
6.864: Lecture 16 (November 8th, 2005)


Machine Translation Part II




Overview


• The Structure of IBM Models 1 and 2


• EM Training of Models 1 and 2


• Some examples of training Models 1 and 2


• Decoding 



where

Recap: IBM Model 1


• Aim is to model the distribution 

P (f | e) 

where e is an English sentence e1 . . . el


f is a French sentence f1 . . . fm


• Only parameters in Model 1 are translation parameters: 

T(f | e)


where f is a French word, e is an English word


•	 e.g., 

T(le | the) = 0.7 

T(la | the) = 0.2 

T(l� | the) = 0.1 



where

Recap: Alignments in IBM Model 1


•	 Aim is to model the distribution 

P (f | e) 

where e is an English sentence e1 . . . el


f is a French sentence f1 . . . fm


•	 An alignment a identifies which English word each French word 
originated from 

•	 Formally, an alignment a is {a1, . . . am}, where each aj � {0 . . . l}. 

•	 There are (l + 1)m possible alignments. 
In IBM model 1 all alignments a are equally likely: 

1 
P (a | e) = C × 

m(l + 1)


where C = prob(length(f ) = m) is a constant.




IBM Model 1: The Generative Process


To generate a French string f from an English string e: 

• Step 1: Pick the length of f (all lengths equally probable, 
probability C) 

1 • Step 2: Pick an alignment a with probability 
(l+1)m 

• Step 3: Pick the French words with probability 

P (f | a, e) = 
m � 

=1j


T(fj | eaj ) 

The final result: 
C 

P (f , a | e) = P (a | e)P (f | a, e) = 
m � 

=1j


T(fj | eaj )m(l + 1)



IBM Model 2


• Only difference: we now introduce alignment or distortion parameters 

D(i | j, l, m) =	 Probability that j’th French word is connected 

to i’th English word, given sentence lengths of 

e and f are l and m respectively 

• Define 

P (a | e, l, m) = 
m � 

j=1


D(aj | j, l, m) 

where a = {a1, . . . am} 

• Gives 

P (f ,a | e, l, m) = 
m � 

j=1


D(aj | j, l, m)T(fj | eaj ) 



1 • Note: Model 1 is a special case of Model 2, where D(i | j, l, m) = 
l+1 

for all i, j. 



l 

An Example


= 6


m = 7 

e = And the program has been implemented 

f = Le programme a ete mis en application 

a = {2, 3, 4, 5, 6, 6, 6} 

P (a | e, 6, 7) =	 D(2 | 1, 6, 7) × 

D(3 | 2, 6, 7) × 

D(4 | 3, 6, 7) × 

D(5 | 4, 6, 7) × 

D(6 | 5, 6, 7) × 

D(6 | 6, 6, 7) × 

D(6 | 7, 6, 7) 



P (f	 | a, e)
 =	 T(Le | the) × 

T(programme | program) × 

T(a | has) × 

T(ete | been) × 

T(mis | implemented) × 

T(en | implemented) × 

T(application | implemented) 



IBM Model 2: The Generative Process


To generate a French string f from an English string e: 

• Step 1: Pick the length of f (all lengths equally probable, probability C) 

• Step 2: Pick an alignment a = {a1, a2 . . . am} with probability 
m � 

j=1


D(aj | j, l, m) 

• Step 3: Pick the French words with probability


P (f | a, e) = 
m � 

j=1


T(fj | eaj ) 

The final result: 
m � 

j=1


P (f ,a | e) = P (a | e)P (f | a, e) = C D(aj | j, l, m)T(fj | eaj ) 



Overview


• The Structure of IBM Models 1 and 2


• EM Training of Models 1 and 2


• Some examples of training Models 1 and 2


• Decoding 



A Hidden Variable Problem


• We have: 

P (f , a | e) = C 
m � 

=1j


D(aj | j, l, m)T(fj | eaj ) 

• And: 

P (f | e) = 
� 

a�A 

C

m � 

=1j


D(aj | j, l, m)T(fj | eaj ) 

where A is the set of all possible alignments. 



