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Three non-NLP questions


1.	 Which is the odd number out? 

625,361,256,197,144 

2.	 Insert the missing letter: 

B,E,?,Q,Z 

3.	 Complete the following number sequence: 

4, 6, 9, 13 

7, 10, 15, ? 



How do you solve these questions?


• Guess a pattern that generates the sequence


Insert the missing letter: 

B,E,?,Q,Z 

2,5,?,17, 26


k2	+ 1 

•	 Select a solution based on the detected pattern 

k = 3 � 10th letter of the alphabet � J 



More Patterns to Decipher: Byblos Script


Image removed for copyright reasons.




More Patterns to Decipher: Lexicon

Learning


Ourenemiesareinnovativeandresourceful,andsoarewe. 

Theyneverstopthinkingaboutnewwaystoharmourcountry 

andourpeople,andneitherdowe. 

Which is the odd word out?


Ourenemies . . . 

Enemies . . . 

We . . . 



More Patterns to Decipher: Natural

Language Syntax


Which is the odd sentence out?


The cat eats tuna. 

The cat and the dog eats tuna. 



Today


• Vocabulary Induction 

– Word Boundary Detection 

• Grammar Induction 

– Feasibility of language acquisition 

– Algorithms for grammar induction 



Vocabulary Induction


Task: Unsupervised learning of word boundary 
segmentation 

• Simple: 

Ourenemiesareinnovativeandresourceful,andsoarewe. 

Theyneverstopthinkingaboutnewwaystoharmourcountry 

andourpeople,andneitherdowe. 

Image of Byblos script removed for copyright reasons.• More ambitious: 



Word Segmentation (Ando&Lee, 2000)


Key idea: for each candidate boundary, compare the 
frequency of the n-grams adjacent to the proposed 
boundary with the frequency of the n-grams that 
straddle it. 
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For N = 4, consider the 6 questions of the form:

”Is #(si ) � #(tj )?”, where #(x) is the number of occurrences

of x

Example: Is “TING” more frequent in the corpus than ”INGE”?




Algorithm for Word Segmentation

s n 
1 

non-straddling n-grams to the left of location k 

s n 
2 

non-straddling n-grams to the right of location k 

tn 
j 

straddling n-gram with j characters to the right of location k 

I� (y, z) indicator function that is 1 when y � z, and 0 otherwise. 

1. Calculate the fraction of affirmative answers for 
each n in N : 
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vn(k) = I�(#(s n n 
i ), #(tj ))2 � (n − 1) 

2. Average the contributions of each n − gram order


1 

vN (k) = vn(k)

N
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Algorithm for Word Segmentation (Cont.)


Place boundary at all locations l such that either:


•	 l is a local maximum: vN (l) > vN (l − 1) and 

vN (l) > vN (l + 1) 

•	 vN (l) → t, a threshold parameter 

t 
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Experimental Framework


•	 Corpus: 150 megabytes of 1993 Nikkei newswire


•	 Manual annotations: 50 sequences for development 

set (parameter tuning) and 50 sequences for test set 

•	 Baseline algorithms: Chasen and Juman 

morphological analyzers (115,000 and 231,000 

words) 



Evaluation


•	 Precision (P): the percentage of proposed brackets 

that exactly match word-level brackets in the 

annotation 

•	 Recall (R): the percentage of word-level annotation 

brackets that are proposed by the algorithm 

•	 F = 2 PR 
(P+R) 

•	 F = 82% (improvement of 1.38% over Jumann and 

of 5.39% over Chasen) 



Grammar Induction


•	 Task: Unsupervised learning of a language’s syntax 

from a corpus of observed sentences 

–	 Ability to uncover an underlying grammar


–	 Ability to parse 

–	 Ability to judge grammaticality 



Plato’s Problem


Logical problem of language acquisition: 

(Chomsky 1965, Pinker 1994, Pullum 1996) 

