
6.864: Lecture 20 (November 22, 2005)

Global Linear Models

Overview

•	 A brief review of history-based methods

•	 A new framework: Global linear models

•	 Parsing problems in this framework:
Reranking problems

•	 Parameter estimation method 1:
A variant of the perceptron algorithm

Techniques

• So far:

– Smoothed estimation

– Probabilistic context-free grammars

– The EM algorithm

– Log-linear models

– Hidden markov models

– History-based models

– Partially supervised methods

• Today:

– Global linear models

Supervised Learning in Natural Language

• General task: induce a function F from members of a set X to
members of a set Y . e.g.,

Problem x � X y � Y
Parsing sentence parse tree
Machine translation French sentence English sentence
POS tagging sentence sequence of tags

• Supervised learning:

we have a training set (xi, yi) for i = 1 . . . n

The Models so far

• Most of the models we’ve seen so far are history-based
models:

–	We break structures down into a derivation, or sequence of decisions

–	Each decision has an associated conditional probability

–	Probability of a structure is a product of decision probabilities

–	Parameter values are estimated using variants of maximum-
likelihood estimation

–	Function F : X ≥ Y is defined as

F (x) = argmaxy P (y, x | �) or F (x) = argmaxy P (y | x, �)

�

Example 1: PCFGs

•	 We break structures down into a derivation, or sequence of decisions
We have a top-down derivation, where each decision is to expand some
non-terminal � with a rule � ≥ �

•	 Each decision has an associated conditional probability
�	≥ � has probability P (� ≥ � | �)

•	 Probability of a structure is a product of decision probabilities

n

P (T, S) = P (�i ≥ �i | �i)
i=1

where �i ≥ �i for i = 1 . . . n are the n rules in the tree

•	 Parameter values are estimated using variants of maximum-likelihood
estimation

Count(� ≥ �)
P (� ≥ � | �) =

Count(�)

•	 Function F : X ≥ Y is defined as

F (x) = argmaxy P (y, x | �)

Can be computed using dynamic programming

�

Example 2: Log-linear Taggers

•	 We break structures down into a derivation, or sequence of decisions
For a sentence of length n we have n tagging decisions, in left-to-right
order

•	 Each decision has an associated conditional probability

P (ti | ti−1, ti−2, w1 . . . wn)

where ti is the i’th tagging decision, wi is the i’th word

•	 Probability of a structure is a product of decision probabilities

n

P (t1 . . . tn | w1 . . . wn) = P (ti | ti−1, ti−2, w1 . . . wn)
i=1

•	 Parameter values are estimated using variants of maximum-likelihood
estimation
P (ti | ti−1, ti−2, w1 . . . wn) is estimated using a log-linear model

•	 Function F : X ≥ Y is defined as

F (x) = argmaxy P (y | x, �)

Can be computed using dynamic programming

Example 3: Machine Translation

•	 We break structures down into a derivation, or sequence of decisions
A French sentence f is generated from an English sentence e in a number
of steps: pick alignment for each French word, pick the French word given
the English word

•	 Each decision has an associated conditional probability
e.g., T(le | the), D(4 | 3, 6, 7)

•	 Probability of a structure is a product of decision probabilities
P (f , a | e) is a product of translation and alignment probabilities

•	 Parameter values are estimated using variants of maximum-likelihood
estimation
Some decisions are hidden, so we use EM

•	 Function F : X ≥ Y is defined as

F (f) = argmaxe,aP (e)P (f , a | e)

Approximated using greedy search methods

A New Set of Techniques: Global Linear Models

Overview of today’s lecture:

• Global linear models as a framework

• Parsing problems in this framework:

– Reranking problems

• A variant of the perceptron algorithm

Global Linear Models as a Framework

• We’ll move away from history-based models
No idea of a “derivation”, or attaching probabilities to “decisions”

• Instead, we’ll have feature vectors over entire structures
“Global features”

