
6.864: Lecture 21 (November 29th, 2005)


Global Linear Models: Part II




Overview


• Log-linear models for parameter estimation 

• Global and local features 

– The perceptron revisited 

– Log-linear models revisited 



Three Components of Global Linear Models


• � is a function that maps a structure (x, y) to a feature vector 
�(x, y) � Rd 

• GEN is a function that maps an input x to a set of candidates 
GEN(x) 

• W is a parameter vector (also a member of Rd) 

• Training data is used to set the value of W 



Putting it all Together


• X is set of sentences, Y is set of possible outputs (e.g. trees) 

• Need to learn a function F : X � Y 

• GEN, �, W define 

F (x) = arg max �(x, y) · W 
y�GEN(x)


Choose the highest scoring candidate as the most plausible 
structure 

• Given examples (xi, yi), how to set W? 
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A Variant of the Perceptron Algorithm


Inputs: Training set (xi, yi) for i = 1 . . . n 

Initialization: W = 0 

Define: F (x) = argmaxy�GEN(x) �(x, y) · W 

Algorithm: For t = 1 . . . T , i = 1 . . . n 
zi = F (xi) 
If (zi →= yi) W = W + �(xi, yi) − �(xi, zi) 

Output: Parameters W 



Overview


• Recap: global linear models 

• Log-linear models for parameter estimation 

• Global and local features 

– The perceptron revisited 

– Log-linear models revisited 



� 

� 

Back to Maximum Likelihood Estimation

[Johnson et. al 1999]


• We can use the parameters to define a probability for each 
parse: 

�(x,y)·We
P (y | x, W) = 

y��GEN(x) e
�(x,y�)·W 

• Log-likelihood is then 

L(W) = log P (yi | xi, W) 
i 

• A first estimation method: take maximum likelihood 
estimates, i.e., 

WM L = argmaxWL(W) 



Adding Gaussian Priors

[Johnson et. al 1999]


• A first estimation method: take maximum likelihood 
estimates, i.e., WML = argmaxWL(W) 

• Unfortunately, very likely to “overfit”: 
could use feature selection methods, as in boosting 

• Another way of preventing overfitting: choose parameters as 
⎟ ⎠ 

WMAP = argmaxW L(W) − C 
� 

W
2 
k 

k 

for some constant C 

• Intuition: adds a penalty for large parameter values 
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The Bayesian Justification for Gaussian Priors


•	 In Bayesian methods, combine the log-likelihood P (data | W) with a 
prior over parameters, P (W) 

P (data | W)P (W)
P (W | data) = 

P (data | W)P (W)dW
W 

• The MAP (Maximum A-Posteriori) estimates are 

WM AP = argmax
W P (W | data) 

⎛ 

⎜
⎜
⎝
log P (data | W) + log P (W)= argmax

W 

Log-Likelihood Prior


W
2 
kGaussian prior: P (W) � e −C • k 

2� log P (W) = −C 
� 

Wk + C2k 



� 

� 

Summary


Choose parameters as: 
⎟ ⎠ 

WM AP = argmaxW L(W) − C 
� 

W
2 
k 

k 

where 

L(W) = log P (yi | xi, W) 
i 

�(xi,yi )·We
= log 

i 

� 
y��GEN(xi ) e

�(xi,y� )·W 

Can use (conjugate) gradient ascent 
(see previous lectures on log-linear models) 



Overview


• Recap: global linear models 

• Log-linear models for parameter estimation 

• Global and local features 

– The perceptron revisited 

– Log-linear models revisited 



Global and Local Features


• So far: algorithms have depended on size of GEN 

• Strategies for keeping the size of GEN manageable: 

– Reranking methods: use a baseline model to generate its 
top N analyses 



Global and Local Features


•	 Global linear models are “global” in a couple of ways: 

–	Feature vectors are defined over entire structures 

– Parameter estimation methods explicitly related to errors 
on entire structures 

•	 Next topic: global training methods with local features 

–	Our “global” features will be defined through local features 

–	Parameter estimates will be global 

–	GEN will be large! 

–	Dynamic programming used for search and parameter estimation: 
this is possible for some combinations of GEN and � 



Tagging Problems


TAGGING: Strings to Tagged Sequences 

a b e e a f h j � a/C b/D e/C e/C a/D f/C h/D j/C 

Example 1: Part-of-speech tagging 
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V 
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N 
Mulally/N announced/V first/ADJ quarter/N results/N ./. 

Example 2: Named Entity Recognition 
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA 
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA 
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA 
results/NA ./NA 



Tagging


Going back to tagging: 

• Inputs x are sentences w[1:n] = {w1 . . . wn} 

• GEN(w[1:n]) = T n i.e. all tag sequences of length n 

• Note: GEN has an exponential number of members 

• How do we define �? 



Representation: Histories


• A history is a 4-tuple ⇒t−1, t−2, w[1:n], i⇓ 

• t−1, t−2 are the previous two tags. 

• w[1:n] are the n words in the input sentence. 

• i is the index of the word being tagged 

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ 
base/?? from which Spain expanded its empire into the rest of the 
Western Hemisphere . 

