6.864: Lecture 21 (November 29th, 2005)
Global Linear Models: Part |1



Overview

e Log-linear models for parameter estimation

e Global and local features

— The perceptron revisited
— Log-linear models revisited



Three Components of Global Linear Models

e & is a function that maps a structure (z, y) to a feature vector
®(x,y) € R

e GEN Is a function that maps an input x to a set of candidates
GEN(x)

e W is a parameter vector (also a member of r9)

e Training data is used to set the value of W



Putting it all Together

e X Is set of sentences, ) is set of possible outputs (e.g. trees)
e Need to learn a function /' : X — )
e GEN, &, W define

r) =arg max P(z,y)-W

() = ang max  B(z,)

Choose the highest scoring candidate as the most plausible
structure

e Given examples (z;,y;), how to set W?
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A Variant of the Perceptron Algorithm

Inputs: Training set (x;,y;) fori=1...n
Initialization: W =0
Define: (z) = argmaxyccen@) ®(z,y) - W
Algorithm: Fort=1...T,:=1...n

zi = F'(x;)

Output: Parameters W



Overview

e Recap: global linear models
e Log-linear models for parameter estimation

e Global and local features

— The perceptron revisited
— Log-linear models revisited



Back to Maximum Likelihood Estimation
[Johnson et. al 1999]

e We can use the parameters to define a probability for each

parse:

P(y‘wi):

>y cGEN(z) €2EY)W
e Log-likelihood is then
L(W) = Zlog P(y; | i, W)

e A first estimation method: take maximum likelihood
estimates, I1.e.,

W = argmaxy, L(W)



Adding Gaussian Priors
[Johnson et. al 1999]

e A first estimation method: take maximum likelihood
estimates, i.e., W, = argmaxyy L(W)

e Unfortunately, very likely to “overfit”:
could use feature selection methods, as in boosting

e Another way of preventing overfitting: choose parameters as
W yrap = argmaxyy <L(W) — CZW%)
k

for some constant

e Intuition: adds a penalty for large parameter values



The Bayesian Justification for Gaussian Priors

e In Bayesian methods, combine the log-likelihood P(data | W) with a
prior over parameters, P(W)
P(data | W)P(W)
| Pldata | W)P(W)dW

P(W | data) =

The MAP (Maximum A-Posteriori) estimates are

Wyap = argmaxyy P(W | data)

= argmaxyy | log P(data | W) +1log P(W)
Log-LiEeIihood Prior

Gaussian prior: P(W) o e=C 2. Wi
= log P(W) = —C 32, Wi + Cs



summary

Choose parameters as:
Wap = argmaxyy (L(W) — CZW%)

where

L(W) = ZlogP(yz- | z;, W)

P 19 ") W
p J €GEN(z;) €TV

Can use (conjugate) gradient ascent
(see previous lectures on log-linear models)



Overview

e Recap: global linear models
e Log-linear models for parameter estimation

e Global and local features

— The perceptron revisited
— Log-linear models revisited



Global and Local Features

e S0 far: algorithms have depended on size of GEN

e Strategies for keeping the size of GEIN manageable:

— Reranking methods: use a baseline model to generate its
top NV analyses



Global and Local Features

e Global linear models are “global” in a couple of ways:

— Feature vectors are defined over entire structures

— Parameter estimation methods explicitly related to errors
on entire structures

e Next topic: global training methods with local features

— Our “global” features will be defined through local features
— Parameter estimates will be global
— GEN will be large!

— Dynamic programming used for search and parameter estimation:
this is possible for some combinations of GEN and &



Tagging Problems

TAGGING: Strings to Tagged Sequences

abeeafhj=aCbh/DeCeCabDf/Ch/D|)/C

Example 1: Part-of-speech tagging

Profits/N soared/\VV at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N
Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA



Tagging

Going back to tagging:
e Inputs z are sentences wy.,) = {w; ... wy}
o GEN(wp.,) = 7" i.e. all tag sequences of length n
e Note: GEN has an exponential number of members

e How do we define ®?



