
6.864: Lecture 20 (November 22, 2005)


Global Linear Models




Overview


•	 A brief review of history-based methods 

•	 A new framework: Global linear models 

•	 Parsing problems in this framework: 
Reranking problems 

•	 Parameter estimation method 1: 
A variant of the perceptron algorithm 



Techniques


• So far: 

– Smoothed estimation 

– Probabilistic context-free grammars 

– The EM algorithm 

– Log-linear models 

– Hidden markov models 

– History-based models 

– Partially supervised methods 

• Today: 

– Global linear models 



Supervised Learning in Natural Language


• General task: induce a function F from members of a set X to 
members of a set Y . e.g., 

Problem x � X y � Y 
Parsing sentence parse tree 
Machine translation French sentence English sentence 
POS tagging sentence sequence of tags 

• Supervised learning:

we have a training set (xi, yi) for i = 1 . . . n




The Models so far


• Most of the models we’ve seen so far are history-based 
models: 

–	We break structures down into a derivation, or sequence of decisions 

–	Each decision has an associated conditional probability 

–	Probability of a structure is a product of decision probabilities 

–	Parameter values are estimated using variants of maximum-
likelihood estimation 

–	Function F : X ≥ Y is defined as 

F (x) = argmaxy P (y, x | �) or F (x) = argmaxy P (y | x, �) 



� 

Example 1: PCFGs


•	 We break structures down into a derivation, or sequence of decisions 
We have a top-down derivation, where each decision is to expand some 
non-terminal � with a rule � ≥ � 

•	 Each decision has an associated conditional probability 
�	≥ � has probability P (� ≥ � | �) 

•	 Probability of a structure is a product of decision probabilities 

n 

P (T, S) = P (�i ≥ �i | �i) 
i=1 

where �i ≥ �i for i = 1 . . . n are the n rules in the tree 

•	 Parameter values are estimated using variants of maximum-likelihood 
estimation 

Count(� ≥ �)
P (� ≥ � | �) = 

Count(�) 



•	 Function F : X ≥ Y is defined as 

F (x) = argmaxy P (y, x | �) 

Can be computed using dynamic programming 



� 

Example 2: Log-linear Taggers


•	 We break structures down into a derivation, or sequence of decisions 
For a sentence of length n we have n tagging decisions, in left-to-right 
order 

•	 Each decision has an associated conditional probability 

P (ti | ti−1, ti−2, w1 . . . wn) 

where ti is the i’th tagging decision, wi is the i’th word 

•	 Probability of a structure is a product of decision probabilities 

n 

P (t1 . . . tn | w1 . . . wn) = P (ti | ti−1, ti−2, w1 . . . wn) 
i=1 

•	 Parameter values are estimated using variants of maximum-likelihood 
estimation 
P (ti | ti−1, ti−2, w1 . . . wn) is estimated using a log-linear model 



•	 Function F : X ≥ Y is defined as 

F (x) = argmaxy P (y | x, �) 

Can be computed using dynamic programming 



Example 3: Machine Translation


•	 We break structures down into a derivation, or sequence of decisions 
A French sentence f is generated from an English sentence e in a number 
of steps: pick alignment for each French word, pick the French word given 
the English word 

•	 Each decision has an associated conditional probability 
e.g., T(le | the), D(4 | 3, 6, 7) 

•	 Probability of a structure is a product of decision probabilities 
P (f , a | e) is a product of translation and alignment probabilities 

•	 Parameter values are estimated using variants of maximum-likelihood 
estimation 
Some decisions are hidden, so we use EM 

•	 Function F : X ≥ Y is defined as 

F (f ) = argmaxe,aP (e)P (f , a | e) 

Approximated using greedy search methods 



A New Set of Techniques: Global Linear Models


Overview of today’s lecture: 

• Global linear models as a framework 

• Parsing problems in this framework: 

– Reranking problems 

• A variant of the perceptron algorithm 



Global Linear Models as a Framework


• We’ll move away from history-based models 
No idea of a “derivation”, or attaching probabilities to “decisions” 

• Instead, we’ll have feature vectors over entire structures 
“Global features” 

• First piece of motivation: 
Freedom in defining features 



An Example: Parsing


• In lecture 4, we described lexicalized models for parsing 

• Showed how a rule can be generated in a number of steps 

S(told,V[6]) 