�


A Hidden Variable Problem


• Training data is a set of (fk, ek) pairs, likelihood is 
� 

k


log P (fk | ek ) =

� 

k


log 
� 

P (a | ek )P (fk | a, ek ) 
a�A 

where A is the set of all possible alignments. 

• We need to maximize this function w.r.t. the translation 
parameters, and the alignment probabilities 

• EM can be used for this problem: initialize parameters 
randomly, and at each iteration choose 

�t = argmax�


� 

k


P (a | ek , fk ,  �t−1) log P (fk , a | ek , �) 
a�A 

where �t are the parameter values at the t’th iteration. 



� 

Model 2 as a Product of Multinomials


• The model can be written in the form 

Count(f ,a,e,r)P (f , a|e) =
� 

�r 
r 

where the parameters �r correspond to the T(f |e) and 
D(i|j, l, m) parameters 

• To apply EM, we need to calculate expected counts 

¯Count(r) =
� 

P (a|ek, fk, �)Count(fk, a, ek, r) 
ak 



A Crucial Step in the EM Algorithm


• Say we have the following (e, f ) pair: 

e = And the program has been implemented 

f = Le programme a ete mis en application 

• Given that f was generated according to Model 2, what is the 
probability that a1 = 2? Formally: 

¯P rob(a1 = 2 | f , e) = 
� 

P (a | f , e, �) 
a:a1 =2 



� 

Calculating Expected Translation Counts


• One example: 

¯Count(T(le|the)) = P (aj = i|ek, fk, �) 
(i,j,k)�S 

where S is the set of all (i, j, k) triples such that ek,i = the 
and fk,j = le 



Calculating Expected Distortion Counts


• One example: 

¯Count(D(i = 5|j = 6, l = 10, m = 11)) =
� 

P (a6 = 5|ek, fk, �) 
k�S 

where S is the set of all values of k such that length(ek) = 10

and length(fk) = 11




Models 1 and 2 Have a Simple Structure


• We have f = {f1 . . . fm}, a = {a1 . . . am}, and 

P (f , a | e, l, m) = 
m � 

=1j


P (aj , fj | e, l, m) 

where 

P (aj , fj | e, l, m) = D(aj | j, l, m)T(fj | eaj ) 

• We can think of the m (fj , aj ) pairs as being generated 
independently 



The Answer


Prob(a1 = 2 | f , e) = 
� 

P (a | f , e, l, m) 
a:a1 =2 

D(a1 = 2 | j = 1, l = 6, m = 7)T(le | the) 
= �l 

D(a1 = i | j = 1, l = 6, m = 7)T(le | ei)i=0 

Follows directly because the (aj , fj ) pairs are independent: 

P (a1 = 2 | f , e, l, m) = 
P (a1 = 2, f1 = le | f2 . . . fm, e, l, m) 

P (f1 = le | f2 . . . fm, e, l, m) 
(1) 

= 
P (a1 = 2, f1 = le | e, l, m) 

P (f1 = le | e, l, m) 
(2) 

P (a1 = 2, f1 = le | e, l, m) 
= �

i P (a1 = i, f1 = le | e, l, m) 

where (2) follows from (1) because P (f ,a | e, l, m) =

m 

P (aj , fj | e, l, m)j=1 



A General Result


P rob(aj = i | f , e) = 
� 

P (a | f , e, l, m) 
a:aj =i 

= 
D(aj = i | j, l, m)T(fj | ei) �l 

i� =0 D(aj = i� | j, l, m)T(fj | ei� ) 



Alignment Probabilities have a Simple Solution!


• e.g., Say we have l = 6, m = 7, 

e = And the program has been implemented 

f = Le programme a ete mis en application 

•	 Probability of “mis” being connected to “the”: 

D(a5 = 2 | j = 5, l = 6, m = 7)T(mis | the)
P (a5 = 2 | f , e) = 

Z 

where 

Z = D(a5 = 0 | j = 5, l = 6, m = 7)T(mis | N U LL) 

+ D(a5 = 1 | j = 5, l	= 6, m = 7)T(mis | And) 

+ D(a5 = 2 | j = 5, l	= 6, m = 7)T(mis | the) 

+ D(a5 = 3 | j = 5, l	= 6, m = 7)T(mis | program) 

+ . . . 



