
6.864: Lecture 2, Fall 2005

Parsing and Syntax I




Overview


• An introduction to the parsing problem 

• Context free grammars 

• A brief(!) sketch of the syntax of English 

• Examples of ambiguous structures 

• PCFGs, their formal properties, and useful algorithms 

• Weaknesses of PCFGs 



Parsing (Syntactic Structure)


INPUT: 
Boeing is located in Seattle. 

OUTPUT: 
S 

NP 

N 

Boeing 

VP 

V 

is 

VP 

V 

located 

PP 

P NP 

in N 

Seattle 



Data for Parsing Experiments


• Penn WSJ Treebank = 50,000 sentences with associated trees 

• Usual set-up: 40,000 training sentences, 2400 test sentences 

An example tree: 
TOP 

NNP NNPS 

NP 

VBD NP 

ADVP IN 

PP 

VP 

S 

NP PP 

PRP$ JJ NN CC JJ NN NNS 

NP 

IN 

NP SBAR

NP

PP

NP 

CD NN IN NP RB 

QP 

$ CD CD PUNC, 

NNP PUNC, WHADVP 

DT NN 

NP 

VBZ 

QP NNS PUNC.

NP

VP

S 

WRB 

RB CD 

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its natural gas and electric utility businessesin Alberta , where the company serves about 800,000 customers . 

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its 
natural gas and electric utility businesses in Alberta , where the company 
serves about 800,000 customers . 



The Information Conveyed by Parse Trees


1) Part of speech for each word 

(N = noun, V = verb, D = determiner) 

S 

NP 

D 

the 

N 

VP 

V 

robbed 

NP 

D Nburglar 

the apartment




2) Phrases S


NP 

DT 

the 

N 

VP 

V 

robbed 

NP 

DT Nburglar 

the apartment


Noun Phrases (NP): “the burglar”, “the apartment”


Verb Phrases (VP): “robbed the apartment”


Sentences (S): “the burglar robbed the apartment”




3) Useful Relationships


S 

NP 

subject 

VP 

V 

verb 

S 

NP 

DT 

the 

N 

VP 

V 

robbed 

NP 

DT Nburglar 

the apartment 

∪ “the burglar” is the subject of “robbed” 



An Example Application: Machine Translation


• English word order is subject – verb – object 

• Japanese word order is subject – object – verb 

English: IBM bought Lotus

Japanese: IBM Lotus bought


English: Sources said that IBM bought Lotus yesterday 
Japanese: Sources yesterday IBM Lotus bought that said 



Syntax and Compositional Semantics


S: ( ) 

NP:IBM 

IBM 

VP: ( ) 

( ) NP:Lotus 

bought IBM, Lotus

�y bought y, Lotus

V:�x, y bought y, x

bought Lotus 

• Each syntactic non-terminal now has an associated semantic 
expression 

• (We’ll see more of this later in the course) 



Context-Free Grammars


[Hopcroft and Ullman 1979]

A context free grammar G = (N, �, R, S) where:


•	 N is a set of non-terminal symbols 

•	 � is a set of terminal symbols 

•	 R is a set of rules of the form X ∈ Y1Y2 . . . Yn 

for n � 0, X � N , Yi � (N � �) 

•	 S � N is a distinguished start symbol 



A Context-Free Grammar for English


N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}

S = S

� = {sleeps, saw, man, woman, telescope, the, with, in}


R =
 S ∪ NP VP
VP ∪ Vi
VP ∪ Vt NP
VP ∪ VP PP
NP ∪ DT NN
NP ∪ NP PP
PP ∪ IN NP 

Vi ∪ sleeps 
Vt ∪ saw 
NN ∪ man 
NN ∪ woman 
NN ∪ telescope 
DT ∪ the 
IN ∪ with 
IN ∪ in 

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional 
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, 
IN=preposition 



Left-Most Derivations

A left-most derivation is a sequence of strings s1 . . . sn, where 

• s1 = S, the start symbol 

• sn � ��, i.e. sn is made up of terminal symbols only 

• Each si for i = 2 . . . n is derived from si−1 by picking the left­
most non-terminal X in si−1 and replacing it by some � where 
X ∈ � is a rule in R 