VP(told,V[6])STOP NP(yesterday,NN) NP-C(Hillary,NNP) STOP 



Model 2


• Step 1: generate category of head child 

S(told,V[6]) 

∀ 

S(told,V[6]) 

VP(told,V[6]) 

Ph(VP | S, told, V[6]) 



Model 2


• Step 2: choose left subcategorization frame 

S(told,V[6]) 

VP(told,V[6]) 

∀


S(told,V[6]) 

VP(told,V[6]) 
{NP-C} 

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6]) 



• Step 3: generate left modifiers in a Markov chain


S(told,V[6]) 

?? VP(told,V[6]) 
{NP-C} 

∀ 

S(told,V[6]) 

VP(told,V[6])NP-C(Hillary,NNP) 
{} 

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])× 
Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,{NP-C}) 



S(told,V[6])


?? NP-C(Hillary,NNP) VP(told,V[6]) 
{} 

∀ 

S(told,V[6]) 

NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6]) 
{} 

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6]) 
Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,{NP-C})× 
Pd(NP(yesterday,NN) | S,VP,told,V[6],LEFT,{}) 



� 

S(told,V[6])


?? VP(told,V[6])NP(yesterday,NN) NP-C(Hillary,NNP) 
{} 

S(told,V[6]) 

VP(told,V[6])STOP NP(yesterday,NN) NP-C(Hillary,NNP) 
{} 

Ph(VP | S, told, V[6]) × Plc ({NP-C} | S, VP, told, V[6]) 
Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,{NP-C})× 
Pd(NP(yesterday,NN) | S,VP,told,V[6],LEFT,{})× 
Pd(STOP | S,VP,told,V[6],LEFT,{}) 



The Probabilities for One Rule

S(told,V[6]) 

VP(told,V[6])STOP NP(yesterday,NN) NP-C(Hillary,NNP) STOP 

Ph(VP | S, told, V[6])× 
Plc({NP-C} | S, VP, told, V[6])×

Prc({} | S, VP, told, V[6])×

Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,� = 1,{NP-C})×

Pd(NP(yesterday,NN) | S,VP,told,V[6],LEFT,� = 0,{})×

Pd(STOP | S,VP,told,V[6],LEFT,� = 0,{})×

Pd(STOP | S,VP,told,V[6],RIGHT,� = 1,{})


Three parameter types: 
Head parameters, Subcategorization parameters, Dependency parameters 



Smoothed Estimation


P (NP( ,NN) VP | S(questioned,Vt)) =


Count(S(questioned,Vt)≥NP( ,NN) VP)
�1 × 

Count(S(questioned,Vt)) 

Count(S( ,Vt)≥NP( ,NN) VP)+�2 × 
Count(S( ,Vt)) 

• Where 0 � �1, �2 � 1, and �1 + �2 = 1




Smoothed Estimation


P (lawyer | S,VP,NP,NN,questioned,Vt) =


Count(lawyer | S,VP,NP,NN,questioned,Vt)
�1 × 

Count(S,VP,NP,NN,questioned,Vt) 

Count(lawyer | S,VP,NP,NN,Vt)
+�2 × 

Count(S,VP,NP,NN,Vt) 

Count(lawyer | NN)

+�3 × 

Count(NN)


• Where 0 � �1, �2, �3 � 1, and �1 + �2 + �3 = 1




An Example: Parsing


•	 In lecture 4, we described lexicalized models for parsing 

•	 Showed how a rule can be generated in a number of steps 

•	 The end result: 

–	We have head, dependency, and subcategorization parameters 

–	Smoothed estimation means “probability” of a tree depends on counts 
of many different types of events 

• What if we want to add new features? 
Can be very awkward to incorporate some features in 
history-based models 



A Need for Flexible Features


Example 1 Parallelism in coordination [Johnson et. al 1999] 

Constituents with similar structure tend to be coordinated 
≈ how do we allow the parser to learn this preference? 

Bars in New York and pubs in London

vs. Bars in New York and pubs




Example 2 Semantic features


We might have an ontology giving properties of various 
nouns/verbs 
≈ how do we allow the parser to use this information? 

pour the cappucino 
vs. pour the book 

Ontology states that cappucino has the +liquid feature, 
book does not. 