•	 A child hears a finite number of utterances from a 

target language 

•	 This finite experience is consistent with infinitely 

many targets 

•	 The child manages to select the correct target


language




Gold’s Formalization(1967)


•	 Given: A target language L from a set L of possible 

languages 

•	 A learner C is shown a set of positive examples 

[si], si ≤ L 

•	 C is never given negative examples


•	 Each s ≤ L will be presented at some point i (no 

guarantees on the order or frequency of examples) 

•	 C maintains a hypothesis L(C, [s0, . . . , sn]) ≤ L 



Identifiability in the Limit


•	 A language family L is identifiable in the limit if for 

any target language and example sequence, the 

learner’s hypothesis is eventually correct 

•	 A language family L is identifiable in the limit if 

there is some learner C such that, for any L ≤ L and 

any legal presentation of examples [si], there is 

some point k such that for all j > k, 

L(C, [s0, . . . , sk ]) = L 

Example: L = {{a}, {a, b}}




Gold’s Results


A wide variety of language families are not learnable 

(proof based on recursive function theory) 

•	 Superfinite family (all the finite languages and at 

least one infinite language) 

•	 Family of regular languages 

•	 Family of context-free languages




Issues to Consider (Pullman 2003)


•	 Learners may receive considerable information about 

which strings are not grammatical (perhaps indirectly) 

•	 It is not clear that real language learners ever settle on a 

grammar at all 

•	 Learners could approximate rather than exactly identify 

grammars 

•	 The learner may operate over strings paired with meaning


•	 Learning can be viewed as partial characterization of 

linguistic structure (rather than defining a unique set of 

grammatical strings) 



Horning(1969): probabilistic context free grammars are 

learnable if some Gold’s constraints are relaxed 



Nativism


•	 Poverty of stimulus (Chomsky, 1965): the lack of 

crucial relevant data in the learner’s experience 

•	 Richness of constraint: human languages are highly 

constrained, since the actual family of human 

languages is relatively small 



Grammar Induction: Evaluation


• Evaluation 

– Compare grammars 

– Compare trees 

• Baselines 

– Random trees 

– Left- and Right-Branching Trees 



Grammar Induction: Approaches


• Structure search 

– Add productions to a context-free grammar 

– Select HMM topology 

• Parameter search 

– Determine parameters for a fixed PCFG




Structure search: Example


• Input: {ab, abab} 

• Possible output: L = (ab)
n 

a b 

I 1 F1 1 2 0.67 

0.33 



Model Merging


•	 A method to construct an initial model from data


•	 A way to merge submodels 

•	 An error measure to compare the goodness of 

various candidates for merging and to limit 

generalization 

•	 A strategy to pick merging operators, search the 

model space 



Model Merging (Stolcke&Omohundro,

1994)


•	 Data Incorporation: Given a body of data X, build an 

initial model M0 by explicitly accommodating each data 

point individually 

•	 Generalization: Build a sequence of new models, 

obtaining Mi+1 from Mi by applying a merging operator 

m that coalesces substructures in Mi , Mi+1 = m(Mi ) 

•	 Utility function: Maximize posterior probability P (M |X)


•	 Search: Greedy or beam search through the space of 

possible merges 



HMM Topology Induction


•	 Data Incorporation: For each observed sample, 

create a unique path between the initial and final 

states by assigning a new state to each symbol token 

in the sample 

•	 Generalization: Two HMM states are replaced by a 

single new state, which inherits the union of the 

transitions and emissions from the old states 
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Posterior Computation


Goal: maximize posterior P (M |X) = P (M )P (X|M ) 
P (X) 

• We will maximize P (M |X) ⊆ P (M )P (X|M )


• We know how to compute P (X|M ) 

• We need to compute prior P (M ) 



Prior Distribution


Model M is defined by topology Ms and αM 

P (M ) = P (Ms)P (αM |Ms) 