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], 
[the man Vi], [the man sleeps] 

Representation of a derivation as a tree: 

S 

NP 

D N 

VP 

Vi 

the man sleeps 



S � NP VP
NP VP NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED

S




NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED 
S S � NP VP 
NP VP 



DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � DT N 
DT N VP 



N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � DT N 
DT N VP DT � the 
the N VP 



VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � DT N 
DT N VP DT � the 
the N VP N � dog 
the dog VP 



VB � laughs

the dog laughs

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � DT N 
DT N VP DT � the 
the N VP N � dog 
the dog VP VP � VB 
the dog VB 



DERIVATION RULES USED 
S S � NP VP 
NP VP NP � DT N 
DT N VP DT � the 
the N VP N � dog 
the dog VP VP � VB 
the dog VB VB � laughs 
the dog laughs 

S 

NP 

DT N 

VP 

VB 

the dog laughs




Properties of CFGs


• A CFG defines a set of possible derivations 

• A string s � �� is in the language defined by the CFG if there 
is at least one derivation which yields s 

• Each string in the language generated by the CFG may have 
more than one derivation (“ambiguity”) 



S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED

S


S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP 

S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP 

S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VP PP 
he VP PP 

S 

NP VP 

he 

VP 

VB PP 

PP 

in the car 

drove 
down the street 



VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VP PP 
he VP PP VP � VB PP 
he VB PP PP 

S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VP PP 
he VP PP VP � VB PP 
he VB PP PP VB� drove 
he drove PP PP 

S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



PP� in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VP PP 
he VP PP VP � VB PP 
he VB PP PP VB� drove 
he drove PP PP PP� down the street 
he drove down the street PP 

S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VP PP 
he VP PP VP � VB PP 
he VB PP PP VB� drove 
he drove PP PP PP� down the street 
he drove down the street PP PP� in the car 
he drove down the street in the car 

S 

NP 

he 

VP 

VP 

VB PP 

the street 

PP 

in the car 

drove 
down 



S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED

S


S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VB PP 
he VB PP 

S 

NP VP 

he 

VB PP 

drove 

NP 

NP 

the street 

PP 

in the car 

down 



PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VB PP 
he VB PP VB � drove 
he drove PP 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VB PP 
he VB PP VB � drove 
he drove PP PP � down NP 
he drove down NP 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VB PP 
he VB PP VB � drove 
he drove PP PP � down NP 
he drove down NP NP � NP PP 
he drove down NP PP 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



PP � in the car
he drove down the street in the car

DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VB PP 
he VB PP VB � drove 
he drove PP PP � down NP 
he drove down NP NP � NP PP 
he drove down NP PP NP � the street 
he drove down the street PP 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



DERIVATION RULES USED 
S S � NP VP 
NP VP NP � he 
he VP VP � VB PP 
he VB PP VB � drove 
he drove PP PP � down NP 
he drove down NP NP � NP PP 
he drove down NP PP NP � the street 
he drove down the street PP PP � in the car 
he drove down the street in the car 

S 

NP 

he 

VP 

VB PP 

NP 

NP 

the street 

PP 

in the car 

drove 

down 



The Problem with Parsing: Ambiguity


INPUT: 
She announced a program to promote safety in trucks and vans 

← 

POSSIBLE OUTPUTS: 

S S S S S S 

NP VP NP VP NP VP 

announced NP 

NP VP 
She She

NP VP She NP VP She 

announced NP She


announced NP


NP VP


She 
announced NP 

NP VP


announced NP NP VP a program

a program 

NP PP 

to promote NP a program 
to promote NP PP in NP 

safety PP 
NP VP 

safety 
in NP a program trucks and vans 

in NP 
to promote NP 

safety
to promote NP trucks and vans 

announced NP

andNP NPtrucks and vans 
NP and NP 

vans 

vans NP and NP 

NP VP 
NP VP safety PP 

vans 

a program 
in NPa program 

to promote NP PP 

to promote NP safety in NP 
trucks 

trucks
safety PP 

in NP 

trucks 

And there are more... 



