
Grammar Induction

Regina Barzilay

MIT

October, 2005

Three non-NLP questions

1.	 Which is the odd number out?

625,361,256,197,144

2.	 Insert the missing letter:

B,E,?,Q,Z

3.	 Complete the following number sequence:

4, 6, 9, 13

7, 10, 15, ?

How do you solve these questions?

• Guess a pattern that generates the sequence

Insert the missing letter:

B,E,?,Q,Z

2,5,?,17, 26

k2	+ 1

•	 Select a solution based on the detected pattern

k = 3 � 10th letter of the alphabet � J

More Patterns to Decipher: Byblos Script

Image removed for copyright reasons.

More Patterns to Decipher: Lexicon

Learning

Ourenemiesareinnovativeandresourceful,andsoarewe.

Theyneverstopthinkingaboutnewwaystoharmourcountry

andourpeople,andneitherdowe.

Which is the odd word out?

Ourenemies . . .

Enemies . . .

We . . .

More Patterns to Decipher: Natural

Language Syntax

Which is the odd sentence out?

The cat eats tuna.

The cat and the dog eats tuna.

Today

• Vocabulary Induction

– Word Boundary Detection

• Grammar Induction

– Feasibility of language acquisition

– Algorithms for grammar induction

Vocabulary Induction

Task: Unsupervised learning of word boundary
segmentation

• Simple:

Ourenemiesareinnovativeandresourceful,andsoarewe.

Theyneverstopthinkingaboutnewwaystoharmourcountry

andourpeople,andneitherdowe.

Image of Byblos script removed for copyright reasons.• More ambitious:

Word Segmentation (Ando&Lee, 2000)

Key idea: for each candidate boundary, compare the
frequency of the n-grams adjacent to the proposed
boundary with the frequency of the n-grams that
straddle it.

?S S

t
t

1 2

1
2

t3

T I N G E V I D

For N = 4, consider the 6 questions of the form:

”Is #(si) � #(tj)?”, where #(x) is the number of occurrences

of x

Example: Is “TING” more frequent in the corpus than ”INGE”?

Algorithm for Word Segmentation

s n
1

non-straddling n-grams to the left of location k

s n
2

non-straddling n-grams to the right of location k

tn
j

straddling n-gram with j characters to the right of location k

I� (y, z) indicator function that is 1 when y � z, and 0 otherwise.

1. Calculate the fraction of affirmative answers for
each n in N :

2

=1i

n−1
1

=1j

vn(k) = I�(#(s n n
i), #(tj))2 � (n − 1)

2. Average the contributions of each n − gram order

1

vN (k) = vn(k)

N

n�N

Algorithm for Word Segmentation (Cont.)

Place boundary at all locations l such that either:

•	 l is a local maximum: vN (l) > vN (l − 1) and

vN (l) > vN (l + 1)

•	 vN (l) → t, a threshold parameter

t
V (k)
N

A B | C D | W X | Y| Z

Experimental Framework

•	 Corpus: 150 megabytes of 1993 Nikkei newswire

•	 Manual annotations: 50 sequences for development

set (parameter tuning) and 50 sequences for test set

•	 Baseline algorithms: Chasen and Juman

morphological analyzers (115,000 and 231,000

words)

Evaluation

•	 Precision (P): the percentage of proposed brackets

that exactly match word-level brackets in the

annotation

•	 Recall (R): the percentage of word-level annotation

brackets that are proposed by the algorithm

•	 F = 2 PR
(P+R)

•	 F = 82% (improvement of 1.38% over Jumann and

of 5.39% over Chasen)

Grammar Induction

•	 Task: Unsupervised learning of a language’s syntax

from a corpus of observed sentences

–	 Ability to uncover an underlying grammar

–	 Ability to parse

–	 Ability to judge grammaticality

Plato’s Problem

Logical problem of language acquisition:

(Chomsky 1965, Pinker 1994, Pullum 1996)

•	 A child hears a finite number of utterances from a

target language

•	 This finite experience is consistent with infinitely

many targets

•	 The child manages to select the correct target

language

Gold’s Formalization(1967)

•	 Given: A target language L from a set L of possible

languages

•	 A learner C is shown a set of positive examples

[si], si ≤ L

•	 C is never given negative examples

•	 Each s ≤ L will be presented at some point i (no

guarantees on the order or frequency of examples)

•	 C maintains a hypothesis L(C, [s0, . . . , sn]) ≤ L

Identifiability in the Limit

•	 A language family L is identifiable in the limit if for

any target language and example sequence, the

learner’s hypothesis is eventually correct

•	 A language family L is identifiable in the limit if

there is some learner C such that, for any L ≤ L and

any legal presentation of examples [si], there is

some point k such that for all j > k,

L(C, [s0, . . . , sk]) = L

Example: L = {{a}, {a, b}}

Gold’s Results

A wide variety of language families are not learnable

(proof based on recursive function theory)

•	 Superfinite family (all the finite languages and at

least one infinite language)