The EM Algorithm for Model 2


• Define 
e[k] for k = 1 . . . n is the k’th English sentence 
f [k] for k = 1 . . . n is the k’th French sentence 
l[k] is the length of e[k] 

m[k] is the length of f [k] 

e[k, i] is the i’th word in e[k]

f [k, j] is the j’th word in f [k]


t−1• Current parameters � are 

T(f | e) for all f � F , e � E 

D(i | j, l, m) 

• We’ll see how the EM algorithm re-estimates the T and D 
parameters 



Step 1: Calculate the Alignment Probabilities


• Calculate an array of alignment probabilities 
(for (k = 1 . . . n), (j = 1 . . .m[k]), (i = 0 . . . l[k])): 

a[i, j, k] = P (aj = i | e[k], f [k], �t−1) 

D(aj = i | j, l, m)T(fj | ei) 
= �l = i� | j, l, m)T(fj | ei� )i�=0 D(aj 

where ei = e[k, i], fj = f [k, j], and l = l[k], m = m[k] 

i.e., the probability of f [k, j] being aligned to e[k, i]. 



� 

Step 2: Calculating the Expected Counts


• Calculate the translation counts 

tcount(e, f ) = a[i, j, k] 
i,j,k:


e[k,i]=e,

f [k,j]=f


• tcount(e, f ) is expected number of times that e is aligned with 
f in the corpus 



� 

Step 2: Calculating the Expected Counts


• Calculate the alignment counts 

acount(i, j, l, m) = a[i, j, k] 
k: 

l[k]=l,m[k]=m 

• Here, acount(i, j, l, m) is expected number of times that ei is 
aligned to fj in English/French sentences of lengths l and m 
respectively 



Step 3: Re-estimating the Parameters


• New translation probabilities are then defined as 

tcount(e, f )
T(f | e) = �

f tcount(e, f ) 

• New alignment probabilities are defined as 

acount(i, j, l, m)
D(i | j, l, m) = �

i acount(i, j, l, m) 

tThis defines the mapping from �t−1 to �



A Summary of the EM Procedure


•	 Start with parameters �t−1 as 

T(f | e) for all f � F , e � E 

D(i | j, l, m) 

•	 Calculate alignment probabilities under current parameters 

D(aj = i | j, l, m)T(fj | ei) 
a[i, j, k] = �l 

D(aj = i� | j, l, m)T(fj | ei� )i� =0 

•	 Calculate expected counts tcount(e, f), acount(i, j, l, m) from the 
alignment probabilities 

•	 Re-estimate T(f | e) and D(i | j, l, m) from the expected counts 



The Special Case of Model 1


t−1• Start with parameters � as 

T(f | e) for all f � F , e � E


(no alignment parameters)


• Calculate alignment probabilities under current parameters 

T(fj | ei) 
a[i, j, k] = �l 

T(fj | ei� )i� =0 

(because D(aj = i | j, l, m) = 1/(l + 1)m for all i, j, l, m). 

• Calculate expected counts tcount(e, f ) 

• Re-estimate T(f | e) from the expected counts 



Overview


• The Structure of IBM Models 1 and 2


• EM Training of Models 1 and 2


• Some examples of training Models 1 and 2


• Decoding 



An Example of Training Models 1 and 2


Example will use following translations: 

e[1] = the dog 
f[1] = le chien 

e[2] = the cat 
f[2] = le chat 

e[3] = the bus 
f[3] = l’ autobus 

NB: I won’t use a NULL word e0 



e f T(f | e) 
the le 0.23 
the chien 0.2 
the chat 0.11 
the l’ 0.25 
the autobus 0.21 
dog le 0.2 
dog chien 0.16 
dog chat 0.33 
dog l’ 0.12 

Initial (random) parameters: dog autobus 0.18 
cat le 0.26 
cat chien 0.28 
cat chat 0.19 
cat l’ 0.24 
cat autobus 0.03 
bus le 0.22 
bus chien 0.05 
bus chat 0.26 
bus l’ 0.19 
bus autobus 0.27 



