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Last Time: Vector-Based Similarity

Measures


man woman 

grape 

orange 

apple 
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Last Time: Probabilistic Similarity

Measures


P (x,y)
(Pointwise) Mutual Information: I(x; y) = log 

P (x)P (y) 

p(X,Y )• Mutual Information: I(X; Y ) = Ep(x,y) log 
p(X)p(Y ) 

H(X,Y) 

I(X;Y) 

H(X|Y) H(X|Y) 

H(X) H(Y) 



Example: Computing MI


I(w1 2) C(w1 ) C(w2 ) C(w1 2 ) w1 w2 

16.31 30 117 20 Agatha Christie 

15.94 77 59 20 videocassette recorder 

15.19 24 320 20 unsalted butter 

1.09 14907 9017 20 first made 

0.29 15019 15629 20 time last 

, w , w



Example: Computing MI


I(w1 2) C(w1 ) C(w2 ) C(w1 2) w1 w2 

15.02 1 19 1 fewest visits 

12.00 5 31 1 Indonesian pieces 

9.21 13 82 20 marijuana growing 

, w , w



� 

Last Time: Probabilistic Similarity

Measures


Kullback Leibler Distance: D(p||q) = p(x)log p(x) 
q(x) 

•	 Closely related to mutual information


I(X;Y ) = D(p(x, y)||p(x)p(y))


• Related measure : Jensen-Shannon divergence:


1 p + q 1 p + q
DJ S(p,q) =	 D(p|| ) + D(q|| )

2	 2 2 2 



Beyond Pairwise Similarity


•	 Clustering is “The art of finding groups in 
data”(Kaufmann and Rousseeu) 

•	 Clustering algorithms divide a data set into 
homogeneous groups (clusters), based on their 
similarity under the given representation. 



Hierarchical Clustering


Greedy, bottom-up version: 

•	 Initialization: Create a separate cluster for each object 

•	 Each iteration: Find two most similar clusters and merge 

them 

•	 Termination: All the objects are in the same cluster




Agglomerative Clustering


E D C B 

A 0.1 0.2 0.2 0.8 

B 0.1 0.1 0.2 

C 0.0 0.7 
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Agglomerative Clustering


E D C B 

A 0.1 0.2 0.2 0.8 
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Clustering Function


E D C B 

A 0.1 0.2 0.2 0.8 

B 0.1 0.1 0.2 

C 0.0 0.7 

D 0.6 

A B C D E
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Clustering Function


E D C B 

A 0.1 0.2 0.2 0.8 

B 0.1 0.1 0.2 

C 0.0 0.7 

D 0.6 

A B C D E


0.0 



Clustering Function


E D C B 

A 0.1 0.2 0.2 0.8 

B 0.1 0.1 0.2 

C 0.0 0.7 

D 0.6 

A B C D E


0.3 



Clustering Function


• Single-link: Similarity of two most similar members 

• Complete-link: Similarity of two least similar members


• Group-average: Average similarity between members




Single-Link Clustering


• Achieves Local Coherence 

• Complexity O(n2) 

• Fails when clusters are not well separated




Complete-Link Clustering


•	 Achieves Global Coherence


•	 Complexity O(n2 log n) 

•	 Fails when clusters aren’t spherical, or of uniform 

size 



K-Means Algorithm: Example


Iterative, hard, flat clustering algorithm based on 

Euclidean distance 



K-Means Algorithm


1.	 Choose k points at random as cluster centers 

2.	 Assign each instance to its closest cluster center


3.	 Calculate the centroid (mean) for each cluster, use it as a 

new cluster center 

4.	 Iterate steps 2 and 3 until the cluster centers don’t change 

anymore 



K-Means Algorithm: Hard EM


1. Guess initial parameters 

2. Use model to make the best guess of ci (E-step) 

3. Use the new complete data to learn better model (M-step)


4. Iterate (2-3) until convergence 



Evaluating Clustering Methods


•	 Perform task-based evaluation


•	 Test the resulting clusters intuitively, i.e., inspect 

them and see if they make sense. Not advisable. 

•	 Have an expert generate clusters manually, and test 

the automatically generated ones against them. 

•	 Test the clusters against a predefined classification if 

there is one 



Comparing Clustering Methods


(Meila, 2002)


n total # of points 

nk # of points in cluster Ck 

K # of nonempty clusters 

N11 # of pairs that are in the same cluster under C and C � 

N00 # of pairs that are in different clusters under C and C � 

N10 # of pairs that are in the same cluster under C but not C � 

N01 # of pairs that are in the same cluster under C � but not C 



� 

Comparing by Counting Pairs


• Wallace criteria 

W1(C, C �) = � 
N11 

nk (nk − 1)/2k 

W2(C, C �) = � 
N11 

k� nk� (n� 
k� − 1)/2 

• Fowles-Mallows criterion 

F (C, C �) = W1(C, C �)W2(C, C �) 

Problems: ? 