• t−1, t−2 = DT, JJ 

• w[1:n] = ⇒Hispaniola, quickly, became, . . . , Hemisphere, .⇓ 

• i = 6




� 

� 

� 

Local Feature-Vector Representations

• Take a history/tag pair (h, t). 

• �s(h, t) for s = 1 . . . d are local features representing tagging 
decision t in context h. 

Example: POS Tagging 

• Word/tag features 

1 if current word wi is base and t = VB 
�100(h, t) = 

0 otherwise 

1 if current word wi ends in ing and t = VBG 
�101(h, t) = 

0 otherwise 

• Contextual Features 

1 if ⇒t−2, t−1, t⇓ = ⇒DT, JJ, VB⇓ 
�103(h, t) = 

0 otherwise 



A tagged sentence with n words has n history/tag pairs


Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN 

History Tag 
t 
−2 t 

−1 w[1:n] i t 
* * ∈Hispaniola, quickly, . . . , ∝ 1 NNP 
* NNP ∈Hispaniola, quickly, . . . , ∝ 2 RB 
NNP RB ∈Hispaniola, quickly, . . . , ∝ 3 VB 
RB VB ∈Hispaniola, quickly, . . . , ∝ 4 DT 
VP DT ∈Hispaniola, quickly, . . . , ∝ 5 JJ 
DT JJ ∈Hispaniola, quickly, . . . , ∝ 6 NN 



� 

A tagged sentence with n words has n history/tag pairs


Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN 

History Tag 
t 
−2 t 

−1 w[1:n] i t 
* * ∈Hispaniola, quickly, . . . , ∝ 1 NNP 
* NNP ∈Hispaniola, quickly, . . . , ∝ 2 RB 
NNP RB ∈Hispaniola, quickly, . . . , ∝ 3 VB 
RB VB ∈Hispaniola, quickly, . . . , ∝ 4 DT 
VP DT ∈Hispaniola, quickly, . . . , ∝ 5 JJ 
DT JJ ∈Hispaniola, quickly, . . . , ∝ 6 NN 

Define global features through local features: 

n 

�(t[1:n], w[1:n]) = �(hi, ti) 
i=1 

where ti is the i’th tag, hi is the i’th history 



� 

Global and Local Features


• Typically, local features are indicator functions, e.g., 

1 if current word wi ends in ing and t = VBG 
�101(h, t) = 

0 otherwise 

• and global features are then counts, 

�101(w[1:n], t[1:n]) = Number of times a word ending in ing is 
tagged as VBG in (w[1:n], t[1:n]) 



Putting it all Together


• GEN(w[1:n]) is the set of all tagged sequences of length n 

• GEN, �, W define 

F (w[1:n]) = arg max W · �(w[1:n], t[1:n]) 
t[1:n]�GEN(w[1:n] ) 

n �

= arg max W · 

t[1:n]�GEN(w[1:n] ) 
i=1 

�(hi, ti)


n �

= arg max 

t[1:n]�GEN(w[1:n] ) 
i=1 

• Some notes: 

W · �(hi, ti) 

– Score for a tagged sequence is a sum of local scores 

– Dynamic programming can be used to find the argmax! 
(because history only considers the previous two tags) 



A Variant of the Perceptron Algorithm


Inputs: Training set (xi, yi) for i = 1 . . . n 

Initialization: W = 0 

Define: F (x) = argmaxy�GEN(x) �(x, y) · W 

Algorithm: For t = 1 . . . T , i = 1 . . . n 
zi = F (xi) 
If (zi →= yi) W = W + �(xi, yi) − �(xi, zi) 

Output: Parameters W 



Training a Tagger Using the Perceptron Algorithm


Inputs: Training set (w[1:ni ]
, tii 

[1:ni]
) for i = 1 . . . n. 

Initialization: W = 0 

Algorithm: For t = 1 . . . T, i = 1 . . . n 

i z[1:ni] = arg max W · �(w[1:ni]
, u[1:ni]) 

u[1:ni]
�T ni 

z[1:ni] can be computed with the dynamic programming (Viterbi) algorithm 

= tiIf z[1:ni] → [1:ni] then


i

W = W + �(w i w[1:ni]

, z[1:ni ])[1:ni ]
, t[1:ni]

) − �( i 

Output: Parameter vector W. 



An Example


Say the correct tags for i’th sentence are 

the/DT man/NN bit/VBD the/DT dog/NN 

Under current parameters, output is 

the/DT man/NN bit/NN the/DT dog/NN 

Assume also that features track: (1) all bigrams; (2) word/tag pairs 

Parameters incremented: 

⇒NN, VBD⇓, ⇒VBD, DT⇓, ⇒VBD � bit⇓ 

Parameters decremented: 

⇒NN, NN⇓, ⇒NN, DT⇓, ⇒NN � bit⇓ 



Experiments


• Wall Street Journal part-of-speech tagging data 

Perceptron = 2.89%, Max-ent = 3.28%

(11.9% relative error reduction)


• [Ramshaw and Marcus, 1995] NP chunking data 

Perceptron = 93.63%, Max-ent = 93.29%

(5.1% relative error reduction)




How Does this Differ from Log-Linear Taggers?