Alignment probabilities:


i j k a(i,j,k) 
1 1 0 0.526423237959726 
2 1 0 0.473576762040274 
1 2 0 0.552517995605817 
2 2 0 0.447482004394183 

1 1 1 0.466532602066533 
2 1 1 0.533467397933467 
1 2 1 0.356364544422507 
2 2 1 0.643635455577493 

1 1 2 0.571950438336247 
2 1 2 0.428049561663753 
1 2 2 0.439081311724508 
2 2 2 0.560918688275492 



e f tcount(e, f ) 
the le 0.99295584002626 
the chien 0.552517995605817 
the chat 0.356364544422507 
the l’ 0.571950438336247 
the autobus 0.439081311724508 

Expected counts: 

dog 
dog 
dog 
dog 
dog 

le 
chien 
chat 
l’ 
autobus 

0.473576762040274 
0.447482004394183 
0 
0 
0 

cat le 0.533467397933467 
cat chien 0 
cat chat 0.643635455577493 
cat l’ 0 
cat autobus 0 
bus le 0 
bus chien 0 
bus chat 0 
bus l’ 0.428049561663753 
bus autobus 0.560918688275492 



e f old new 
the le 0.23 0.34 
the chien 0.2 0.19 
the chat 0.11 0.12 
the l’ 0.25 0.2 
the autobus 0.21 0.15 
dog le 0.2 0.51 
dog chien 0.16 0.49 
dog chat 0.33 0 
dog l’ 0.12 0 
dog autobus 0.18 0 
cat le 0.26 0.45 
cat chien 0.28 0 
cat chat 0.19 0.55 
cat l’ 0.24 0 
cat autobus 0.03 0 
bus le 0.22 0 
bus chien 0.05 0 
bus chat 0.26 0 
bus l’ 0.19 0.43 
bus autobus 0.27 0.57 

Old and new parameters:




e f 
the le 0.23 0.34 0.46 0.56 0.64 0.71 
the chien 0.2 0.19 0.15 0.12 0.09 0.06 
the chat 0.11 0.12 0.1 0.08 0.06 0.04 
the l’ 0.25 0.2 0.17 0.15 0.13 0.11 
the autobus 0.21 0.15 0.12 0.1 0.08 0.07 
dog le 0.2 0.51 0.46 0.39 0.33 0.28 
dog chien 0.16 0.49 0.54 0.61 0.67 0.72 
dog chat 0.33 0 0 0 0 0 
dog l’ 0.12 0 0 0 0 0 
dog autobus 0.18 0 0 0 0 0 
cat le 0.26 0.45 0.41 0.36 0.3 0.26 
cat chien 0.28 0 0 0 0 0 
cat chat 0.19 0.55 0.59 0.64 0.7 0.74 
cat l’ 0.24 0 0 0 0 0 
cat autobus 0.03 0 0 0 0 0 
bus le 0.22 0 0 0 0 0 
bus chien 0.05 0 0 0 0 0 
bus chat 0.26 0 0 0 0 0 
bus l’ 0.19 0.43 0.47 0.47 0.47 0.48 
bus autobus 0.27 0.57 0.53 0.53 0.53 0.52 



e f 
the le 0.94 
the chien 0 
the chat 0 
the l’ 0.03 
the autobus 0.02 
dog le 0.06 
dog chien 0.94 
dog chat 0 
dog l’ 0 

After 20 iterations: dog autobus 0 
cat le 0.06 
cat chien 0 
cat chat 0.94 
cat l’ 0 
cat autobus 0 
bus le 0 
bus chien 0 
bus chat 0 
bus l’ 0.49 
bus autobus 0.51 



e f T(f | e) 
the le 0.67 
the chien 0 
the chat 0 
the l’ 0.33 
the autobus 0 
dog le 0 
dog chien 1 
dog chat 0 
dog l’ 0 