•	 P (Ms) ⊆ exp(−l(Ms)), where l(Ms) is the number 

of bits required to encode Ms 

–	 Each transition is encoded using log(|Q| + 1) bits, 

where |Q| is the number of states 

–	 The total description length for all transitions 
(q)	

–from state q is n(q) 
log(|Q| + 1) bits, where nt	 t 

the number of transitions from state q 



– The total emission length for state q is

(q)

ne log(|�| + 1) bits, where ne 
(q) 

– the number of 

state q emissions, and |�| is the size of the 

alphabet 

– The resulting prior


(q) 
t eP (M (q)) ⊆ (|Q| + 1)−n
(q) 

(|�| + 1)−n
s 

• P (αM |Ms) are defined as Dirichlet priors 



Algorithm


1.	 Build the initial, maximum-likelihood model M0 from the 

dataset X 

2.	 Let i := 0. Loop:


(a) Compute a set of candidate merges K among the


states of model Mi


(b)	 For each candidate k → K compute the merged model 

k(Mi ), and its posterior probability P (k(Mi )|X) 

(c)	 Let k� be the merge that mazimizes P (k(Mi )|X). 

Then let Mi+1 := k� (Mi) 

(d)	 If P (Mi+1|X) > P (Mi|X), return Mi as the induced 

model. 

(e)	 Let i := i + 1




Evaluation


Method Cross-Entropy Language 

Merging 2.158 ac�a � bc�b 

Baum-Welch+ 2.105 

Baum-Welch- 2.825 

Merging 5.623 a+b+a+b+ 

Baum-Welch+ 5.688 

Baum-Welch- 8.395 



Learning PCFGs


(Carroll&Charniak, 1992)


Goal: Learning grammars for natural language


•	 Divide the corpus into two parts: the rule corpus and the 

training corpus. 

•	 For all the sentences in the rule corpus, generate all rules 

which might be used to parse the sentence, subject to 

constraints which we will specify later. 

•	 Estimate the probabilities for the rules.


•	 Using the training corpus, improve our estimate of


probabilities.


•	 Delete all rules with probability � � for some small �.




Rule Generation: Dependency Format


Informally, a dependency grammar produces a set of 

terminals connected by a set of directed arcs — one arc 

for every terminal except the root terminal 

S 

verb 

pron 

She ate 

noun noun 

prep 

with 
det 

the hamburger fork 
det 

pron verb prep
det noun a noun

det 



Dependency Grammar


n|n ≤ N} � {n � �n�|n ≤ N, �, � ≤ �},


• Target: a dependency grammar < S, N, R > 

S is the start symbol 

N is a set of terminals 

R is a set of rewrite rules, where 

R ∪ {S � ¯ ¯

� is a set of strings of zero or more ā, for a ≤ N 

•	 Assumption: POS tags are provided 

•	 Theorem: A sentence of length n, consisting of all 

distinct terminals will have n(2n−1 + 1) dependency 

grammar rules to confirm to it 



Rule Generation


We have to prune rule space!


•	 Order sentences by length and generate rules


incrementally


•	 Do not consider rules that were discarded on


previous stages


•	 Limit the number of symbols on the right-hand side 

of the rule 



Algorithm


Loop for i from 2 until i > sentence-length-stopping


point


Add rules required for the sentences with length 

i from the rule creation subset


Estimate the probabilities for all rules, based


upon all sentences of length ∗ i from the rule


training subset


Remove any rules with probability ∗ � if its


probability doesn’t increase




��� = 

Reestimation


• We have sentences S1, . . . , Sn. Trees are hidden variables.