Three Components of Global Linear Models


• � is a function that maps a structure (x, y) to a feature vector 
�(x, y) � Rd 

• GEN is a function that maps an input x to a set of candidates 
GEN(x) 

• W is a parameter vector (also a member of Rd) 

• Training data is used to set the value of W 



� � 

Component 1: �


d• � maps a candidate to a feature vector � R

• � defines the representation of a candidate 

S 

NP 

She 

VP 

announced NP 

NP 

a program 

VP 

to VP 

promote NP 

safety PP 

in NP 

NP and NP 

trucks vans 

⇒1, 0, 2, 0, 0, 15, 5⇓ 



Features


• A “feature” is a function on a structure, e.g., 

h(x, y) = Number of times A is seen in (x, y) 

B C 

(x1, y1) A (x2, y2) A 

B 

D E 

C 

F G 

B 

D E 

C 

F A 

B Cd e f g d e h 

b c 

h(x1, y1) = 1 h(x2, y2) = 2 



� 

Another Example


• A “feature” is a function on a structure, e.g., 

1 if (x, y) has an instance of non-parallel coordination 
h(x, y) = 

0 otherwise 

(x1 1) VP 

visited NP 

, y

NP and NP 

bars in New York pubs in London 

h(x1, y1) = 0 



(x2 , y2) VP


visited NP 

NP and NP 

PP 

in London 

bars in New York pubs 

h(x2, y2) = 1 



A Third Example


• A “feature” is a function on a structure, e.g., 

h1(x, y) = number of times Mary is subject of likes 

h2(x, y) = number of times Mary is object of likes 

( ) S 

NP 

Jim 

VP 

NP 

NP 

x, y

likes 

SBAR 

Mary who likes Bill 

h1(x, y) = 1 h2(x, y) = 1 



A Final Example


• A “feature” is a function on a structure, e.g., 

h(x, y) = log probability of (x, y) under Model 2 

(x1 1) A 

B 

D E 

C 

F G 

(x2 2) A 

B 

D E 

C 

F A 

, y , y

B Cd e f g d e h 

b c 

h(x1, y1) = −1.56 h(x2, y2) = −1.98




� � 

Component 1: �


d• � maps a candidate to a feature vector � R

• � defines the representation of a candidate 

S 

NP 

She 

VP 

announced NP 

NP 

a program 

VP 

to VP 

promote NP 

safety PP 

in NP 

NP and NP 

trucks vans 

⇒1, 0, 2, 0, 0, 15, 5⇓ 



Feature Vectors


• A set of functions h1 . . . hd define a feature vector 

�(x) = ⇒h1(x), h2(x) . . . hd(x)⇓ 

T1 A 

B 

D E 

C 

F G 

T2 A 

B 

D E 

C 

F A 

B Cd e f g d e h 

b c 

�(T1) = �1, 0, 0, 3≤ �(T2) = �2, 0, 1, 1≤




Feature Vectors


• Our goal is to come up with learning methods which allow us 
to define any features over parse trees 

• Avoids the intermediate steps of a history-based model: 
defining a derivation which takes the features into account, 
and then attaching probabilities to decisions 
Our claim is that this can be an unwieldy, indirect way of 
getting desired features into a model 

• Problem of representation now boils down to the choice of 
the function �(x, y) 



Component 2: GEN


• GEN enumerates a set of candidates for a sentence 

She announced a program to promote safety in trucks and vans 

∀ GEN 

S S S S S S 

NP VP NP VP NP VP 
NP VP 

She She NP VP She 

announced NP 

NP VP She 

announced NP She She


announced NP


NP VP


a program


announced NP 

NP VP


announced NP NP VP a program
 NP PP 

to promote NP a program 
to promote NP PP in NP 

safety PP 
NP VP 

safety 
in NP a program trucks and vans 

in NP 
to promote NP 

safety
to promote NP trucks and vans 

announced NP

andNP NPtrucks and vans 
NP and NP 

vans 

vans NP and NP 

NP VP 
NP VP safety PP 

vans 

a program 
in NPa program 

to promote NP PP 

to promote NP safety in NP 
trucks 

trucks
safety PP 

in NP 

trucks 



Component 2: GEN


•	 GEN enumerates a set of candidates for an input x 

•	 Some examples of how GEN(x) can be defined: 

–	Parsing: GEN(x) is the set of parses for x under a grammar 

–	Any task: GEN(x) is the top N most probable parses under a 
history-based model 

–	Tagging: GEN(x) is the set of all possible tag sequences with the 
same length as x 