• First piece of motivation:
Freedom in defining features

An Example: Parsing

• In lecture 4, we described lexicalized models for parsing

• Showed how a rule can be generated in a number of steps

S(told,V[6])

VP(told,V[6])STOP NP(yesterday,NN) NP-C(Hillary,NNP) STOP

Model 2

• Step 1: generate category of head child

S(told,V[6])

∀

S(told,V[6])

VP(told,V[6])

Ph(VP | S, told, V[6])

Model 2

• Step 2: choose left subcategorization frame

S(told,V[6])

VP(told,V[6])

∀

S(told,V[6])

VP(told,V[6])
{NP-C}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])

• Step 3: generate left modifiers in a Markov chain

S(told,V[6])

?? VP(told,V[6])
{NP-C}

∀

S(told,V[6])

VP(told,V[6])NP-C(Hillary,NNP)
{}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])×
Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,{NP-C})

S(told,V[6])

?? NP-C(Hillary,NNP) VP(told,V[6])
{}

∀

S(told,V[6])

NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
{}

Ph(VP | S, told, V[6]) × Plc({NP-C} | S, VP, told, V[6])
Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V[6],LEFT,{})

�

S(told,V[6])

?? VP(told,V[6])NP(yesterday,NN) NP-C(Hillary,NNP)
{}

S(told,V[6])

VP(told,V[6])STOP NP(yesterday,NN) NP-C(Hillary,NNP)
{}

Ph(VP | S, told, V[6]) × Plc ({NP-C} | S, VP, told, V[6])
Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V[6],LEFT,{})×
Pd(STOP | S,VP,told,V[6],LEFT,{})

The Probabilities for One Rule

S(told,V[6])

VP(told,V[6])STOP NP(yesterday,NN) NP-C(Hillary,NNP) STOP

Ph(VP | S, told, V[6])×
Plc({NP-C} | S, VP, told, V[6])×

Prc({} | S, VP, told, V[6])×

Pd(NP-C(Hillary,NNP) | S,VP,told,V[6],LEFT,� = 1,{NP-C})×

Pd(NP(yesterday,NN) | S,VP,told,V[6],LEFT,� = 0,{})×

Pd(STOP | S,VP,told,V[6],LEFT,� = 0,{})×

Pd(STOP | S,VP,told,V[6],RIGHT,� = 1,{})

Three parameter types:
Head parameters, Subcategorization parameters, Dependency parameters

Smoothed Estimation

P (NP(,NN) VP | S(questioned,Vt)) =

Count(S(questioned,Vt)≥NP(,NN) VP)
�1 ×

Count(S(questioned,Vt))

Count(S(,Vt)≥NP(,NN) VP)+�2 ×
Count(S(,Vt))

• Where 0 � �1, �2 � 1, and �1 + �2 = 1

Smoothed Estimation

P (lawyer | S,VP,NP,NN,questioned,Vt) =

Count(lawyer | S,VP,NP,NN,questioned,Vt)
�1 ×

Count(S,VP,NP,NN,questioned,Vt)

Count(lawyer | S,VP,NP,NN,Vt)
+�2 ×

Count(S,VP,NP,NN,Vt)

Count(lawyer | NN)

+�3 ×

Count(NN)

• Where 0 � �1, �2, �3 � 1, and �1 + �2 + �3 = 1

An Example: Parsing

•	 In lecture 4, we described lexicalized models for parsing

•	 Showed how a rule can be generated in a number of steps

•	 The end result:

–	We have head, dependency, and subcategorization parameters

–	Smoothed estimation means “probability” of a tree depends on counts
of many different types of events

• What if we want to add new features?
Can be very awkward to incorporate some features in
history-based models

A Need for Flexible Features

Example 1 Parallelism in coordination [Johnson et. al 1999]

Constituents with similar structure tend to be coordinated
≈ how do we allow the parser to learn this preference?

Bars in New York and pubs in London

vs. Bars in New York and pubs

Example 2 Semantic features

We might have an ontology giving properties of various
nouns/verbs
≈ how do we allow the parser to use this information?

pour the cappucino
vs. pour the book

Ontology states that cappucino has the +liquid feature,
book does not.

