
6.864: Lecture 2, Fall 2005

Parsing and Syntax I

Overview

• An introduction to the parsing problem

• Context free grammars

• A brief(!) sketch of the syntax of English

• Examples of ambiguous structures

• PCFGs, their formal properties, and useful algorithms

• Weaknesses of PCFGs

Parsing (Syntactic Structure)

INPUT:
Boeing is located in Seattle.

OUTPUT:
S

NP

N

Boeing

VP

V

is

VP

V

located

PP

P NP

in N

Seattle

Data for Parsing Experiments

• Penn WSJ Treebank = 50,000 sentences with associated trees

• Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
TOP

NNP NNPS

NP

VBD NP

ADVP IN

PP

VP

S

NP PP

PRP$ JJ NN CC JJ NN NNS

NP

IN

NP SBAR

NP

PP

NP

CD NN IN NP RB

QP

$ CD CD PUNC,

NNP PUNC, WHADVP

DT NN

NP

VBZ

QP NNS PUNC.

NP

VP

S

WRB

RB CD

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its natural gas and electric utility businessesin Alberta , where the company serves about 800,000 customers .

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its
natural gas and electric utility businesses in Alberta , where the company
serves about 800,000 customers .

The Information Conveyed by Parse Trees

1) Part of speech for each word

(N = noun, V = verb, D = determiner)

S

NP

D

the

N

VP

V

robbed

NP

D Nburglar

the apartment

2) Phrases S

NP

DT

the

N

VP

V

robbed

NP

DT Nburglar

the apartment

Noun Phrases (NP): “the burglar”, “the apartment”

Verb Phrases (VP): “robbed the apartment”

Sentences (S): “the burglar robbed the apartment”

3) Useful Relationships

S

NP

subject

VP

V

verb

S

NP

DT

the

N

VP

V

robbed

NP

DT Nburglar

the apartment

∪ “the burglar” is the subject of “robbed”

An Example Application: Machine Translation

• English word order is subject – verb – object

• Japanese word order is subject – object – verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said

Syntax and Compositional Semantics

S: ()

NP:IBM

IBM

VP: ()

() NP:Lotus

bought IBM, Lotus

�y bought y, Lotus

V:�x, y bought y, x

bought Lotus

• Each syntactic non-terminal now has an associated semantic
expression

• (We’ll see more of this later in the course)

Context-Free Grammars

[Hopcroft and Ullman 1979]

A context free grammar G = (N, �, R, S) where:

•	 N is a set of non-terminal symbols

•	 � is a set of terminal symbols

•	 R is a set of rules of the form X ∈ Y1Y2 . . . Yn

for n � 0, X � N , Yi � (N � �)

•	 S � N is a distinguished start symbol

A Context-Free Grammar for English

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}

S = S

� = {sleeps, saw, man, woman, telescope, the, with, in}

R =
 S ∪ NP VP
VP ∪ Vi
VP ∪ Vt NP
VP ∪ VP PP
NP ∪ DT NN
NP ∪ NP PP
PP ∪ IN NP

Vi ∪ sleeps
Vt ∪ saw
NN ∪ man
NN ∪ woman
NN ∪ telescope
DT ∪ the
IN ∪ with
IN ∪ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

Left-Most Derivations

A left-most derivation is a sequence of strings s1 . . . sn, where

• s1 = S, the start symbol

• sn � ��, i.e. sn is made up of terminal symbols only

• Each si for i = 2 . . . n is derived from si−1 by picking the left­
most non-terminal X in si−1 and replacing it by some � where
X ∈ � is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP],
[the man Vi], [the man sleeps]

Representation of a derivation as a tree:

S

NP

D N

VP

Vi

the man sleeps

S � NP VP
NP VP NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED

S

NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED
S S � NP VP
NP VP

DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED
S S � NP VP
NP VP NP � DT N
DT N VP

N � dog
the dog VP VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED
S S � NP VP
NP VP NP � DT N
DT N VP DT � the
the N VP

VP � VB
the dog VB VB � laughs

the dog laughs

DERIVATION RULES USED
S S � NP VP
NP VP NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP

VB � laughs

the dog laughs

DERIVATION RULES USED
S S � NP VP
NP VP NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB

DERIVATION RULES USED
S S � NP VP
NP VP NP � DT N
DT N VP DT � the
the N VP N � dog
the dog VP VP � VB
the dog VB VB � laughs
the dog laughs

S

NP

DT N

VP

VB

the dog laughs

Properties of CFGs

• A CFG defines a set of possible derivations

• A string s � �� is in the language defined by the CFG if there
is at least one derivation which yields s

• Each string in the language generated by the CFG may have
more than one derivation (“ambiguity”)

S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED

S

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP

S

NP VP

he

VP

VB PP

PP

in the car

drove
down the street

VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

PP� in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

S

NP

he

VP

VP

VB PP

the street

PP

in the car

drove
down

S � NP VP
NP VP NP � he
he VP VP � VP PP
he VP PP VP � VB PP
he VB PP PP VB� drove
he drove PP PP PP� down the street
he drove down the street PP PP� in the car
he drove down the street in the car

DERIVATION RULES USED

S

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP

S

NP VP

he

VB PP

drove

NP

NP

the street

PP

in the car

down

PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

PP � in the car
he drove down the street in the car

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

DERIVATION RULES USED
S S � NP VP
NP VP NP � he
he VP VP � VB PP
he VB PP VB � drove
he drove PP PP � down NP
he drove down NP NP � NP PP
he drove down NP PP NP � the street
he drove down the street PP PP � in the car
he drove down the street in the car

S

NP

he

VP

VB PP

NP

NP

the street

PP

in the car

drove

down

The Problem with Parsing: Ambiguity

INPUT:
She announced a program to promote safety in trucks and vans

←

POSSIBLE OUTPUTS:

S S S S S S

NP VP NP VP NP VP

announced NP

NP VP
She She

NP VP She NP VP She

announced NP She

announced NP

NP VP

She
announced NP

NP VP

announced NP NP VP a program

a program

NP PP

to promote NP a program
to promote NP PP in NP

safety PP
NP VP

safety
in NP a program trucks and vans

in NP
to promote NP

safety
to promote NP trucks and vans

announced NP

andNP NPtrucks and vans
NP and NP

vans

vans NP and NP

NP VP
NP VP safety PP

vans

a program
in NPa program

to promote NP PP

to promote NP safety in NP
trucks

trucks
safety PP

in NP

trucks

And there are more...

A Brief Overview of English Syntax

Parts of Speech:

• Nouns
(Tags from the Brown corpus)
NN = singular noun e.g., man, dog, park
NNS = plural noun e.g., telescopes, houses, buildings
NNP = proper noun e.g., Smith, Gates, IBM

• Determiners

DT = determiner e.g., the, a, some, every

• Adjectives

JJ = adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

NN ≤ box
NN ≤ car
NN ≤ mechanic
NN ≤ pigeon

≤ NNN̄
N̄
 ≤ NN
 N̄

DT ≤ the

N̄
 ≤ JJ
 N̄

DT ≤ a

N̄
 ≤
 N̄
 N̄

N̄
NP ≤ DT

JJ ≤ fast
JJ ≤ metal
JJ ≤ idealistic
JJ ≤ clay

Generates:
a box, the box, the metal box, the fast car mechanic, . . .

Prepositions, and Prepositional Phrases

• Prepositions
IN = preposition e.g., of, in, out, beside, as

An Extended Grammar

JJ ≤ fast
JJ ≤ metal

≤ NN
N̄
N̄

NN ≤ box JJ ≤ idealistic
N̄
≤ NN

NN ≤ car JJ ≤ clay
N̄
 N̄
≤ JJ

NN ≤ mechanic
NN ≤ pigeon IN ≤ in

N̄
 ≤
 N̄
 N̄
N̄
NP ≤ DT

IN ≤ under
DT ≤ the IN ≤ of
DT ≤ a IN ≤ on

IN ≤ with
IN ≤ as

PP ≤ IN NP

N̄
 ≤
 N̄
 PP

Generates:
in a box, under the box, the fast car mechanic under the pigeon in the box, . . .