–	Translation: GEN(x) is the set of all possible English translations 
for the French sentence x 



� �


Component 3: W


d• W is a parameter vector � R

• � and W together map a candidate to a real-valued score 

S 

NP 

She 

VP 

announced NP 

NP 

a program 

VP 

to VP 

promote NP 

safety PP 

in NP 

NP and NP 

trucks vans 

⇒1, 0, 2, 0, 0, 15, 5⇓


� � · W 

⇒1, 0, 2, 0, 0, 15, 5⇓ · ⇒1.9, −0.3, 0.2, 1.3, 0, 1.0, −2.3⇓ = 5.8




Putting it all Together


• X is set of sentences, Y is set of possible outputs (e.g. trees) 

• Need to learn a function F : X ∈ Y 

• GEN, �, W define 

F (x) = arg max �(x, y) · W 
y�GEN(x)


Choose the highest scoring candidate as the most plausible 
structure 

• Given examples (xi, yi), how to set W? 



She announced a program to promote safety in trucks and vans 

∀ GEN 
S S S S S S 

NP VP 

announced NP 

NP VP NP VP 

announced NP 

NP VP 
She She

NP VP She NP VP She 

announced NP 

SheShe announced NP 

NP VP 

a program 

VP 

NP 

VP 

and NP 

NP VP


announced NP NP VP a program
 announced 
NP PP 

to promote NP a program 

safety PP 

in 

to promote NP PP in NP 
NP 

safety 
in NP a program trucks and vans 

NP 
to promote NP 

to promote NP trucks and vans 
safety 

trucks and vans NP 

NP and NP 
vans 

vans NP and NP 

NP 
NP VP safety PP 

vans 

a program 
in NPa program 

to promote NP PP 

to promote NP safety 
trucks 

in NP 

trucks
safety PP 

in NP 

trucks 

∀ � ∀ � ∀ � ∀ � ∀ � ∀ �

�1, 1, 3, 5� �2, 0, 0, 5� �1, 0, 1, 5� �0, 0, 3, 0� �0, 1, 0, 5� �0, 0, 1, 5� 

� � · W � � · W � � · W � � · W � � · W � � · W 

13.6 12.2 12.1 3.3 9.4 11.1 

∀ arg max 
S 

NP 

She 

VP 

announced NP 

NP 

a program 

VP 

to VP 

promote NP 

safety PP 

in NP 

NP and NP 

trucks vans 



Overview


•	 A brief review of history-based methods 

•	 A new framework: Global linear models 

•	 Parsing problems in this framework: 
Reranking problems 

•	 Parameter estimation method 1: 
A variant of the perceptron algorithm 



Reranking Approaches to Parsing


• Use a baseline parser to produce top N parses for each 
sentence in training and test data 
GEN(x) is the top N parses for x under the baseline model 

• One method: use Model 2 to generate a number of parses 
(in our experiments, around 25 parses on average for 40,000 
training sentences, giving ≤ 1 million training parses) 

• Supervision: for each xi take yi to be the parse that is 
“closest” to the treebank parse in GEN(x i) 



� 

The Representation �


• Each component of � could be essentially any feature over 
parse trees 

• For example: 

�1(x, y) = log probability of (x, y) under the baseline model 

1 if (x, y) includes the rule VP ∈ PP VBD NP 
�2(x, y) = 

0 otherwise 



54
118
14
10078
9000
1078
101

Practical Issues in Creating �


• Step 1: map a tree to a number of “strings” representing 
features 

A ≈ HASRULE:A->B;C

HASRULE:B->D;E


B C HASRULE:C->F;G

HASRULE:D->d 

D E F G HASRULE:E->e 
HASRULE:F->f 

d e f g HASRULE:G->g 



Practical Issues in Creating �


• Step 2: hash the strings to integers 

A ∈ HASRULE:A->B;C 54 
HASRULE:B->D;E 118 

B C HASRULE:C->F;G 14 
HASRULE:D->d 10078 

D E F G HASRULE:E->e 9000 
HASRULE:F->f 1078 

d e f g HASRULE:G->g 101 

• In our experiments, tree is then represented as log probability 
under the baseline model, plus a sparse feature array: 