Comparing Clustering by Set Matching


Contingency table M is a K × K matrix, whose kk� 

element is the number of points in the intersection of 

clusters Ck and C � 
k� 


 2mkk� 

L(C, C �) =
1 

max 
K k� nk + nk 

� 
k 

Problems: ? 



Comparing Clustering by Set Matching



1 
L(C, C �) = max

2mkk� 

�K k� nk + nkk 

CC 

C C’ C’’ 

C CC C C C C CC 

C 

1 2 3 1 12 23 3 

2 3 

3 

CC CC 
1 2 

1 3 



Distributional Syntax


Sequences of word clusters and their contexts (Klein, 

2005) 

DT 

JJ 

MD 

NN 

VB 

Tag Top Context by Frequency 

(IN-NN), (IN-JJ), (IN-NNP), (VB-NN) 

(DT-NN), (IN-NNS), (IN-NN), (JJ-NN),(DT-NNS) 

(NN-VB), (PRP-VB), (NNS-VB), (NNP-VB), (WDT-VB) 

(DT-IN), (JJ-IN), (DT-NN), (NN-IN), (NN-.) 

(TO-DT), (TO-IN), (MD-DT), (MD-VBN),(TO-JJ) 



Distributional Syntax


D

Rank 

1 (VBZ,VBD) 

2 

3 (NN,NNS) 

4 

5 

14 

The most similar POS pairs and POS sequence pairs 

based on JS of their context 

Tag pairs Sequence Pairs 

(NNP NNP, NNP NNP NNP) 

(DT,PRP$) (DT JJ NN IN, DT NN IN) 

(NNP NNP NNP NNP, NNP NNP NNP) 

(WDT,WP) (DT NNP NNP, DT NNP) 

(VBG,VBN) (IN DT JJ NN, IN DT NN) 

(JJS, JJR) (NN IN DT, NN DT) 



Linear vs. Hierarchical Context


The left (right) context of x is the left(right) sibling of 

the lowest ancestor of x 

Rank Linear Hierarchical 

1 (NN NNS, JJ NNS) (NN NNS, JJ NNS) 

2 (IN NN, IN DT NN) (IN NN, IN DT NN) 

3 (DT JJ NN, DT NN) (IN DT JJ NN, IN JJ NNS) 

4 (DT JJ NN, DT NN NN) (VBZ VBN, VBD VBN) 

5 (IN DT JJ NN, IN DT NN) (NN NNS, JJ NN NNS) 



Grammar Induction


• Task: Unsupervised learning of a language’s syntax 

from a corpus of observed sentences 

The cat stalked the mouse.


The mouse quivered.


The cat smiled.


•	 A tree induction system is not forced to learn all 

aspects of language (semantics, discourse) 



Motivation


•	 Linguistic motivation:


–	 Empirical argument against the poverty of the 

stimulus (Chomsky, 1965) 

–	 Empirical investigation of syntax modularity 

(Fodor, 1983; Jackendoff, 1996) 

•	 Engineering motivation: 

–	 No need in training data 



Evaluation and Baselines


• Evaluation: 

– Compare grammars 

– Compare trees 

• Baselines: 

– Random Trees 

– Left- and Right-Branching Trees 



Structure Search Experiment


• Structure search 

– Add production to context free grammar 

– Select HMM topology 

• Parameter search 

– Determine parameters for a fixed PCFG 



Finding Topology


Stolcke&Omohundro, 1994: Bayesian model merging


•	 Data incorporation: Given a body of data X, build an 

initial model M0 by explicitly accommodating each data 

point individually such that M0 maximizes the likelihood 

P (X|M). 

M

• Generalization: Build a sequence of new models,


obtaining Mi+1 from Mi by applying a merging operator


m that coalesces substructures in Mi ,


i+1 = m(Mi ), i = 0, 1


•	 Optimization: Maximize posterior probability


•	 Search strategy: Greedy or beam search through the 

space of possible merges 



HMM Topology Induction


•	 Data incorporation: For each observed sample create a 

unique path between the initial and final states by 

assigning a new state to each symbol token in the sample 

•	 Generalization: Two HMM states are replaced by a single 

new state, which inherits the union of the transitions and 

emissions from the old states. 



HMM Topology Induction


•	 Prior distribution: Choose uninformative priors for a 

model M with topology Ms and parameters �M . 

P (M ) = P (Ms)P (�M |Ms) 

P (Ms) � exp(−l(Ms))


where l(Ms ) is the number of bits required to encode Ms.


•	 Search: Greedy merging strategy.