A Brief Overview of English Syntax


Parts of Speech: 

• Nouns 
(Tags from the Brown corpus) 
NN = singular noun e.g., man, dog, park 
NNS = plural noun e.g., telescopes, houses, buildings 
NNP = proper noun e.g., Smith, Gates, IBM 

• Determiners

DT = determiner e.g., the, a, some, every


• Adjectives

JJ = adjective e.g., red, green, large, idealistic




A Fragment of a Noun Phrase Grammar


NN ≤ box 
NN ≤ car 
NN ≤ mechanic 
NN ≤ pigeon

≤ NNN̄ 
N̄
 ≤ NN
 N̄


DT ≤ the

N̄
 ≤ JJ
 N̄


DT ≤ a

N̄
 ≤
 N̄
 N̄ 

N̄
NP ≤ DT

JJ ≤ fast 
JJ ≤ metal 
JJ ≤ idealistic 
JJ ≤ clay 

Generates: 
a box, the box, the metal box, the fast car mechanic, . . . 



Prepositions, and Prepositional Phrases


• Prepositions 
IN = preposition e.g., of, in, out, beside, as 



An Extended Grammar


JJ ≤ fast 
JJ ≤ metal 

≤ NN
N̄ 
N̄


NN ≤ box JJ ≤ idealistic
N̄
≤ NN 

NN ≤ car JJ ≤ clay
N̄
 N̄
≤ JJ 

NN ≤ mechanic 
NN ≤ pigeon IN ≤ in 

N̄
 ≤
 N̄
 N̄ 
N̄
NP ≤ DT


IN ≤ under 
DT ≤ the IN ≤ of 
DT ≤ a IN ≤ on 

IN ≤ with 
IN ≤ as 

PP ≤ IN NP

N̄
 ≤
 N̄
 PP 

Generates: 
in a box, under the box, the fast car mechanic under the pigeon in the box, . . . 



Verbs, Verb Phrases, and Sentences


• Basic Verb Types

Vi = Intransitive verb e.g., sleeps, walks, laughs

Vt = Transitive verb e.g., sees, saw, likes

Vd = Ditransitive verb e.g., gave


• Basic VP Rules

VP ∈ Vi

VP ∈ Vt NP

VP ∈ Vd NP NP


• Basic S Rule

S ∈ NP VP


Examples of VP: 
sleeps, walks, likes the mechanic, gave the mechanic the fast car, 
gave the fast car mechanic the pigeon in the box, . . . 



Examples of S: 
the man sleeps, the dog walks, the dog likes the mechanic, the dog 
in the box gave the mechanic the fast car,. . . 



PPs Modifying Verb Phrases


A new rule: 
VP ∈ VP PP


New examples of VP: 
sleeps in the car, walks like the mechanic, gave the mechanic the 
fast car on Tuesday, . . . 



Complementizers, and SBARs


• Complementizers

COMP = complementizer e.g., that


• SBAR

SBAR ∈ COMP S


Examples: 
that the man sleeps, that the mechanic saw the dog . . . 



More Verbs


• New Verb Types

V[5] e.g., said, reported

V[6] e.g., told, informed

V[7] e.g., bet


• New VP Rules

VP ∈ V[5] SBAR

VP ∈ V[6] NP SBAR 
VP ∈ V[7] NP NP SBAR 

Examples of New VPs: 
said that the man sleeps 
told the dog that the mechanic likes the pigeon 
bet the pigeon $50 that the mechanic owns a fast car 



Coordination


• A New Part-of-Speech: 
CC = Coordinator e.g., and, or, but 

• New Rules 
NP ∈ NP CC NP 
N̄
 ∈
 N̄
 CC
N̄

VP ∈ VP CC VP 
S ∈ S CC S 
SBAR ∈ SBAR CC SBAR 



Sources of Ambiguity


• Part-of-Speech ambiguity 
NNS ∈ walks 
Vi ∈ walks 

•	 Prepositional Phrase Attachment 
the fast car mechanic under the pigeon in the box 