L(α) = 

 

log 

 

P (Si, T |α) 
i T 

• Basic quantity needed for re-estimating with EM: 
�

i Count(Si , � � �)
α �

i 

�
s�R(�) Count(Si , s) 

• There are efficient algorithms for calculating 

t−1
Count(Si , r) = 


 
P (T |Si, α )Count(Si , T, r) 

T 

for a PCFG. See Inside-Outside algorithm (Baker, 1979)




Example


Induce PCFG, given the following corpus:


“verb” 

“noun verb” 

“verb noun” 

“det noun verb” 

“verb det noun” 



Rule 1 ITER 6 ITER 20 ITER


¯S � det 

¯S � noun 

¯S � verb 

d̄et � det 

d̄et � det noun
¯


¯ ¯
det � det verb 

¯ ¯det � verb det 

¯ ¯ ¯det � verb det noun


¯noun � noun 

¯¯noun � det noun 

¯ ¯verb � noun verb 

¯verb � verb noun¯


0.181818 

0.363636 

0.454545 

0.250000 

0.250000 

0.125 

0.125 

0.125 

0.333333 

0.166667 

0.153846 

0.153846 

0.0


0.0


1.0


1.0


0.0


0.0


0.0


0.0


0.781317 

0.218683 

0.286749 

0.288197 

0.0


0.0


1.0


1.0


0.0


0.0


0.0


0.0


0.998847 

0.01153 

0.200461 

0.200461 



Experiment 1


•	 Use grammar from the handout


•	 Randomly generate 1000 words for the rule corpus, 

and 9000 for the training corpus 

•	 Evaluation: compare the output with the generated 

grammar 

•	 Constraint: rules were required to have fewer than 

five symbols on their right-hand side 



Results


•	 Successfully minimizes a cross entropy (1.245 

bits/word on the training of the learned grammar 

vs. 1.220 bits/word of the correct grammar) 

•	 Miserably fails to recover the correct grammar


–	 300 unsuccessful attempts 

¯¯.220 pron � pron verb 

¯	 ¯.214 pron � prep pron 

¯ ¯¯.139 pron � pron verb det 

¯.118 pron � verb pron ¯




Experiment 2


Place more restrictions on the grammar 

Specify what non-terminals may appear on the 
right-hand side of a rule with a particular 
non-terminal on the left 

• The algorithm converges to the correct grammar


noun verb pron det prep adj wh . 

noun + + + + 

verb + + + 

pron – 

det – 



Adding Knowledge to Grammar Induction

Algorithms


•	 Carrol&Charniak (1992): restrictions on the rule 

format 

•	 Magerman&Marcus (1990): use a di-stituent 

grammar to eliminate undesirable rules 

•	 Pereira&Schabes (1992): use partially bracketed 

corpora 



Learning Constituents


Are syntactic patterns evident in a corpus? (Klein, 2005)


• Compute context for each POS 

Tag Top Context by Frequency


DT (IN-NN), (IN-JJ), (IN-NNP), (VB-NN)


JJ (DT-NN), (IN-NNS), (IN-NN), (JJ-NN)


• Cluster POS based on their context




Learning Constituents


The most similar POS pairs based on their context


Rank 

1 

2 

3 

4 

5 

Tag Pairs 

(VBZ, VBD) 

(DT, PRP$) 

(NN, NNS) 

(WDT, WP) 

(VBG, VBN) 



Learning Constituents


The most similar POS sequence pairs based on their 

context 

Rank 

1 

2 

3 

4 

5 

Tag Pairs 

(NNP NNP, NNP NNP NNP) 

(DT JJ NN IN, DT NN IN) 

(NNP NNP NNP NNP, NNP NNP NNP) 

(DT NNP NNP, DT NNP) 

(IN DT JJ NN, IN DT NN) 



Learning Constituents (Clark, 2001)


•	 Identify frequent POS sequences in a corpus


•	 Cluster them based on their context 

•	 Filter out spurious candidates 

–	 Based on mutual information before the 

candidate constituent and the symbol after — 

they are not independent 



Summary


• Language acquisition problem 

• Three unsupervised induction algorithms:


– Vocabulary Induction 

– HMM-topology induction 

– PCFG induction 