Verbs, Verb Phrases, and Sentences

• Basic Verb Types

Vi = Intransitive verb e.g., sleeps, walks, laughs

Vt = Transitive verb e.g., sees, saw, likes

Vd = Ditransitive verb e.g., gave

• Basic VP Rules

VP ∈ Vi

VP ∈ Vt NP

VP ∈ Vd NP NP

• Basic S Rule

S ∈ NP VP

Examples of VP:
sleeps, walks, likes the mechanic, gave the mechanic the fast car,
gave the fast car mechanic the pigeon in the box, . . .

Examples of S:
the man sleeps, the dog walks, the dog likes the mechanic, the dog
in the box gave the mechanic the fast car,. . .

PPs Modifying Verb Phrases

A new rule:
VP ∈ VP PP

New examples of VP:
sleeps in the car, walks like the mechanic, gave the mechanic the
fast car on Tuesday, . . .

Complementizers, and SBARs

• Complementizers

COMP = complementizer e.g., that

• SBAR

SBAR ∈ COMP S

Examples:
that the man sleeps, that the mechanic saw the dog . . .

More Verbs

• New Verb Types

V[5] e.g., said, reported

V[6] e.g., told, informed

V[7] e.g., bet

• New VP Rules

VP ∈ V[5] SBAR

VP ∈ V[6] NP SBAR
VP ∈ V[7] NP NP SBAR

Examples of New VPs:
said that the man sleeps
told the dog that the mechanic likes the pigeon
bet the pigeon $50 that the mechanic owns a fast car

Coordination

• A New Part-of-Speech:
CC = Coordinator e.g., and, or, but

• New Rules
NP ∈ NP CC NP
N̄
 ∈
 N̄
 CC
N̄

VP ∈ VP CC VP
S ∈ S CC S
SBAR ∈ SBAR CC SBAR

Sources of Ambiguity

• Part-of-Speech ambiguity
NNS ∈ walks
Vi ∈ walks

•	 Prepositional Phrase Attachment
the fast car mechanic under the pigeon in the box

NP

D

the

N̄

N̄

JJ N̄

NN

car

N̄

NN

mechanic

PP

IN

under

NP

D

the

N̄

N̄

NN

pigeon

PP

IN

in

NP

D N̄

fast

the NN

box

NP

D

the

N̄

N̄

N̄

JJ N̄

NN N̄

PP

IN

under

NP

D N̄

PP

IN

in

NP

D

the

N̄

NN

boxfast

car NN the
 N̄

mechanic NN

pigeon

VP

VP

Vt PP

the street

PP

in the car

drove
down

VP

Vt PP

NP

the N̄

street PP

in the car

drove
down

Two analyses for: John was believed to have been shot by Bill

Sources of Ambiguity: Noun Premodifiers

• Noun premodifiers:

NP

D

the

N̄

JJ N̄

NN N̄

NP

D

the

N̄

N̄

JJ N̄

N̄

NNfast

car NN fast NN mechanic

mechanic car

A Funny Thing about the Penn Treebank

Leaves NP premodifier structure flat, or underspecified:

NP

DT JJ NN NN

the fast car mechanic

NP

NP

DT JJ NN NN

PP

IN NP

DT NNunder
the fast car mechanic

the pigeon

A Probabilistic Context-Free Grammar

S ∪ NP VP 1.0
VP ∪ Vi 0.4
VP ∪ Vt NP 0.4
VP ∪ VP PP 0.2
NP ∪ DT NN 0.3
NP ∪ NP PP 0.7
PP ∪ P NP 1.0

Vi ∪ sleeps 1.0
Vt ∪ saw 1.0
NN ∪ man 0.7
NN ∪ woman 0.2
NN ∪ telescope 0.1
DT ∪ the 1.0
IN ∪ with 0.5
IN ∪ in 0.5

• Probability of a tree with rules �i ∈ �i is

i P (�i ∈ �i|�i)

S � NP VP
1.0

NP VP NP � DT N 0.3
DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY

S

NP � DT N
0.3

DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S S � NP VP 1.0
NP VP

DT � the
1.0

the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S S � NP VP 1.0
NP VP NP � DT N 0.3
DT N VP