NP


D 

the 

N̄ 

N̄ 

JJ N̄ 

NN 

car 

N̄ 

NN 

mechanic 

PP 

IN 

under 

NP 

D 

the 

N̄ 

N̄ 

NN 

pigeon 

PP 

IN 

in 

NP 

D N̄ 

fast 

the NN 

box 



NP


D 

the 

N̄ 

N̄ 

N̄ 

JJ N̄ 

NN N̄ 

PP 

IN 

under 

NP 

D N̄ 

PP 

IN 

in 

NP 

D 

the 

N̄ 

NN 

boxfast 

car NN the
 N̄


mechanic NN 

pigeon 



VP


VP 

Vt PP 

the street 

PP 

in the car 

drove 
down 

VP


Vt PP 

NP 

the N̄ 

street PP 

in the car 

drove 
down 



Two analyses for: John was believed to have been shot by Bill




Sources of Ambiguity: Noun Premodifiers


• Noun premodifiers: 

NP 

D 

the 

N̄ 

JJ N̄ 

NN N̄ 

NP 

D 

the 

N̄ 

N̄ 

JJ N̄ 

N̄ 

NNfast 

car NN fast NN mechanic 

mechanic car 



A Funny Thing about the Penn Treebank


Leaves NP premodifier structure flat, or underspecified: 

NP 

DT JJ NN NN 

the fast car mechanic 

NP 

NP 

DT JJ NN NN 

PP 

IN NP 

DT NNunder 
the fast car mechanic 

the pigeon 



A Probabilistic Context-Free Grammar


S ∪ NP VP 1.0 
VP ∪ Vi 0.4 
VP ∪ Vt NP 0.4 
VP ∪ VP PP 0.2 
NP ∪ DT NN 0.3 
NP ∪ NP PP 0.7 
PP ∪ P NP 1.0 

Vi ∪ sleeps 1.0 
Vt ∪ saw 1.0 
NN ∪ man 0.7 
NN ∪ woman 0.2 
NN ∪ telescope 0.1 
DT ∪ the 1.0 
IN ∪ with 0.5 
IN ∪ in 0.5 

• Probability of a tree with rules �i ∈ �i is 



i P (�i ∈ �i|�i)




S � NP VP
1.0

NP VP NP � DT N 0.3
DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY

S




NP � DT N
0.3

DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP 



DT � the
1.0

the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP NP � DT N 0.3 
DT N VP 



N � dog
0.1

the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP NP � DT N 0.3 
DT N VP DT � the 1.0 
the N VP 



VP � VB
0.4

the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP NP � DT N 0.3 
DT N VP DT � the 1.0 
the N VP N � dog 0.1 
the dog VP 



VB � laughs
0.5

the dog laughs

DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP NP � DT N 0.3 
DT N VP DT � the 1.0 
the N VP N � dog 0.1 
the dog VP VP � VB 0.4 
the dog VB 



DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP NP � DT N 0.3 
DT N VP DT � the 1.0 
the N VP N � dog 0.1 
the dog VP VP � VB 0.4 
the dog VB VB � laughs 0.5 
the dog laughs 

TOTAL PROBABILITY = 1.0 × 0.3 × 1.0 × 0.1 × 0.4 × 0.5




� 

Properties of PCFGs


• Assigns a probability to each left-most derivation, or parse-
tree, allowed by the underlying CFG 

• Say we have a sentence S, set of derivations for that sentence 
is T (S). Then a PCFG assigns a probability to each member 
of T (S). i.e., we now have a ranking in order of probability. 

• The probability of a string S is 

P (T, S) 
T �T (S) 



Deriving a PCFG from a Corpus


•	 Given a set of example trees, the underlying CFG can simply be all rules 
seen in the corpus 

•	 Maximum Likelihood estimates: 

Count(� � �)
PM L(� � � | �) = 

Count(�) 

where the counts are taken from a training set of example trees. 

•	 If the training data is generated by a PCFG, then as the training data 
size goes to infinity, the maximum-likelihood PCFG will converge to the 
same distribution as the “true” PCFG. 