• Log-linear taggers (in an earlier lecture) used very similar 
local representations 

• How does the perceptron model differ? 

• Why might these differences be important? 



Log-Linear Tagging Models


• Take a history/tag pair (h, t). 

• �s(h, t) for s = 1 . . . d are features 
Ws for s = 1 . . . d are parameters 

• Conditional distribution: 

W·�(h,t)e
P (t|h) = 

Z(h,W) 

W·�(h,t�)where Z(h,W) = 
� 

t� �T e

• Parameters estimated using maximum-likelihood 
e.g., iterative scaling, gradient descent 
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Log-Linear Tagging Models


• Word sequence w[1:n] = [w1, w2 . . . wn] 
• Tag sequence t[1:n] = [t1, t2 . . . tn] 
• Histories hi = ⇒ti−1, ti−2, w[1:n], i⇓ 

log P (t[1:n] | w[1:n]) 
n �
 n �
 n �


log P (ti | hi) = W · �(hi, ti) −
 log Z(hi,W)= 
i=1 i=1 i=1 

Linear Score Local Normalization 
Terms 

• Compare this to the perceptron, where GEN, �, W define

n �


F (w[1:n])
 W · �(hi, ti)= arg max 
t[1:n] �GEN(w[1:n]) 

i=1 

Linear score 



Problems with Locally Normalized models


• “Label bias” problem [Lafferty, McCallum and Pereira 2001] 
See also [Klein and Manning 2002] 

• Example of a conditional distribution that locally normalized 
models can’t capture (under bigram tag representation):


a b c � 
A 
| 

— B — C

| | with P (A B C | a b c) = 1 

a b c


a b e � 
A 
| 

— D — E

| | with P (A D E | a b e) = 1 

a b e 

• Impossible to find parameters that satisfy 

P (A | a) × P (B | b, A) × P (C | c, B) = 1 

P (A | a) × P (D | b, A) × P (E | e, D) = 1 



Overview


• Recap: global linear models, and boosting 

• Log-linear models for parameter estimation 

• An application: LFG parsing 

• Global and local features 

– The perceptron revisited 

– Log-linear models revisited 



� 

� 

Global Log-Linear Models


• We can use the parameters to define a probability for each 
tagged sequence: 

W·�(hi,ti)
ie 

P (t[1:n] | w[1:n],W) = 
Z(w[1:n],W) 

where 

iZ(w[1:n],W) = 
� 

e 
� 

W·�(hi ,ti) 

t[1:n] �GEN(w[1:n]) 

is a global normalization term 

• This is a global log-linear model with 

�(w[1:n], t[1:n]) = �(hi, ti) 
i 



� 

� 

Now we have:


log P (t[1:n] | w[1:n]) 
n 

= W · �(hi, ti) − log Z(w[1:n],W) 
i=1 � �� � 
� �� � Global Normalization 

Linear Score Term 

When finding highest probability tag sequence, the global term 
is irrelevant: 

n �� ⎞ 
argmaxt[1:n] �GEN(w[1:n] ) W · �(hi, ti) − log Z(w[1:n],W) 

i=1 

n 

= argmaxt[1:n] �GEN(w[1:n]) W · �(hi, ti) 
i=1 



� � 

� 
� � 

Parameter Estimation


• For parameter estimation, we must calculate the gradient of 

n �

�)
i


� ,t
i
W·�(hlog P (t[1:n] | w[1:n]) = W·�(hi, ti)−log
 ie 

i=1 � 
[1: ]n
�GEN(w[1:n] )
t

with respect to W 

• Taking derivatives gives 

dL n �
 n � 
[1:n] | w[1:n],W) �(hi

� , ti)�(hi, ti)− P (t=

dW 

i=1 � 
[1: ]n
�GEN(w[1:n] ) i=1
t


• Can be calculated using dynamic programming!

(very similar to forward-backward algorithm for EM training)




� 

Summary of Perceptron vs. Global Log-Linear Model


• Both are global linear models, where 

GEN(w[1:n]) = the set of all possible tag sequences for w[1:n] 

�(w[1:n], t[1:n]) = 
� 

�(hi, ti) 
i 

• In both cases, 

F (w[1:n]) = argmaxt[1:n] �GEN(w[1:n])
W · �(w[1:n], t[1:n]) 

= argmaxt[1:n] �GEN(w[1:n]) W · �(hi, ti) 
i 

can be computed using dynamic programming 



• Dynamic programming is also used in training: 

– Perceptron requires highest-scoring tag sequence for each 
training example 

– Global log-linear model requires gradient, and therefore 
“expected counts” 



Results

From [Sha and Pereira, 2003] 

• Task = shallow parsing (base noun-phrase recognition) 

Model Accuracy 
SVM combination 94.39% 
Conditional random field 94.38% 
(global log-linear model) 
Generalized winnow 93.89% 
Perceptron 94.09% 
Local log-linear model 93.70% 
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