N � dog
0.1

the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S S � NP VP 1.0
NP VP NP � DT N 0.3
DT N VP DT � the 1.0
the N VP

VP � VB
0.4

the dog VB VB � laughs 0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S S � NP VP 1.0
NP VP NP � DT N 0.3
DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP

VB � laughs
0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S S � NP VP 1.0
NP VP NP � DT N 0.3
DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB

DERIVATION RULES USED PROBABILITY
S S � NP VP 1.0
NP VP NP � DT N 0.3
DT N VP DT � the 1.0
the N VP N � dog 0.1
the dog VP VP � VB 0.4
the dog VB VB � laughs 0.5
the dog laughs

TOTAL PROBABILITY = 1.0 × 0.3 × 1.0 × 0.1 × 0.4 × 0.5

�

Properties of PCFGs

• Assigns a probability to each left-most derivation, or parse-
tree, allowed by the underlying CFG

• Say we have a sentence S, set of derivations for that sentence
is T (S). Then a PCFG assigns a probability to each member
of T (S). i.e., we now have a ranking in order of probability.

• The probability of a string S is

P (T, S)
T �T (S)

Deriving a PCFG from a Corpus

•	 Given a set of example trees, the underlying CFG can simply be all rules
seen in the corpus

•	 Maximum Likelihood estimates:

Count(� � �)
PM L(� � � | �) =

Count(�)

where the counts are taken from a training set of example trees.

•	 If the training data is generated by a PCFG, then as the training data
size goes to infinity, the maximum-likelihood PCFG will converge to the
same distribution as the “true” PCFG.

PCFGs

[Booth and Thompson 73] showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivations provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite number
of steps is 1. (This condition is not really a practical concern.)

�

Algorithms for PCFGs

• Given a PCFG and a sentence S, define T (S) to be
the set of trees with S as the yield.

• Given a PCFG and a sentence S, how do we find

arg max P (T, S)
T �T (S)

• Given a PCFG and a sentence S, how do we find

P (S) = P (T, S)
T �T (S)

Chomsky Normal Form

A context free grammar G = (N, �, R, S) in Chomsky Normal
Form is as follows

• N is a set of non-terminal symbols

• � is a set of terminal symbols

• R is a set of rules which take one of two forms:

– X ∈ Y1Y2 for X � N , and Y1, Y2 � N

– X ∈ Y for X � N , and Y � �

• S � N is a distinguished start symbol

A Dynamic Programming Algorithm

•	 Given a PCFG and a sentence S, how do we find

max P (T, S)
T �T (S)

•	 Notation:

n = number of words in the sentence

Nk for k = 1 . . . K is k’th non-terminal

w.l.g., N1 = S (the start symbol)

• Define a dynamic programming table

�[i, j, k] = maximum probability of a constituent with non-terminal Nk

spanning words i . . . j inclusive

• Our goal is to calculate maxT �T (S) P (T, S) = �[1, n, 1]

A Dynamic Programming Algorithm

• Base case definition: for all i = 1 . . . n, for k = 1 . . . K

�[i, i, k] = P (Nk � wi | Nk)

(note: define P (Nk � wi | Nk) = 0 if Nk � wi is not in the grammar)

• Recursive definition: for all i = 1 . . . n, j = (i + 1) . . . n, k = 1 . . . K,

�[i, j, k] = max {P (Nk � NlNm | Nk) × �[i, s, l] × �[s + 1, j, m]}
i � s < j
1 � l � K
1 � m � K

(note: define P (Nk � NlNm | Nk) = 0 if Nk � NlNm is not in the

grammar)

Initialization:
For i = 1 ... n, k = 1 ... K

λ[i, i, k] = P (Nk ∈ wi|Nk)

Main Loop:
For length = 1 . . . (n − 1), i = 1 . . . (n − 1ength), k = 1 . . . K

j ≥ i + length
max ≥ 0
For s = i . . . (j − 1),
For Nl, Nm such that Nk ∈ NlNm is in the grammar

prob ≥ P (Nk ∈ NlNm)× λ[i, s, l]× λ[s + 1, j, m]
If prob > max

max ≥ prob
//Store backpointers which imply the best parse
Split(i, j, k) = {s, l, m}