Three Components of Global Linear Models

• � is a function that maps a structure (x, y) to a feature vector
�(x, y) � Rd

• GEN is a function that maps an input x to a set of candidates
GEN(x)

• W is a parameter vector (also a member of Rd)

• Training data is used to set the value of W

� �

Component 1: �

d• � maps a candidate to a feature vector � R

• � defines the representation of a candidate

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP and NP

trucks vans

⇒1, 0, 2, 0, 0, 15, 5⇓

Features

• A “feature” is a function on a structure, e.g.,

h(x, y) = Number of times A is seen in (x, y)

B C

(x1, y1) A (x2, y2) A

B

D E

C

F G

B

D E

C

F A

B Cd e f g d e h

b c

h(x1, y1) = 1 h(x2, y2) = 2

�

Another Example

• A “feature” is a function on a structure, e.g.,

1 if (x, y) has an instance of non-parallel coordination
h(x, y) =

0 otherwise

(x1 1) VP

visited NP

, y

NP and NP

bars in New York pubs in London

h(x1, y1) = 0

(x2 , y2) VP

visited NP

NP and NP

PP

in London

bars in New York pubs

h(x2, y2) = 1

A Third Example

• A “feature” is a function on a structure, e.g.,

h1(x, y) = number of times Mary is subject of likes

h2(x, y) = number of times Mary is object of likes

() S

NP

Jim

VP

NP

NP

x, y

likes

SBAR

Mary who likes Bill

h1(x, y) = 1 h2(x, y) = 1

A Final Example

• A “feature” is a function on a structure, e.g.,

h(x, y) = log probability of (x, y) under Model 2

(x1 1) A

B

D E

C

F G

(x2 2) A

B

D E

C

F A

, y , y

B Cd e f g d e h

b c

h(x1, y1) = −1.56 h(x2, y2) = −1.98

� �

Component 1: �

d• � maps a candidate to a feature vector � R

• � defines the representation of a candidate

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP and NP

trucks vans

⇒1, 0, 2, 0, 0, 15, 5⇓

Feature Vectors

• A set of functions h1 . . . hd define a feature vector

�(x) = ⇒h1(x), h2(x) . . . hd(x)⇓

T1 A

B

D E

C

F G

T2 A

B

D E

C

F A

B Cd e f g d e h

b c

�(T1) = �1, 0, 0, 3≤ �(T2) = �2, 0, 1, 1≤

Feature Vectors

• Our goal is to come up with learning methods which allow us
to define any features over parse trees

• Avoids the intermediate steps of a history-based model:
defining a derivation which takes the features into account,
and then attaching probabilities to decisions
Our claim is that this can be an unwieldy, indirect way of
getting desired features into a model

• Problem of representation now boils down to the choice of
the function �(x, y)

Component 2: GEN

• GEN enumerates a set of candidates for a sentence

She announced a program to promote safety in trucks and vans

∀ GEN

S S S S S S

NP VP NP VP NP VP
NP VP

She She NP VP She

announced NP

NP VP She

announced NP She She

announced NP

NP VP

a program

announced NP

NP VP

announced NP NP VP a program
 NP PP

to promote NP a program
to promote NP PP in NP

safety PP
NP VP

safety
in NP a program trucks and vans

in NP
to promote NP

safety
to promote NP trucks and vans

announced NP

andNP NPtrucks and vans
NP and NP

vans

vans NP and NP

NP VP
NP VP safety PP

vans

a program
in NPa program

to promote NP PP

to promote NP safety in NP
trucks

trucks
safety PP

in NP

trucks

Component 2: GEN

•	 GEN enumerates a set of candidates for an input x

•	 Some examples of how GEN(x) can be defined:

–	Parsing: GEN(x) is the set of parses for x under a grammar

–	Any task: GEN(x) is the top N most probable parses under a
history-based model

–	Tagging: GEN(x) is the set of all possible tag sequences with the
same length as x