PCFGs

[Booth and Thompson 73] showed that a CFG with rule 
probabilities correctly defines a distribution over the set of 
derivations provided that: 

1. The rule probabilities define conditional distributions over the 
different ways of rewriting each non-terminal. 

2. A technical condition on the rule probabilities ensuring that 
the probability of the derivation terminating in a finite number 
of steps is 1. (This condition is not really a practical concern.) 



� 

Algorithms for PCFGs


• Given a PCFG and a sentence S, define T (S) to be 
the set of trees with S as the yield. 

• Given a PCFG and a sentence S, how do we find 

arg max P (T, S) 
T �T (S)


• Given a PCFG and a sentence S, how do we find


P (S) = P (T, S) 
T �T (S) 



Chomsky Normal Form


A context free grammar G = (N, �, R, S) in Chomsky Normal 
Form is as follows 

• N is a set of non-terminal symbols 

• � is a set of terminal symbols 

• R is a set of rules which take one of two forms: 

– X ∈ Y1Y2 for X � N , and Y1, Y2 � N 

– X ∈ Y for X � N , and Y � � 

• S � N is a distinguished start symbol 



A Dynamic Programming Algorithm

•	 Given a PCFG and a sentence S, how do we find 

max P (T, S) 
T �T (S) 

•	 Notation: 

n = number of words in the sentence 

Nk for k = 1 . . . K is k’th non-terminal 

w.l.g., N1 = S (the start symbol) 

• Define a dynamic programming table 

�[i, j, k] = maximum probability of a constituent with non-terminal Nk 

spanning words i . . . j inclusive 

• Our goal is to calculate maxT �T (S) P (T, S) = �[1, n, 1] 



A Dynamic Programming Algorithm


• Base case definition: for all i = 1 . . . n, for k = 1 . . . K 

�[i, i, k] = P (Nk � wi | Nk ) 

(note: define P (Nk � wi | Nk ) = 0 if Nk � wi is not in the grammar) 

• Recursive definition: for all i = 1 . . . n, j = (i + 1) . . . n, k = 1 . . . K, 

�[i, j, k] = max {P (Nk � NlNm | Nk ) × �[i, s, l] × �[s + 1, j, m]} 
i � s < j 
1 � l � K 
1 � m � K 

(note: define P (Nk � NlNm | Nk ) = 0 if Nk � NlNm is not in the

grammar)




Initialization: 
For i = 1 ... n, k = 1 ... K 

λ[i, i, k] = P (Nk ∈ wi|Nk ) 

Main Loop: 
For length = 1 . . . (n − 1), i = 1 . . . (n − 1ength), k = 1 . . . K 

j ≥ i + length 
max ≥ 0 
For s = i . . . (j − 1), 
For Nl, Nm such that Nk ∈ NlNm is in the grammar 

prob ≥ P (Nk ∈ NlNm)× λ[i, s, l]× λ[s + 1, j, m] 
If prob > max 

max ≥ prob 
//Store backpointers which imply the best parse 
Split(i, j, k) = {s, l, m}


λ[i, j, k] = max




� 

A Dynamic Programming Algorithm for the Sum

• Given a PCFG and a sentence S, how do we find 

P (T, S) 
T �T (S) 

•	 Notation:


n = number of words in the sentence


Nk for k = 1 . . . K is k’th non-terminal 

w.l.g., N1 = S (the start symbol) 

• Define a dynamic programming table 

�[i, j, k] = sum of probability of parses with root label Nk 

spanning words i . . . j inclusive 

• Our goal is to calculate 
�

T �T (S) P (T, S) = �[1, n, 1] 



A Dynamic Programming Algorithm for the Sum


• Base case definition: for all i = 1 . . . n, for k = 1 . . . K 

�[i, i, k] = P (Nk � wi | Nk ) 

(note: define P (Nk � wi | Nk ) = 0 if Nk � wi is not in the grammar) 

• Recursive definition: for all i = 1 . . . n, j = (i + 1) . . . n, k = 1 . . . K, 

�[i, j, k] = 
� 

{P (Nk � NlNm | Nk ) × �[i, s, l] × �[s + 1, j, m]} 

i � s < j 
1 � l � K 
1 � m � K 

(note: define P (Nk � NlNm | Nk ) = 0 if Nk � NlNm is not in the 
grammar) 