λ[i, j, k] = max

�

A Dynamic Programming Algorithm for the Sum

• Given a PCFG and a sentence S, how do we find

P (T, S)
T �T (S)

•	 Notation:

n = number of words in the sentence

Nk for k = 1 . . . K is k’th non-terminal

w.l.g., N1 = S (the start symbol)

• Define a dynamic programming table

�[i, j, k] = sum of probability of parses with root label Nk

spanning words i . . . j inclusive

• Our goal is to calculate
�

T �T (S) P (T, S) = �[1, n, 1]

A Dynamic Programming Algorithm for the Sum

• Base case definition: for all i = 1 . . . n, for k = 1 . . . K

�[i, i, k] = P (Nk � wi | Nk)

(note: define P (Nk � wi | Nk) = 0 if Nk � wi is not in the grammar)

• Recursive definition: for all i = 1 . . . n, j = (i + 1) . . . n, k = 1 . . . K,

�[i, j, k] =
�

{P (Nk � NlNm | Nk) × �[i, s, l] × �[s + 1, j, m]}

i � s < j
1 � l � K
1 � m � K

(note: define P (Nk � NlNm | Nk) = 0 if Nk � NlNm is not in the
grammar)

Initialization:
For i = 1 ... n, k = 1 ... K

λ[i, i, k] = P (Nk ∈ wi|Nk)

Main Loop:
For length = 1 . . . (n − 1), i = 1 . . . (n − 1ength), k = 1 . . . K

j ≥ i + length
sum ≥ 0
For s = i . . . (j − 1),
For Nl, Nm such that Nk ∈ NlNm is in the grammar

prob ≥ P (Nk ∈ NlNm)× λ[i, s, l]× λ[s + 1, j, m]
sum ≥ sum + prob

λ[i, j, k] = sum

Overview

• An introduction to the parsing problem

• Context free grammars

• A brief(!) sketch of the syntax of English

• Examples of ambiguous structures

• PCFGs, their formal properties, and useful algorithms

• Weaknesses of PCFGs

Weaknesses of PCFGs

• Lack of sensitivity to lexical information

• Lack of sensitivity to structural frequencies

S

NP

NNP

VP

Vt NP

IBM bought NNP

Lotus

PROB = P (S ∈ NP VP | S) ×P (NNP ∈ IBM | NNP)
×P (VP ∈ V NP | VP) ×P (Vt ∈ bought | Vt)
×P (NP ∈ NNP | NP) ×P (NNP ∈ Lotus | NNP)
×P (NP ∈ NNP | NP)

Another Case of PP Attachment Ambiguity

(a) S

NP

NNS

VP

VP

VBD

dumped

NP

NNS

PP

IN

into

NP

DT NN

workers

sacks a bin

(b) S

NP

NNS

VP

VBD

dumped

NP

NP

NNS

sacks

PP

IN

into

NP

DT NN

workers

a bin

Rules Rules
S � NP VP S � NP VP
NP � NNS NP � NNS
VP � VP PP NP � NP PP
VP � VBD NP VP � VBD NP
NP � NNS NP � NNS

(a) PP � IN NP
NP � DT NN

(b) PP � IN NP
NP � DT NN

NNS � workers NNS � workers
VBD � dumped VBD � dumped
NNS � sacks NNS � sacks
IN � into IN � into
DT � a DT � a
NN � bin NN � bin

If P (NP ∈ NP PP | NP) > P (VP ∈ VP PP | VP) then (b) is
more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity

(a) NP

NP

NP

NNS

PP

IN NP

CC

and

NP

NNS

cats

dogs in NNS

houses

(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP CC NP

NNS and NNS

houses cats

Rules Rules

NP � NP CC NP
 NP � NP CC NP
NP � NP PP NP � NP PP
NP � NNS NP � NNS
PP � IN NP PP � IN NP
NP � NNS NP � NNS(a) (b)
NP � NNS NP � NNS
NNS � dogs NNS � dogs
IN � in IN � in
NNS � houses NNS � houses
CC � and CC � and
NNS � cats NNS � cats

Here the two parses have identical rules, and therefore have
identical probability under any assignment of PCFG rule
probabilities

Structural Preferences: Close Attachment

(a) NP

NP

NN

PP

IN NP

NP

NN

PP

IN NP

(b) NP

NP

NP

NN

PP

IN NP

NN

PP

IN NP

NN

NN

• Example: president of a company in Africa

• Both parses have the same rules, therefore receive same
probability under a PCFG

• “Close attachment” (structure (a)) is twice as likely in Wall
Street Journal text.