–	Translation: GEN(x) is the set of all possible English translations
for the French sentence x

� �

Component 3: W

d• W is a parameter vector � R

• � and W together map a candidate to a real-valued score

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP and NP

trucks vans

⇒1, 0, 2, 0, 0, 15, 5⇓

� � · W

⇒1, 0, 2, 0, 0, 15, 5⇓ · ⇒1.9, −0.3, 0.2, 1.3, 0, 1.0, −2.3⇓ = 5.8

Putting it all Together

• X is set of sentences, Y is set of possible outputs (e.g. trees)

• Need to learn a function F : X ∈ Y

• GEN, �, W define

F (x) = arg max �(x, y) · W
y�GEN(x)

Choose the highest scoring candidate as the most plausible
structure

• Given examples (xi, yi), how to set W?

She announced a program to promote safety in trucks and vans

∀ GEN
S S S S S S

NP VP

announced NP

NP VP NP VP

announced NP

NP VP
She She

NP VP She NP VP She

announced NP

SheShe announced NP

NP VP

a program

VP

NP

VP

and NP

NP VP

announced NP NP VP a program
 announced
NP PP

to promote NP a program

safety PP

in

to promote NP PP in NP
NP

safety
in NP a program trucks and vans

NP
to promote NP

to promote NP trucks and vans
safety

trucks and vans NP

NP and NP
vans

vans NP and NP

NP
NP VP safety PP

vans

a program
in NPa program

to promote NP PP

to promote NP safety
trucks

in NP

trucks
safety PP

in NP

trucks

∀ � ∀ � ∀ � ∀ � ∀ � ∀ �

�1, 1, 3, 5� �2, 0, 0, 5� �1, 0, 1, 5� �0, 0, 3, 0� �0, 1, 0, 5� �0, 0, 1, 5�

� � · W � � · W � � · W � � · W � � · W � � · W

13.6 12.2 12.1 3.3 9.4 11.1

∀ arg max
S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP and NP

trucks vans

Overview

•	 A brief review of history-based methods

•	 A new framework: Global linear models

•	 Parsing problems in this framework:
Reranking problems

•	 Parameter estimation method 1:
A variant of the perceptron algorithm

Reranking Approaches to Parsing

• Use a baseline parser to produce top N parses for each
sentence in training and test data
GEN(x) is the top N parses for x under the baseline model

• One method: use Model 2 to generate a number of parses
(in our experiments, around 25 parses on average for 40,000
training sentences, giving ≤ 1 million training parses)

• Supervision: for each xi take yi to be the parse that is
“closest” to the treebank parse in GEN(x i)

�

The Representation �

• Each component of � could be essentially any feature over
parse trees

• For example:

�1(x, y) = log probability of (x, y) under the baseline model

1 if (x, y) includes the rule VP ∈ PP VBD NP
�2(x, y) =

0 otherwise

54
118
14
10078
9000
1078
101

Practical Issues in Creating �

• Step 1: map a tree to a number of “strings” representing
features

A ≈ HASRULE:A->B;C

HASRULE:B->D;E

B C HASRULE:C->F;G

HASRULE:D->d

D E F G HASRULE:E->e
HASRULE:F->f

d e f g HASRULE:G->g

Practical Issues in Creating �

• Step 2: hash the strings to integers

A ∈ HASRULE:A->B;C 54
HASRULE:B->D;E 118

B C HASRULE:C->F;G 14
HASRULE:D->d 10078

D E F G HASRULE:E->e 9000
HASRULE:F->f 1078

d e f g HASRULE:G->g 101

• In our experiments, tree is then represented as log probability
under the baseline model, plus a sparse feature array:

�1(x, y) = log probability of (x, y) under the baseline model

�i(x, y) = 1 for i = {54, 118, 14, 10078, 9000, 1078, 101}

�i(x, y) = 0 for all other i

The Score for Each Parse

• In our experiments, tree is then represented as log probability
under the baseline model, plus a sparse feature array:

�1(x, y) = log probability of (x, y) under the baseline model

�i(x, y) = 1 for i = {54, 118, 14, 10078, 9000, 1078, 101}

�i(x, y) = 0 for all other i

• Score for the tree (x, y):

�(x, y) · W

= �i(x, y)Wi

i

= W1�1(x, y) + W54 + W118 + W14 + W10078 + W9000 + W1078 + W101

From [Collins and Koo, 2005]:
The following types of features were included in the model. We will use the rule
VP -> PP VBD NP NP SBAR with head VBD as an example. Note that the
output of our baseline parser produces syntactic trees with headword annotations.

Rules These include all context-free rules in the tree, for example VP -> PP
VBD NP NP SBAR.

VP

VBD NP NP SBARPP

Bigrams These are adjacent pairs of non-terminals to the left and right
of the head. As shown, the example rule would contribute the bigrams
(Right,VP,NP,NP), (Right,VP,NP,SBAR), (Right,VP,SBAR,STOP),
and (Left,VP,PP,STOP) to the left of the head.

VP

VBD NP NP SBARPP

Grandparent Rules Same as Rules, but also including the non-terminal above
the rule.

VP

VBD NP NP SBARPP

S

Lexical Bigrams Same as Bigrams, but with the lexical heads of the two non-
terminals also included.

VP

NP(boy) VBD(gave) PP(in) NP(treat) SBAR(because)

Grandparent Bigrams Same as Bigrams, but also including the non-terminal
above the bigrams.

VP

VBD NP NP SBARPP

S

Two-level Rules Same as Rules, but also including the entire rule above the rule.

S

VPNP

PP VBD NP NP SBAR

Two-level Bigrams Same as Bigrams, but also including the entire rule above
the rule.

VP

VBD NP NP SBARPP

NP

S

Trigrams All trigrams within the rule. The example rule would contribute
the trigrams (VP,STOP,PP,VBD!), (VP,PP,VBD!,NP), (VP,
VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP, SBAR,STOP) (!
is used to mark the head of the rule)

VP

PP VBD! NP NP SBAR

Head-Modifiers All head-modifier pairs, with the grandparent non-terminal
also included. An adj flag is also included, which is 1 if the modifier is
adjacent to the head, 0 otherwise. As an example, say the non-terminal
dominating the example rule is S. The example rule would contribute
(Left,S,VP,VBD,PP,adj=1), (Right,S,VP,VBD,NP,adj=1),
(Right,S,VP, VBD,NP,adj=0), and (Right,S,VP,VBD,SBAR,
adj=0).

VP

VBD NP NP SBARPP
adj=1

adj=0

adj=0adj=1

S

PPs Lexical trigrams involving the heads of arguments of prepositional
phrases. The example shown at right would contribute the trigram
(NP,NP,PP,NP,president,of,U.S.), in addition to the more general
trigram relation (NP,NP,PP,NP,of,U.S.).

NP(president) PP(of)

of NP(U.S.)

NP(president)

president the

the U.S.

Distance Head-Modifiers Features involving the distance between head words.
For example, assume dist is the number of words between the head words of
the VBD and SBAR in the (VP,VBD,SBAR) head-modifier relation in the above
rule. This relation would then generate features (VP,VBD,SBAR,= dist), and
(VP,VBD,SBAR,� x) for all dist � x � 9 and (VP,VBD,SBAR,� x) for
all 1 � x � dist.

Further Lexicalization In order to generate more features, a second pass was
made where all non-terminals were augmented with their lexical heads when
these headwords were closed-class words. All features apart from Head-
Modifiers, PPs and Distance Head-Modifiers were then generated with these
augmented non-terminals.