Initialization: 
For i = 1 ... n, k = 1 ... K 

λ[i, i, k] = P (Nk ∈ wi|Nk ) 

Main Loop: 
For length = 1 . . . (n − 1), i = 1 . . . (n − 1ength), k = 1 . . . K 

j ≥ i + length 
sum ≥ 0 
For s = i . . . (j − 1), 
For Nl, Nm such that Nk ∈ NlNm is in the grammar 

prob ≥ P (Nk ∈ NlNm)× λ[i, s, l]× λ[s + 1, j, m] 
sum ≥ sum + prob 

λ[i, j, k] = sum 



Overview


• An introduction to the parsing problem 

• Context free grammars 

• A brief(!) sketch of the syntax of English 

• Examples of ambiguous structures 

• PCFGs, their formal properties, and useful algorithms 

• Weaknesses of PCFGs 



Weaknesses of PCFGs


• Lack of sensitivity to lexical information 

• Lack of sensitivity to structural frequencies 



S


NP 

NNP 

VP 

Vt NP 

IBM bought NNP 

Lotus 

PROB = P (S ∈ NP VP | S) ×P (NNP ∈ IBM | NNP) 
×P (VP ∈ V NP | VP) ×P (Vt ∈ bought | Vt) 
×P (NP ∈ NNP | NP) ×P (NNP ∈ Lotus | NNP) 
×P (NP ∈ NNP | NP) 



Another Case of PP Attachment Ambiguity


(a) S 

NP 

NNS 

VP 

VP 

VBD 

dumped 

NP 

NNS 

PP 

IN 

into 

NP 

DT NN 

workers 

sacks a bin




(b) S


NP 

NNS 

VP 

VBD 

dumped 

NP 

NP 

NNS 

sacks 

PP 

IN 

into 

NP 

DT NN 

workers 

a bin




Rules Rules 
S � NP VP S � NP VP 
NP � NNS NP � NNS 
VP � VP PP NP � NP PP 
VP � VBD NP VP � VBD NP 
NP � NNS NP � NNS 

(a) PP � IN NP 
NP � DT NN 

(b) PP � IN NP 
NP � DT NN 

NNS � workers NNS � workers 
VBD � dumped VBD � dumped 
NNS � sacks NNS � sacks 
IN � into IN � into 
DT � a DT � a 
NN � bin NN � bin 

If P (NP ∈ NP PP | NP) > P (VP ∈ VP PP | VP) then (b) is 
more probable, else (a) is more probable. 

Attachment decision is completely independent of the words 



A Case of Coordination Ambiguity


(a) NP 

NP 

NP 

NNS 

PP 

IN NP 

CC 

and 

NP 

NNS 

cats 

dogs in NNS 

houses 



(b) NP


NP 

NNS 

dogs 

PP 

IN 

in 

NP 

NP CC NP 

NNS and NNS


houses cats




Rules Rules

NP � NP CC NP
 NP � NP CC NP 
NP � NP PP NP � NP PP 
NP � NNS NP � NNS 
PP � IN NP PP � IN NP 
NP � NNS NP � NNS(a) (b)
NP � NNS NP � NNS 
NNS � dogs NNS � dogs 
IN � in IN � in 
NNS � houses NNS � houses 
CC � and CC � and 
NNS � cats NNS � cats 

Here the two parses have identical rules, and therefore have 
identical probability under any assignment of PCFG rule 
probabilities 



Structural Preferences: Close Attachment


(a) NP 

NP 

NN 

PP 

IN NP 

NP 

NN 

PP 

IN NP 

(b) NP 

NP 

NP 

NN 

PP 

IN NP 

NN 

PP 

IN NP 

NN 

NN 

• Example: president of a company in Africa 

• Both parses have the same rules, therefore receive same 
probability under a PCFG 

• “Close attachment” (structure (a)) is twice as likely in Wall 
Street Journal text. 



Structural Preferences: Close Attachment


Previous example: John was believed to have been shot by Bill 

Here the low attachment analysis (Bill does the shooting) contains 
same rules as the high attachment analysis (Bill does the believing), 
so the two analyses receive same probability. 
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