Structural Preferences: Close Attachment

Previous example: John was believed to have been shot by Bill

Here the low attachment analysis (Bill does the shooting) contains
same rules as the high attachment analysis (Bill does the believing),
so the two analyses receive same probability.

References

[Altun, Tsochantaridis, and Hofmann, 2003] Altun, Y., I. Tsochantaridis, and T. Hofmann. 2003.

Hidden Markov Support Vector Machines. In Proceedings of ICML 2003.

[Bartlett 1998] P. L. Bartlett. 1998. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the network, IEEE
Transactions on Information Theory, 44(2): 525-536, 1998.

[Bod 98]	Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI
Publications/Cambridge University Press.

[Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to
abstract languages. IEEE Transactions on Computers, C-22(5), pages 442–450.

[Borthwick et. al 98] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting
Diverse Knowledge Sources via Maximum Entropy in Named Entity Recognition. Proc.
of the Sixth Workshop on Very Large Corpora.

[Collins and Duffy 2001] Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural
Language. In Proceedings of NIPS 14.

[Collins and Duffy 2002] Collins, M. and Duffy, N. (2002). New Ranking Algorithms for Parsing
and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In Proceedings
of ACL 2002.

[Collins 2002a] Collins, M. (2002a). Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with the Perceptron Algorithm. In Proceedings of EMNLP 2002.

[Collins 2002b] Collins, M. (2002b). Parameter Estimation for Statistical Parsing Models: Theory
and Practice of Distribution-Free Methods. To appear as a book chapter.

[Crammer and Singer 2001a] Crammer, K., and Singer, Y. 2001a. On the Algorithmic
Implementation of Multiclass Kernel-based Vector Machines. In Journal of Machine
Learning Research, 2(Dec):265-292.

[Crammer and Singer 2001b] Koby Crammer and Yoram Singer. 2001b. Ultraconservative Online
Algorithms for Multiclass Problems In Proceedings of COLT 2001.

[Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the
Perceptron Algorithm. In Machine Learning, 37(3):277–296.

[Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning. Journal of
Computer and System Sciences, 50(3):551-573, June 1995.

[Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to automata
theory, languages, and computation. Reading, Mass.: Addison–Wesley.

[Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators
for stochastic ‘unification-based” grammars. In Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann.

[Lafferty et al. 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of
ICML-01, pages 282-289, 2001.

[Littlestone and Warmuth, 1986] Littlestone, N., and Warmuth, M. 1986. Relating data compression
and learnability. Technical report, University of California, Santa Cruz.

[MSM93] Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated
corpus of english: The Penn treebank. Computational Linguistics, 19, 313-330.

[McCallum et al. 2000] McCallum, A., Freitag, D., and Pereira, F. (2000) Maximum entropy markov
models for information extraction and segmentation. In Proceedings of ICML 2000.

[Miller et. al 2000] Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. 2000. A Novel Use of
Statistical Parsing to Extract Information from Text. In Proceedings of ANLP 2000.

[Ramshaw and Marcus 95] Ramshaw, L., and Marcus, M. P. (1995). Text Chunking Using
Transformation-Based Learning. In Proceedings of the Third ACL Workshop on Very Large
Corpora, Association for Computational Linguistics, 1995.

[Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In Proceedings of the empirical
methods in natural language processing conference.

[Schapire et al., 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin:
A new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651-1686.

[Zhang, 2002] Zhang, T. 2002. Covering Number Bounds of Certain Regularized Linear Function
Classes. In Journal of Machine Learning Research, 2(Mar):527-550, 2002.