Overview

•	 A brief review of history-based methods

•	 A new framework: Global linear models

•	 Parsing problems in this framework:
Reranking problems

• Parameter estimation method 1:
A variant of the perceptron algorithm

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: W = 0

Define: F (x) = argmaxy�GEN(x) �(x, y) · W

Algorithm: For t = 1 . . . T , i = 1 . . . n
zi = F (xi)
If (zi →= yi) W = W + �(xi, yi) − �(xi, zi)

Output: Parameters W

A �

B

D E

C

F G

d e f g

G �

B

D E

C

F G

d e f g

log probability -1.56
HASRULE:A->B;C 54
HASRULE:B->D;E 118
HASRULE:C->F;G 14
HASRULE:D->d 10078
HASRULE:E->e 9000
HASRULE:F->f 1078
HASRULE:G->g 101

log probability -1.13
HASRULE:G->B;C 89
HASRULE:B->D;E 118
HASRULE:C->F;G 14
HASRULE:D->d 10078
HASRULE:E->e 9000
HASRULE:F->f 1078
HASRULE:G->g 101

Say first tree is correct, but second tree has higher W · �(x, y) under current
parameters: Then W = W + �(xi, yi) − �(xi, zi) implies

W1 + = −1.56 − (−1.13) = −0.43

W54 + = 1

W89 + = −1

Theory Underlying the Algorithm

• Definition: GEN(xi) = GEN(xi) − {yi}

• Definition: The training set is separable with margin �,
if there is a vector U � Rd with ||U|| = 1 such that

≥i, ≥z � GEN(xi) U · �(xi, yi) − U · �(xi, z) � �

GEOMETRIC INTUITION BEHIND SEPARATION

� �� �
� �� �

� �� �

� �� �
� �	 	

� �

� �

� �� �

� �� �
� �� �

= Correct candidate

= Incorrect candidates

GEOMETRIC INTUITION BEHIND SEPARATION

� �� �
� �� �

� �� �

� �� �
� �	 	

� �

� �

� �� �

� �� �
� �� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

= Correct candidate

= Incorrect candidates

U

ALL EXAMPLES ARE SEPARATED

� �� �� �� �

����
�

����
�

��� ���

��� ���
	�	
�

��� ���

�
���

��� ���

��� ���

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

U

= Correct candidate (2)

= Incorrect candidates (2)

= Correct candidate (2)

= Incorrect candidates (2)

THEORY UNDERLYING THE ALGORITHM

Theorem: For any training sequence (xi, yi) which is separable
with margin �, then for the perceptron algorithm

R2

Number of mistakes �
�2

where R is a constant such that ≤i,≤z � GEN(xi)

||�(xi, yi) − �(xi, z)|| � R

Proof: Direct modification of the proof for the classification case.

Proof:
1Let Wk be the weights before the k’th mistake. W = 0

If the k’th mistake is made at i’th example,

and zi = argmaxy�GEN(xi) �(y) · Wk , then

W
k+1 = W

k + �(yi) − �(zi)

∈ U · Wk+1 = U · Wk + U · �(yi) − U · �(zi)

� U · Wk + �

� k�

∈ ||Wk+1|| � k�

Also,

||Wk+1||2 = ||Wk ||2 + ||�(yi) − �(zi)||
2 + 2Wk · (�(yi) − �(zi))

� ||Wk ||2 + R2

∈ ||Wk+1||2 � kR2

∈ k2�2 � ||Wk+1||2 � kR2

∈ k � R2/�2

Perceptron Experiments: Parse Reranking

Parsing the Wall Street Journal Treebank
Training set = 40,000 sentences, test = 2,416 sentences
Generative model (Collins 1999): 88.2% F-measure
Reranked model: 89.5% F-measure (11% relative error reduction)
Boosting: 89.7% F-measure (13% relative error reduction)

• Results from Charniak and Johnson, 2005:

– Improvement from 89.7% (baseline generative model) to
91.0% accuracy

– Uses a log-linear model

– Gains from improved n-best lists, better features

Summary

• A new framework: global linear models
GEN, �, W

• There are several ways to train the parameters W:

– Perceptron

– Boosting

– Log-linear models (maximum-likelihood)

• Applications:

– Reranking models

– LFG parsing

– Generation

– Machine translation

– Tagging problems

– Speech recognition