•	 Family of regular languages

•	 Family of context-free languages

Issues to Consider (Pullman 2003)

•	 Learners may receive considerable information about

which strings are not grammatical (perhaps indirectly)

•	 It is not clear that real language learners ever settle on a

grammar at all

•	 Learners could approximate rather than exactly identify

grammars

•	 The learner may operate over strings paired with meaning

•	 Learning can be viewed as partial characterization of

linguistic structure (rather than defining a unique set of

grammatical strings)

Horning(1969): probabilistic context free grammars are

learnable if some Gold’s constraints are relaxed

Nativism

•	 Poverty of stimulus (Chomsky, 1965): the lack of

crucial relevant data in the learner’s experience

•	 Richness of constraint: human languages are highly

constrained, since the actual family of human

languages is relatively small

Grammar Induction: Evaluation

• Evaluation

– Compare grammars

– Compare trees

• Baselines

– Random trees

– Left- and Right-Branching Trees

Grammar Induction: Approaches

• Structure search

– Add productions to a context-free grammar

– Select HMM topology

• Parameter search

– Determine parameters for a fixed PCFG

Structure search: Example

• Input: {ab, abab}

• Possible output: L = (ab)
n

a b

I 1 F1 1 2 0.67

0.33

Model Merging

•	 A method to construct an initial model from data

•	 A way to merge submodels

•	 An error measure to compare the goodness of

various candidates for merging and to limit

generalization

•	 A strategy to pick merging operators, search the

model space

Model Merging (Stolcke&Omohundro,

1994)

•	 Data Incorporation: Given a body of data X, build an

initial model M0 by explicitly accommodating each data

point individually

•	 Generalization: Build a sequence of new models,

obtaining Mi+1 from Mi by applying a merging operator

m that coalesces substructures in Mi , Mi+1 = m(Mi)

•	 Utility function: Maximize posterior probability P (M |X)

•	 Search: Greedy or beam search through the space of

possible merges

HMM Topology Induction

•	 Data Incorporation: For each observed sample,

create a unique path between the initial and final

states by assigning a new state to each symbol token

in the sample

•	 Generalization: Two HMM states are replaced by a

single new state, which inherits the union of the

transitions and emissions from the old states

a b

I
1 2

3 4 5 6 F
a b a b

0.5

0.5

b

I

I 1

1

1I 2 5

2

2 F

5 F

6 F

I 1
2

4 5 6 F

a b

a b a

baba

b a b

a 0.5

0.5

0.67

0.5
0.5

0.33

0.67

0.33

Posterior Computation

Goal: maximize posterior P (M |X) = P (M)P (X|M)
P (X)

• We will maximize P (M |X) ⊆ P (M)P (X|M)

• We know how to compute P (X|M)

• We need to compute prior P (M)

Prior Distribution

Model M is defined by topology Ms and αM

P (M) = P (Ms)P (αM |Ms)

•	 P (Ms) ⊆ exp(−l(Ms)), where l(Ms) is the number

of bits required to encode Ms

–	 Each transition is encoded using log(|Q| + 1) bits,

where |Q| is the number of states

–	 The total description length for all transitions
(q)	

–from state q is n(q)
log(|Q| + 1) bits, where nt	 t

the number of transitions from state q

– The total emission length for state q is

(q)

ne log(|�| + 1) bits, where ne
(q)

– the number of

state q emissions, and |�| is the size of the

alphabet

– The resulting prior

(q)
t eP (M (q)) ⊆ (|Q| + 1)−n
(q)

(|�| + 1)−n
s

• P (αM |Ms) are defined as Dirichlet priors

Algorithm

1.	 Build the initial, maximum-likelihood model M0 from the

dataset X

2.	 Let i := 0. Loop:

(a) Compute a set of candidate merges K among the

states of model Mi

(b)	 For each candidate k → K compute the merged model

k(Mi), and its posterior probability P (k(Mi)|X)

(c)	 Let k� be the merge that mazimizes P (k(Mi)|X).

Then let Mi+1 := k� (Mi)

(d)	 If P (Mi+1|X) > P (Mi|X), return Mi as the induced

model.

(e)	 Let i := i + 1

Evaluation

Method Cross-Entropy Language

Merging 2.158 ac�a � bc�b

Baum-Welch+ 2.105

Baum-Welch- 2.825

Merging 5.623 a+b+a+b+

Baum-Welch+ 5.688

Baum-Welch- 8.395

Learning PCFGs

(Carroll&Charniak, 1992)

Goal: Learning grammars for natural language

•	 Divide the corpus into two parts: the rule corpus and the

training corpus.

•	 For all the sentences in the rule corpus, generate all rules

which might be used to parse the sentence, subject to

constraints which we will specify later.

•	 Estimate the probabilities for the rules.

•	 Using the training corpus, improve our estimate of

probabilities.

•	 Delete all rules with probability � � for some small �.