�1(x, y) = log probability of (x, y) under the baseline model 

�i(x, y) = 1 for i = {54, 118, 14, 10078, 9000, 1078, 101} 

�i(x, y) = 0 for all other i 



The Score for Each Parse


• In our experiments, tree is then represented as log probability 
under the baseline model, plus a sparse feature array: 

�1(x, y) = log probability of (x, y) under the baseline model 

�i(x, y) = 1 for i = {54, 118, 14, 10078, 9000, 1078, 101} 

�i(x, y) = 0 for all other i 

• Score for the tree (x, y): 

�(x, y) · W 

 

= �i(x, y)Wi 

i 

= W1�1(x, y) + W54 + W118 + W14 + W10078 + W9000 + W1078 + W101 



From [Collins and Koo, 2005]: 
The following types of features were included in the model. We will use the rule 
VP -> PP VBD NP NP SBAR with head VBD as an example. Note that the 
output of our baseline parser produces syntactic trees with headword annotations. 



Rules These include all context-free rules in the tree, for example VP -> PP 
VBD NP NP SBAR. 

VP 

VBD NP NP SBARPP 



Bigrams These are adjacent pairs of non-terminals to the left and right 
of the head. As shown, the example rule would contribute the bigrams 
(Right,VP,NP,NP), (Right,VP,NP,SBAR), (Right,VP,SBAR,STOP), 
and (Left,VP,PP,STOP) to the left of the head. 

VP 

VBD NP NP SBARPP 



Grandparent Rules Same as Rules, but also including the non-terminal above 
the rule. 

VP 

VBD NP NP SBARPP 

S 



Lexical Bigrams Same as Bigrams, but with the lexical heads of the two non-
terminals also included. 

VP


NP(boy) VBD(gave) PP(in) NP(treat) SBAR(because)




Grandparent Bigrams Same as Bigrams, but also including the non-terminal 
above the bigrams. 

VP 

VBD NP NP SBARPP 

S 



Two-level Rules Same as Rules, but also including the entire rule above the rule.


S


VPNP 

PP VBD NP NP SBAR




Two-level Bigrams Same as Bigrams, but also including the entire rule above 
the rule. 

VP 

VBD NP NP SBARPP 

NP 

S 



Trigrams All trigrams within the rule. The example rule would contribute 
the trigrams (VP,STOP,PP,VBD!), (VP,PP,VBD!,NP), (VP, 
VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP, SBAR,STOP) (! 
is used to mark the head of the rule) 

VP


PP VBD! NP NP SBAR




Head-Modifiers All head-modifier pairs, with the grandparent non-terminal 
also included. An adj flag is also included, which is 1 if the modifier is 
adjacent to the head, 0 otherwise. As an example, say the non-terminal 
dominating the example rule is S. The example rule would contribute 
(Left,S,VP,VBD,PP,adj=1), (Right,S,VP,VBD,NP,adj=1), 
(Right,S,VP, VBD,NP,adj=0), and (Right,S,VP,VBD,SBAR, 
adj=0). 



VP 

VBD NP NP SBARPP 
adj=1 

adj=0 

adj=0adj=1 

S 



PPs Lexical trigrams involving the heads of arguments of prepositional 
phrases. The example shown at right would contribute the trigram 
(NP,NP,PP,NP,president,of,U.S.), in addition to the more general 
trigram relation (NP,NP,PP,NP,of,U.S.). 



NP(president) PP(of) 

of NP(U.S.) 

NP(president) 

president the 

the U.S.




Distance Head-Modifiers Features involving the distance between head words. 
For example, assume dist is the number of words between the head words of 
the VBD and SBAR in the (VP,VBD,SBAR) head-modifier relation in the above 
rule. This relation would then generate features (VP,VBD,SBAR,= dist), and 
(VP,VBD,SBAR,� x) for all dist � x � 9 and (VP,VBD,SBAR,� x) for 
all 1 � x � dist. 

Further Lexicalization In order to generate more features, a second pass was 
made where all non-terminals were augmented with their lexical heads when 
these headwords were closed-class words. All features apart from Head-
Modifiers, PPs and Distance Head-Modifiers were then generated with these 
augmented non-terminals. 