Model 2 has several local maxima – good one: dog autobus 0 
cat le 0 
cat chien 0 
cat chat 1 
cat l’ 0 
cat autobus 0 
bus le 0 
bus chien 0 
bus chat 0 
bus l’ 0 
bus autobus 1 



e f T(f | e) 
the le 0 
the chien 0.4 
the chat 0.3 
the l’ 0 
the autobus 0.3 
dog le 0.5 
dog chien 0.5 
dog chat 0 
dog l’ 0 

Model 2 has several local maxima – bad one: dog autobus 0 
cat le 0.5 
cat chien 0 
cat chat 0.5 
cat l’ 0 
cat autobus 0 
bus le 0 
bus chien 0 
bus chat 0 
bus l’ 0.5 
bus autobus 0.5 



e f T(f | e) 
the le 0 
the chien 0.33 
the chat 0.33 
the l’ 0 
the autobus 0.33 

another bad one: 

dog 
dog 
dog 
dog 
dog 

le 
chien 
chat 
l’ 
autobus 

1 
0 
0 
0 
0 

cat le 1 
cat chien 0 
cat chat 0 
cat l’ 0 
cat autobus 0 
bus le 0 
bus chien 0 
bus chat 0 
bus l’ 1 
bus autobus 0 



• Alignment parameters for good solution: 

T(i = 1 | j = 1, l = 2, m = 2) = 1 

T(i = 2 | j = 1, l = 2, m = 2) = 0 

T(i = 1 | j = 2, l = 2, m = 2) = 0 

T(i = 2 | j = 2, l = 2, m = 2) = 1 

log probability = −1.91 

• Alignment parameters for first bad solution: 

T(i = 1 | j = 1, l = 2, m = 2) = 0 

T(i = 2 | j = 1, l = 2, m = 2) = 1 

T(i = 1 | j = 2, l = 2, m = 2) = 0 

T(i = 2 | j = 2, l = 2, m = 2) = 1 

log probability = −4.16 



• Alignment parameters for second bad solution: 

T(i = 1 | j = 1, l = 2, m = 2) = 0 

T(i = 2 | j = 1, l = 2, m = 2) = 1 

T(i = 1 | j = 2, l = 2, m = 2) = 1 

T(i = 2 | j = 2, l = 2, m = 2) = 0 

log probability = −3.30 



Improving the Convergence Properties of Model 2


• Out of 100 random starts, only 60 converged to the best 
local maxima 

•	 Model 1 converges to the same, global maximum every time 
(see the Brown et. al paper) 

• Method in IBM paper: run Model 1 to estimate T parameters, 
then use these as the initial parameters for Model 2 

• In 100 tests using this method, Model 2 converged to the 
correct point every time. 



Overview


• The Structure of IBM Models 1 and 2


• EM Training of Models 1 and 2


• Some examples of training Models 1 and 2


• Decoding 



Decoding


• Problem: for a given French sentence f , find 

argmax
e
P (e)P (f | e) 

or the “Viterbi approaximation” 

argmax
e,aP (e)P (f , a | e) 



Decoding


• Decoding is NP-complete (see (Knight, 1999)) 

• IBM papers describe a stack-decoding or A� search method 

• A recent paper on decoding: 
Fast Decoding and Optimal Decoding for Machine Translation.

Germann, Jahr, Knight, Marcu, Yamada. In ACL 2001.


• Introduces a greedy search method 

• Compares the two methods to exact (integer-programming) 
solution 



First Stage of the Greedy Method


• For each French word fj , pick the English word e which 
maximizes 

T(e | fj )


(an inverse translation table T(e | f ) is required for this step)


• This gives us an initial alignment, e.g., 

Bien intendu , il parle de une belle victoire 

Well heard , it talking NULL a beautiful victory 

(Correct translation: quite naturally, he talks about a great victory) 



� 

� 

Next Stage: Greedy Search


• First stage gives us an initial (e0 , a0) pair 

• Basic idea: define a set of local transformations that map an 
(e, a) pair to a new (e , a�) pair 

• Say �(e, a) is the set of all (e , a�) reachable from (e, a) by 
some transformation, then at each iteration take 

t(e t , a ) = argmax(e,a)��(e t−1)P (e)P (f , a | e)t−1 ,a

i.e., take the highest probability output from results of all 
transformations 

• Basic idea: iterate this process until convergence 



The Space of Transforms


• CHANGE(j, e): 
Changes translation of fj from eaj into e 

• Two possible cases (take eold = eaj ): 