Example


I 
1 2 

3 4 5 6 F 
a 

a b 

b a b 
0.5 

0.5 

b


I 

I 1 

1 

1I 2 5 

2 

2 F 

5 F 

6 F 

I 1 
2 

4 5 6 F 

a b 

a b a 

baba 

b a b 

a 0.5 

0.5 

0.67 

0.5 
0.5 

0.33 

0.67 

0.33 



PCFG Induction


•	 Data Incorporation: Add a top-level production 

that covers the sample precisely. Create one 

nonterminal for each observed terminal. 

•	 Merging and Chunking: During merging, two 

nonterminals are replaced by a single new state. 

Chunking takes a given sequence of nonterminals 

and abbreviates it using a newly created 

nonterminal. 

•	 Prior distribution: Similar to HMM.


•	 Search: Beam search. 



Example

Input: {ab,aabb,aaabbb} 

S −>−> A B 
−>A A B B
−>A A A B B B 

A −>a 
B −>b 

Chunk(AB)−>X S −>−> X 
−>−> A X B
−>−> A A X B B 

X −>−> A B 

Chunk(AXB)−>Y S −>−> X 
−>−> Y 
−> A Y B 

X −> A B 
Y −> A X B 

Merge S,Y S −>−> X

−> A S B


X −> A B


Merge S,X S 	−> A B

−> A S B




Results for PCFGS


• Formal language experiments 

– Successfully learned simple grammars 
Language 

Parentheses 
2n a 

(ab)n 

wcwR, w � {a, b}� 

Addition strings 

Sample no. 

8 

5 

5 

7 

23 

Grammar 

S � ()|(S)|SS 

S � aa|SS 

S � ab|aSb 

S � c|aSa|bSb 

S � a|b|(S)|S + S 

Search 

BF 

BF 

BF 

BS (3) 

BS(4) 

• Natural Language syntax 

– Mixed results (issues related to data sparseness) 



Example of Learned Grammar


S � S � 

� � V 

� � 

� � 

RC � RC � 

� saw| V � saw|

� cat|dog|mouse N � cat|dog|mouse 

� a|the � a|the 

Rel � that Rel � that 

Target Grammar Learned Grammar 

N P V P N P V P 

V P V erb N P V P N P 

N P Det N oun N P DetN 

N P Det N oun RC N P N P RC 

Rel V P REL V P 

V erb heard heard 

N oun 

Det Det 



Example

Input: {ab,aabb,aaabbb} 

S −>−> A B 
−>A A B B
−>A A A B B B 

A −>a 
B −>b 

Chunk(AB)−>X S −>−> X 
−>−> A X B
−>−> A A X B B 

X −>−> A B 

Chunk(AXB)−>Y S −>−> X 
−>−> Y 
−> A Y B 

X −> A B 
Y −> A X B 

Merge S,Y S −>−> X

−> A S B


X −> A B


Merge S,X S 	−> A B

−> A S B




Issue with Chunk/Merge Systems


•	 Hard to recover from initial choices


•	 Hard to make local decision which will interact with 

each other (e.g., group verb preposition and 

preposition-determiner, both wrong and non 

consistent) 

•	 Good local heuristics often don’t have well formed 

objectives that can be evaluated for the target 

grammar 



Learn PCFGs with EM


• (Lari&Young 1990): Learning PCFGs with EM


– Full binary grammar over n symbols 

– Parse randomly at first 

– Re-estimate rule probabilities of parses


– Repeat 



Grammar Format


•	 Lari&Young, 1990: Satisfactory grammar learning 

requires more nonterminals than are theoretically needed 

to describe a language at hand 

•	 There is no guarantee that the nonterminals that the 

algorithm learns will have any resemblance to 

nonterminals motivated in linguistic analysis 

•	 Constraints on the grammar format may simplify the 

reestimation procedure 

–	 Carroll&Charniak, 1992: Specify constraints on 

non-terminals that may appear together on the 

right-hand side of the rule 



Partially Unsupervised Learning


Pereira&Schabes 1992


•	 Idea: Encourage the probabilities into a good region of 

the parameter space 

•	 Implementation: modify Inside-Outside algorithm to 

consider only parses that do not cross provided bracketing 

•	 Experiments: 15 non terminals over 45 POS tags 

The algorithm uses Treebank bracketing, but ignores the 

labels 

•	 Evaluation Measure: fraction of nodes in gold trees


correctly posited in proposed trees (unlabeled recall)




•	 Results:


–	 Constrained and unconstrained grammars have similar 

cross-entropy 

–	 But very different bracketing accuracy: 37% vs. 90%




Current Performance


•	 Constituency recall:


Random Baseline 39.4


Klein’2005 88.0


Supervised PCFG 92.8


•	 Why it works? 

– Combination of simple models 

–	 Representations designed for unsupervised 

learning 