Overview


•	 A brief review of history-based methods 

•	 A new framework: Global linear models 

•	 Parsing problems in this framework: 
Reranking problems 

• Parameter estimation method 1: 
A variant of the perceptron algorithm 



A Variant of the Perceptron Algorithm


Inputs: Training set (xi, yi) for i = 1 . . . n 

Initialization: W = 0 

Define: F (x) = argmaxy�GEN(x) �(x, y) · W 

Algorithm: For t = 1 . . . T , i = 1 . . . n 
zi = F (xi) 
If (zi →= yi) W = W + �(xi, yi) − �(xi, zi) 

Output: Parameters W 



A �


B 

D E 

C 

F G 

d e f g 

G � 

B 

D E 

C 

F G 

d e f g


log probability -1.56 
HASRULE:A->B;C 54 
HASRULE:B->D;E 118 
HASRULE:C->F;G 14 
HASRULE:D->d 10078 
HASRULE:E->e 9000 
HASRULE:F->f 1078 
HASRULE:G->g 101 

log probability -1.13 
HASRULE:G->B;C 89 
HASRULE:B->D;E 118 
HASRULE:C->F;G 14 
HASRULE:D->d 10078 
HASRULE:E->e 9000 
HASRULE:F->f 1078 
HASRULE:G->g 101 

Say first tree is correct, but second tree has higher W · �(x, y) under current 
parameters: Then W = W + �(xi, yi) − �(xi, zi) implies 

W1 + = −1.56 − (−1.13) = −0.43 

W54 + = 1 

W89 + = −1 



Theory Underlying the Algorithm


• Definition: GEN(xi) = GEN(xi) − {yi} 

• Definition: The training set is separable with margin �, 
if there is a vector U � Rd with ||U|| = 1 such that 

≥i, ≥z � GEN(xi) U · �(xi, yi) − U · �(xi, z) � � 



GEOMETRIC INTUITION BEHIND SEPARATION

� �� �
� �� �

� �� �

� �� �
� �	 	


 
� �

� �
 

� �� �

� �� �
� �� �

= Correct candidate

= Incorrect candidates



GEOMETRIC INTUITION BEHIND SEPARATION

� �� �
� �� �

� �� �

� �� �
� �	 	


 
� �

� �
 

� �� �

� �� �
� �� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

= Correct candidate

= Incorrect candidates

U



ALL EXAMPLES ARE SEPARATED

� �� �� �� �

����
�

����
�

��� ���

��� ���
	�	
�


��� ���

�
���

��� ���

��� ���

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

U

= Correct candidate (2)

= Incorrect candidates (2)

= Correct candidate (2)

= Incorrect candidates (2)



THEORY UNDERLYING THE ALGORITHM


Theorem: For any training sequence (xi, yi) which is separable 
with margin �, then for the perceptron algorithm 

R2 

Number of mistakes � 
�2 

where R is a constant such that ≤i,≤z � GEN(xi) 

||�(xi, yi) − �(xi, z)|| � R 

Proof: Direct modification of the proof for the classification case. 



Proof: 
1Let Wk be the weights before the k’th mistake. W = 0


If the k’th mistake is made at i’th example,

and zi = argmaxy�GEN(xi ) �(y) · Wk , then


W
k+1 = W

k + �(yi) − �(zi) 

∈ U · Wk+1 = U · Wk + U · �(yi) − U · �(zi)


� U · Wk + �


� k�


∈ ||Wk+1|| � k� 

Also, 

||Wk+1||2 = ||Wk ||2 + ||�(yi) − �(zi)||
2 + 2Wk · (�(yi) − �(zi)) 

� ||Wk ||2 + R2 

∈ ||Wk+1||2 � kR2 

∈ k2�2 � ||Wk+1||2 � kR2 

∈ k � R2/�2 



Perceptron Experiments: Parse Reranking


Parsing the Wall Street Journal Treebank 
Training set = 40,000 sentences, test = 2,416 sentences 
Generative model (Collins 1999): 88.2% F-measure 
Reranked model: 89.5% F-measure (11% relative error reduction) 
Boosting: 89.7% F-measure (13% relative error reduction) 

• Results from Charniak and Johnson, 2005: 

– Improvement from 89.7% (baseline generative model) to 
91.0% accuracy 

– Uses a log-linear model 

– Gains from improved n-best lists, better features 



Summary


• A new framework: global linear models 
GEN, �, W 

• There are several ways to train the parameters W: 

– Perceptron 

– Boosting 

– Log-linear models (maximum-likelihood) 

• Applications: 

– Reranking models 

– LFG parsing 

– Generation 

– Machine translation 

– Tagging problems 

– Speech recognition 