– eold is aligned to more than 1 word, or eold = NULL 
Place e at position in string that maximizes the alignment 
probability 

– eold is aligned to exactly one word 
In this case, simply replace eold with e 

• Typically consider only (e, f) pairs such that e is in top 10 
ranked translations for f under T(e | f) 
(an inverse table of probabilities T(e | f) is required – this is 
described in Germann 2003) 



The Space of Transforms


• CHANGE2(j1, e1, j2, e2): 
Changes translation of fj1 from e into e1,aj1 

and changes translation of fj2 from e into e2aj2 

• Just like performing CHANGE(j1, e1) and CHANGE(j2, e2) 
in sequence 



The Space of Transforms


• TranslateAndInsert(j, e1, e2): 
Implements CHANGE(j, e1), 
(i.e. Changes translation of fj from e into e1)aj 

and inserts e2 at most likely point in the string 

• Typically, e2 is chosen from the English words which have 
high probability of being aligned to 0 French words 



The Space of Transforms


• RemoveFertilityZero(i): 
Removes ei, providing that ei is aligned to nothing in the 
alignment 



The Space of Transforms


• SwapSegments(i1, i2, j1, j2): 
Swaps words ei1 . . . ei2 with words ej1 and ej2 

• Note: the two segments cannot overlap 



The Space of Transforms


• JoinWords(i1, i2): 
Deletes English word at position i1, and links all French words 
that were linked to ei1 to ei2 



An Example from Germann et. al 2001


Bien intendu , il parle de une belle victoire 

Well heard , it talking NULL a beautiful victory 

∈ 

Bien intendu , il parle de une belle victoire 

Well heard , it talks NULL a great victory 

CHANGE2(5, talks, 8, great) 



An Example from Germann et. al 2001


Bien intendu , il parle de une belle victoire 

Well heard , it talks NULL a great victory 

∈ 

Bien intendu , il parle de une belle victoire 

Well understood , it talks about a great victory 

CHANGE2(2, understood, 6, about) 



An Example from Germann et. al 2001


Bien intendu , il parle de une belle victoire 

Well understood , it talks about a great victory 

∈ 

Bien intendu , il parle de une belle victoire 

Well understood , he talks about a great victory 

CHANGE(4, he) 



An Example from Germann et. al 2001


Bien intendu , il parle de une belle victoire 

Well understood , he talks about a great victory 

∈ 

Bien intendu , il parle de une belle victoire 

quite naturally , he talks about a great victory 

CHANGE2(1, quite, 2, naturally) 



An Exact Method Based on Integer Programming


Method from Germann et. al 2001: 

• Integer programming problems 

3.2x1 + 4.7x2 − 2.1x3 Minimize objective function 

x1 − 2.6x3 > 5 Subject to linear constraints 

7.3x2 > 7 

• Generalization of travelling salesman problem: 
Each town has a number of hotels; some hotels can be in multiple towns. 
Find the lowest cost tour of hotels such that each town is visited exactly 
once. 



•	 In the MT problem: 

–	 Each city is a French word (all cities visited � all French words must 
be accounted for) 

–	 Each hotel is an English word matched with one or more French 
words 

–	 The “cost” of moving from hotel i to hotel j is a sum of a number of 
terms. E.g., the cost of choosing “not” after “what”, and aligning it 
with “ne” and “pas” is 

log(bigram(not | what) + 

log(T(ne | not) + log(T(pas | not)) 

. . . 



�


An Exact Method Based on Integer Programming


• Say distance between hotels i and j is dij ; 
Introduce xij variables where xij = 1 if path from hotel i to 
hotel j is taken, zero otherwise 

• Objective function: maximize 
� 

i,j


xij dij 

• All cities must be visited once � constraints


�c � cities
� 

j


xij = 1 
i located in c 



• Every hotel must have equal number of incoming and outgoing 
edges � 

�i

� 

j


xij =

� 

j


xji


• Another constraint is added to ensure that the tour is fully 
connected 