Representation: Histories

e A history is a 4-tuple (t_i,t_o, W, 7)

e 1_q,t_o are the previous two tags.

® w., are the n words in the input sentence.

e 1 IS the Index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

® t_l, t_g = DT, JJ
® Wi, = (Hispaniola, quickly, became, ..., Hemisphere, .)

e 1 —0



ocal Feature-\Vector Representations
e Take a history/tag pair (h,1).

o ¢,(h,t)fors=1...darelocal features representing tagging
decision ¢ in context h.

e \WWord/tag features

(1 if current word w; is base and ¢ = VB

Pr00(h,t) = <\ 0 otherwise
d1o1(h,t) = <( 1 if current word w; ends ini ng and ¢ = VBG
101/, — | 0 otherwise

e Contextual Features

(1 if{t_s,t_1,t) = (DT, I, VB)
13, t) = {O otherwise



A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t_o t_1 w[lm] ) t
* * (Hispaniola, quickly,...,) 1 | NNP
* NNP  (Hispaniola,quickly,...,) 2 | RB
NNP RB (Hispaniola, quickly,...,) 3 | VB
RB VB (Hispaniola, quickly,...,) 4 | DT
VP DT (Hispaniola, quickly,...,) 5 | JJ
DT JJ (Hispaniola, quickly,...,) 6 | NN




A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t_o t_1 w[lm] ) t
* * (Hispaniola, quickly,...,) 1 | NNP
* NNP  (Hispaniola,quickly,...,) 2 | RB
NNP RB (Hispaniola, quickly,...,) 3 | VB
RB VB (Hispaniola, quickly,...,) 4 | DT
VP DT (Hispaniola, quickly,...,) 5 | JJ
DT JJ (Hispaniola, quickly,...,) 6 | NN

Define global features through local features:

n

D (1.0, wim)) = > P(hiy ;)

1=1

where ¢; Is the ¢’th tag, h; Is the ¢’th history



Global and Local Features

e Typically, local features are indicator functions, e.g.,

1 if current word w; ends in1 ng and ¢ = VBG
¢101(h7 t) { v g

0 otherwise

¢ and global features are then counts,

D101 (Wping, tmg) = Number of times a word ending in i ng is
tagged as VBGin (wpi.n), tm))



Putting it all Together

o GEN(wrp.) is the set of all tagged sequences of length »

e GEN, ®, W define

Wii.p]) = ar max W - @ (w1, trim

= arg max WD é(hy, t)

t[l n]EGEN(’UJ[l n )

= arg max Z W - ¢(h;, t;)

e Some notes:

— Score for a tagged sequence is a sum of local scores

— Dynamic programming can be used to find the argmax!
(because history only considers the previous two tags)



A Variant of the Perceptron Algorithm

Inputs: Training set (x;,y;) fori=1...n
Initialization: W =0
Define: (z) = argmaxyccen@) ®(z,y) - W
Algorithm: Fort=1...T,:=1...n

zi = F'(x;)

Output: Parameters W



Training a Tagger Using the Perceptron Algorithm

Inputs: Training set (w?,.,, ,t.,,) fori = 1.
Initialization: W =0

Algorithm: Fort=1...T,:1=1...n

;) — ar'g max W (I)(w[lzni]v u[lnz])
Z[1:n,) CaN be computed with the dynamic programming (Viterbi) algorithm
If Z[1:n;] # tfl:ni] then

W=W -+ (b(wr[ilzm]’ trflnz]) o (I)(wflmi]’ Z[lnl])

Output: Parameter vector W.



An Example

Say the correct tags for ¢’th sentence are
the/DT man/NN bit/\VBD the/DT dog/NN

Under current parameters, output Is
the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs
Parameters incremented:

(NN, VBD), (VBD, DT), (VBD — bit)

Parameters decremented:

(NN, NN), (NN, DT), (NN — bit)



Experiments

e Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%, Max-ent = 3.28%
(11.9% relative error reduction)

e [Ramshaw and Marcus, 1995] NP chunking data

Perceptron = 93.63%, Max-ent = 93.29%
(5.1% relative error reduction)



How Does this Differ from Log-Linear Taggers?

e Log-linear taggers (in an earlier lecture) used very similar
local representations

e How does the perceptron model differ?

e Why might these differences be important?



