
User initiative: Welcome to NJFun. How may I help
you?

e Confirmation/no confirmation of attribute values
Confirmation: Did you say you are interested in
Lambertville?

The Abstract Model

We have a set of possible states, S

For each state s € S, there is a set of possible actions,

Al(s)

Given an action q in state s, the probability of
transitioning to state s’ is P(s’|s, a)

For a state-action pair (s, a), the reward received is R(s, a)
(e.g., R(s,a) = 1 if the action leads to the dialogue being
successfully completed, R(s,a) = 0 otherwise)

A dialogue is a sequence of n state/action pairs,

(81, CL1), (82, CLQ) ce (Sn, CLn)

Why Reinforcement Learning?

e Problem is to learn a mapping from states to actions

e Why isn’t this a regular supervised learning
problem?

e The reward is delayed: we might take several
actions in sequence, and the only supervised
information comes at the end of the dialogue
(success or failure)

— we need to infer the utility of each action in each
state from this indirect or delayed form of
supervision

Policies

e A policy 7 : S — A is a function that maps states to
actions

e Define

Q(s,a) = R(s,a) + Z P(s'|s,a) max Qg (s, a’)

e (J(s,a) is the expected reward when action a is taken in
state s

o If P(s'|s,a) is known, Q(s, a) can be calculated, and
optimal policy is 7w(s) = argmax,Q(s, a)

Main point: If P(s’|s,a) can be learned from training
examples, then optimal policy can be computed

Learning in this Model

e User builds the skeleton of a dialogue system:
— A set of possible states

— A set of possible actions in each state

e Training stage:
— Interact with a user, with a random choice of actions

in each state

— Result: a training set of example dialogues
((s1,a1),(s2,02)...(sn,an) sequences)

— From these sequences, estimate P(s’|s, a), and
compute the optimal policy

States in the Dialogue System

e Has the system greeted the user?

e Which attribute is the system trying to obtain? (activity,
location or time)

e For each of the 3 attributes (activity, location, time):
— Has the system obtained the attribute’s value?
— What is the system’s confidence in the attribute’s value?
— Number of times the system has asked about the attribute

— Type of speech recognition grammar most recently used in
the attribute query

States in the Dialogue System

greet=0 if user has to be greeted, 1 otherwise

attr represents attribute being queried; 1/2/3
=activity/location/time, 4 = done with attributes

conf represents confidence in the attribute value.
0,1,2=low/miidle/high confidence in the speech recognizer;
3=recognition system has received “YES” as an answer to a
confirmation; 4=system has received “NO”

val=1 if attribute value has been obtained, 0 otherwise
times=number of times system has asked about the attribute
gram=type of grammar used to obtain the attribute value

hist=0 if system has had problems in understanding the user
earlier in the conversation; 1 otherwise

States in the Dialogue System

feature | greet attr conf val times gram hist

values | 0,1 1,23,4 01,234 01 01,2 01 0,1

e An example state: 1240101

e In total, there are 62 possible states

Actions in the System

Possible Choices:
e Greeting vs. asking user about activity/location/time

e Type of prompt: user initiative vs. system initiative
System initiative: I know about amusement parks,
aquariums, cruises, Please say a name from the list
User initiative: Please tell me the activity type. You can
also tell me the location and time.

e Type of grammar used in the speech recognizer:
restrictive vs. non-restrictive

System initiative: I know about amusement parks,
aquariums, cruises, Please say a name from the list

= use a speech recognizer grammar which only allows
items from the list

User initiative: Please tell me the activity type. You can
also tell me the location and time.

= use a speech recognizer grammar with a much
broader set of possible utterances

Actions in the System
Choices:

e Greeting vs. asking user about activity vs. asking user
about location.

e User initiative vs. system initiative

e Restrictive vs. non-restrictive

Action Description
GreetS attribute=greeting, system initiative
GreetU attribute=greeting, user initiative

REAsk1S | attribute=activity, system initiative, restrictive gram.

Ask2U attribute=location, system initiative, unrestrictive gram.

Actions in the System

An Example

e Initial state is always

e Possible actions in this state:
GreetU: Welcome to NJFun. How may I help you?
GreetS: Welcome to NJFun. Please say an active name or
say “list activities” for a list of activities I know about
In this state, system learns that GreetU is optimal
action

e Results in the following reply from the user:
System: Welcome to NJFun. How may I help you?
User: I'd like to find um winetasting in Lambertville in the
morning

An Example

System: Welcome to NJFun. How may I help you?
User: I'd like to find um winetasting in Lambertville in the morning

e At this point, state is
greet attr conf val times gram hist
1 1 2 1 0) 0 0)

(user has been greeted, current attribute is activity, confidence in
answer=2, val=1 (activity value has been obtained) etc.)

e Possible actions in this state:
ExpConfl: Did you say you are interested in winetasting?