Rule Generation: Dependency Format

Informally, a dependency grammar produces a set of

terminals connected by a set of directed arcs — one arc

for every terminal except the root terminal

S

verb

pron

She ate

noun noun

prep

with
det

the hamburger fork
det

pron verb prep
det noun a noun

det

Dependency Grammar

n|n ≤ N} � {n � �n�|n ≤ N, �, � ≤ �},

• Target: a dependency grammar < S, N, R >

S is the start symbol

N is a set of terminals

R is a set of rewrite rules, where

R ∪ {S � ¯ ¯

� is a set of strings of zero or more ā, for a ≤ N

•	 Assumption: POS tags are provided

•	 Theorem: A sentence of length n, consisting of all

distinct terminals will have n(2n−1 + 1) dependency

grammar rules to confirm to it

Rule Generation

We have to prune rule space!

•	 Order sentences by length and generate rules

incrementally

•	 Do not consider rules that were discarded on

previous stages

•	 Limit the number of symbols on the right-hand side

of the rule

Algorithm

Loop for i from 2 until i > sentence-length-stopping

point

Add rules required for the sentences with length

i from the rule creation subset

Estimate the probabilities for all rules, based

upon all sentences of length ∗ i from the rule

training subset

Remove any rules with probability ∗ � if its

probability doesn’t increase

��� =

Reestimation

• We have sentences S1, . . . , Sn. Trees are hidden variables.

L(α) =

log

P (Si, T |α)
i T

• Basic quantity needed for re-estimating with EM:
�

i Count(Si , � � �)
α �

i

�
s�R(�) Count(Si , s)

• There are efficient algorithms for calculating

t−1
Count(Si , r) =

P (T |Si, α)Count(Si , T, r)

T

for a PCFG. See Inside-Outside algorithm (Baker, 1979)

Example

Induce PCFG, given the following corpus:

“verb”

“noun verb”

“verb noun”

“det noun verb”

“verb det noun”

Rule 1 ITER 6 ITER 20 ITER

¯S � det

¯S � noun

¯S � verb

d̄et � det

d̄et � det noun
¯

¯ ¯
det � det verb

¯ ¯det � verb det

¯ ¯ ¯det � verb det noun

¯noun � noun

¯¯noun � det noun

¯ ¯verb � noun verb

¯verb � verb noun¯

0.181818

0.363636

0.454545

0.250000

0.250000

0.125

0.125

0.125

0.333333

0.166667

0.153846

0.153846

0.0

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.781317

0.218683

0.286749

0.288197

0.0

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.998847

0.01153

0.200461

0.200461

Experiment 1

•	 Use grammar from the handout

•	 Randomly generate 1000 words for the rule corpus,

and 9000 for the training corpus

•	 Evaluation: compare the output with the generated

grammar

•	 Constraint: rules were required to have fewer than

five symbols on their right-hand side

Results

•	 Successfully minimizes a cross entropy (1.245

bits/word on the training of the learned grammar

vs. 1.220 bits/word of the correct grammar)

•	 Miserably fails to recover the correct grammar

–	 300 unsuccessful attempts

¯¯.220 pron � pron verb

¯	 ¯.214 pron � prep pron

¯ ¯¯.139 pron � pron verb det

¯.118 pron � verb pron ¯

Experiment 2

Place more restrictions on the grammar

Specify what non-terminals may appear on the
right-hand side of a rule with a particular
non-terminal on the left

• The algorithm converges to the correct grammar

noun verb pron det prep adj wh .

noun + + + +

verb + + +

pron –

det –

Adding Knowledge to Grammar Induction

Algorithms

•	 Carrol&Charniak (1992): restrictions on the rule

format

•	 Magerman&Marcus (1990): use a di-stituent

grammar to eliminate undesirable rules

•	 Pereira&Schabes (1992): use partially bracketed

corpora

Learning Constituents

Are syntactic patterns evident in a corpus? (Klein, 2005)

• Compute context for each POS

Tag Top Context by Frequency

DT (IN-NN), (IN-JJ), (IN-NNP), (VB-NN)

JJ (DT-NN), (IN-NNS), (IN-NN), (JJ-NN)

• Cluster POS based on their context

Learning Constituents

The most similar POS pairs based on their context

Rank

1

2

3

4

5

Tag Pairs

(VBZ, VBD)

(DT, PRP$)

(NN, NNS)

(WDT, WP)

(VBG, VBN)

Learning Constituents

The most similar POS sequence pairs based on their

context

Rank

1

2

3

4

5

Tag Pairs

(NNP NNP, NNP NNP NNP)

(DT JJ NN IN, DT NN IN)

(NNP NNP NNP NNP, NNP NNP NNP)

(DT NNP NNP, DT NNP)

(IN DT JJ NN, IN DT NN)

Learning Constituents (Clark, 2001)

•	 Identify frequent POS sequences in a corpus

•	 Cluster them based on their context

•	 Filter out spurious candidates

–	 Based on mutual information before the

candidate constituent and the symbol after —

they are not independent

Summary

• Language acquisition problem

• Three unsupervised induction algorithms:

– Vocabulary Induction

– HMM-topology induction

– PCFG induction