Log-Linear Tagging Models

e Take a history/tag pair (h,1).

o ¢,(h,t) fors=1...darefeatures
W, for s = 1...d are parameters

e Conditional distribution:

€W¢(h,t)

PR = 20w

where Z(h, W) = > e eV ott)

e Parameters estimated using maximum-likelihood
e.g., Iterative scaling, gradient descent



Log-Linear Tagging Models

o Word sequence wy.y, (w1, ws . .. wy]
Tag sequence  tp. = [t1,t2. ..ty
Histories hz — <t7;_1, ti_g, w[l:n]; Z>

log P(tp1m) | W)

1=1 i=1 i—1
Linear Score ocal Normalization
Terms

e Compare this to the perceptron, where GEN, &, W define

(W) = arg max )ZW-gb(hi,ti)
—1

t[l:n] EG}:EHV-(QU[l n] i—

\ 7

LInear score



Problems with Locally Normalized models

e “Label bias” problem [Lafferty, McCallum and Pereira 2001]
See also [Klein and Manning 2002]

e Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

abc- 3_ E _i with P(ABC |abc) = 1

abe- j\_[g_i with PIADE |abe) =1

e Impossible to find parameters that satisfy
P(Ala)x P(B|bA)x P(C|c,B)=1
P(A|la)x P(D|b,A) x P(E|e,D)=1



Overview

e Recap: global linear models, and boosting
e Log-linear models for parameter estimation
e An application: LFG parsing

e Global and local features

— The perceptron revisited
— Log-linear models revisited



Global Log-Linear Models

e We can use the parameters to define a probability for each
tagged sequence:

eZi W¢(hutz)
P(t n] | W :T“W —
( [1:n] ’ [1:n)] ) Z(w[1;n],W)
where
Z(w[lzn]aw) — Z QZiW'¢(hiati)

t[l:n] EGEN(w[ln])

IS a global normalization term

e This is a global log-linear model with

(b( 1n]7 1n] Z¢ h27t



Now we have:

Global Normalization
Term

Linear Score

When finding highest probability tag sequence, the global term
IS irrelevant:

n

ATEMAX,  cmn(ug.) 2o (W O(hi i) — log Z (Wi, W)

1=1

= argmax; . cGEN(wy.,) > W é(h, t;)
i=1



Parameter Estimation

e For parameter estimation, we must calculate the gradient of

log P(t:n) | wirn)) = > W-(hi, t;)—log 3 o, Wb (R t))

tfl n] EGEN(w[l:n] )

with respect to W

e Taking derivatives gives

n n

dL
TW Z¢(hiati)_ Z P(t’[lm] | W), W) qu(h;, t)

1=1 t! " EGEN(’LU[L”]) 1=1

e Can be calculated using dynamic programming!
(very similar to forward-backward algorithm for EM training)



Summary of Perceptron vs. Global Log-Linear Model

e Both are global linear models, where

GEN(wpn.,)) = the setof all possible tag sequences for wy;.,;

(I)(w[lzn]at[lzn]) — Zgb(hzatz)

e In both cases,

(w[lin]) — argmaxt[lzn]EGEN(’LU[LH])W ) @(w[ltn]a t[ln])

— a’rgmaxt[lzn]EGEN(w[lm]) Z W ) ¢(h7/7 t@)

can be computed using dynamic programming



e Dynamic programming is also used in training:
— Perceptron requires highest-scoring tag sequence for each
training example

— Global log-linear model requires gradient, and therefore
“expected counts”



Results
From [Sha and Pereira, 2003]

e Task = shallow parsing (base noun-phrase recognition)

Model Accuracy
SVM combination 94.39%

Conditional random field | 94.38%

(global log-linear model)
Generalized winnow 93.89%
Perceptron 94.09%
Local log-linear model 93.70%
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