NoConf: say nothing, move directly to the state

greet attr conf val times gram hist

1 2 2 1 0 0 1

In this state, system learns that NoConf is optimal action

System: Welcome to NJFun. How may I help you?

User: I'd like to find um winetasting in Lambertville in the morning
System: Did you say you are interested in Lambertville?

User: Yes

System: Did you say you want to go in the morning?

User: Yes

System: I found a winery near Lambertville that is open in the morning.
Itis [...]. Please give me feedback by saying “good”, “so-so” or “bad”
User: Good

greet attr conf val times gram hist | Action Turn | Reward
0 1 0 0 O 0 0 GreetU S1 0
1 1 2 1 0 0 0 NoConf - 0
1 2 2 1 O 0 1 ExpConf2 S2 0
1 3 2 1 O 0 1 ExpConf2 S3 0
1 4 0 0 O 0 0 Tell S4 1

Experiments

Each user asked to solve a particular task:

e.g., You feel thirsty and want to do some winetasting in the
morning. Are there any wineries close by your house in
Lambertville?

Collected 311 complete dialogues
Randomly picked between possible actions in each state

54/62 states had more than 10 training examples
Used examples to compute the optimal dialogue policy

Gathered 124 complete test dialogues under the optimal strategy

Performance: 64% task completion in test (i.e., under the
computed policy), 52% task completion in training phase (i.e.,
under the randomized policy)

Planning-based Conversational Agents

e Idea: Model Gricean inference to design intelligent
conversational systems
e Methods: Use planning and reasoning methods

— Involves planning, plus various extensions to logic to
create logic for Belief, Desire, Intention

Plan-based agent interpreting user

utterance
C: I need to travel in May

A: And, what day in May did you want to travel?
C: OK, uh, I need to be there for a meeting that’s from the 12th

C: to the 15th
Inference chain:

e Systems knows that one precondition for having a meeting is
being at the place where the meeting is

e One way of being at a place is flying there
e Booking a flight is a precondition for flying there

System abduces that user wants to fly on a date before the
12th

Plan-based agent producing user
utterance

C: I need to travel in May

A: And, what day in May did you want to travel?

C: OK, uh, I need to be there for a meeting that’s from the 12th
C: to the 15th

Inference chain:

e The system must know enough information about the flight to
book it

e Knowing the month (May) is insufficient information to specify a
departure or return day

System asks the client about the needed dates

BDI Logic

B(S,P) = “speaker S believes proposition P”
KNOW(S,P) = P and B(S,P)

KNOWIF (S,P) = “S knows whether P” = KNOW (S,P) or
KNOW (S,notP)

W(SiP) “S wants P to be true”, where P is a state or the
execution of some action

W(S,ACT(H))=S wants H to do ACT

How to represent actions

e Preconditions:
— Conditions that must already be true in order to
successfully perform the action
o Effects:
— Conditions that become true as a result of successfully
performing the action
e Body:

— A set of partially ordered goal states that must be
achieved in performing the action

The action of booking a flight

BOOK-FLIGHT (A,C,F)
Constraints: Agent(A)&Flight(F)&Client(C)

Precondition: Know (A, dep-time(F))& Know (A,
dep-time(F)) &Know(A,origin(F))&Has-Seats(F)& W(C,
BOOK, A, C, F)&...

Effect: Flight-Booked(A,C,F)

Body: Make-Reservation (A,EC)

Speech acts

INFORM(S,H,P)

Constraints: Speaker(S) & Hearer(H) & Proposition(P)
Precondition: Know(S,P) & W(S,INFORM(S,H,P))
Effect: Know(H,P)

Body: B(H(W(S,Know(H,P))))

Speech acts

REQUEST-INFORM(A,C,I)
Constraints: Agent(A) & Client (C)
Precondition: Know(C,I)

Effect: Know(A,I)

Body: B(C(W(A,Know(A,))))

How a plan-based agent works

While conversation is not finished

e If user has completed a turn

— Then interpret user’s utterance

e If system has obligations

— Then address obligations

e FElse if system has turn

— Then if system has intended conversation acts, then call
generator to produce utterances

— Else if high-level goals are unsatisfied, then address goals

— Else release turn or attempt to end conversation

e FElse if no one has turn or long pause

— Then take turn

Summary

e Statistical NLU component
e Reinforcement learning for dialogue management

e Planning-based agent system

