
6.863J Natural Language Processing

Lecture 7: parsing with hierarchical

structures – context-free parsing

Robert C. Berwick

The Menu Bar
• Administrivia:

•	 Schedule alert: Lab2 due today; Lab 3 out
late Weds. (context-free parsing)

•	 Lab time today, tomorrow
•

(on web)
Please read notes3.pdf, englishgrammar.pdf

•	 Agenda:
•	 Chart parsing summary; time complexity
•	 How to write grammars

6.863J/9.611J Lecture 8 Sp03

Chart parsing summary

• Data structures & Algorithm
• Data structures
• A chart parser has three data structures:

, which holds the words of the• an input stack
input sentence (in order)

, which holds completed phrases• a chart
organized by starting position and length

, organized by ending position.• a set of edges

6.863J/9.611J Lecture 8 Sp03

Input sentence stack

• The input
• Positions in the input sentence will be

numbered starting with zero and will be the
positions between successive words. For
example:

0 I 1 shot 2 an 3 elephant 4 in 5 my 6 pajamas 7

For now, assume POS already assigned,
words consumed l-to-r

6.863J/9.611J Lecture 8 Sp03

We have presented the chart
graphically so far…

6.863J/9.611J Lecture 8 Sp03

Chart
• Example of chart

S
VP

NP
I shot an elephant in my pajamas

n v 	 d n p d n
NP NPNP

VP
S

PP
6.863J/9.611J Lecture 8 Sp03

Chart in graphical form

6543210start
ndpndvn1

NPNP2
PPVP3

S4
NP5

VP6

S7

p
length

Position

6.863J/9.611J Lecture 8 Sp03

At the end…

length 6543210start
ndpndvn1

NPNP2
PPVP3

S4
NP5

VP6

S7

p

Position

6.863J/9.611J Lecture 8 Sp03

Corresponding to Marxist analysis

NP

S

I

VP

V NP

NP

shot Det N PP

an elephant P
Det N

in
my pj’s

6.863J/9.611J Lecture 8 Sp03

The chart

• A cell in the chart can contain more than one
phrase (e.g., n & np)

• With each constituent is frequently stored
information about which parsing rule was used
to generate it and what smaller constituents
make it up (to recover the parse)

•	 Used to prevent redundant work if 2 or more
possible internal structures for a single phrase
(“blue socks and shoes”)

6.863J/9.611J Lecture 8 Sp03

Edges

• Each edge consists of a grammar rule, plus info
about how it matches up against the input,

specifically:

• A rule, e.g., S(entence)fi NP VP

• The position up to which we’ve matched the rule to
the input, indicated by a dot (•), e.g., S fiNP • VP

• The starting position of the edge (the first input word
matched) (e.g., VP ‘shot…’ starts at position 1

• The # of input words matched so far
• Edges organized by ending position (the last

input word matching against their rule so far)
• Edges are added but never deleted

6.863J/9.611J Lecture 8 Sp03

Edges, cont’d

Start
0 S fi • NP VP

NP fi • Det N
NPfi • N
NPfi • NP PP

1 NP fi N •
S fi NP • VP
NPfi NP • PP
VP fi • V NP
VP fi • V NP PP
PP fi • P NP

Etc…

6.863J/9.611J Lecture 8 Sp03

State-set construction

S0‹initial state set= initialInitialize:

Loop:

Final:

state edge

[Start fi • S , 0, n] ¨

e-closure of this set under

predict, complete

For word i=1,…,n
Si computed from Si-1
(using scan, predict, complete)
try scan; then predict, complete

Is a final edge in Sn?

[Start fi S• , 0, n]̨ Sn ?

6.863J/9.611J Lecture 8 Sp03

The overall algorithm

• Suppose there are n words in the input
• Set up chart of height and width n
• Add input words onto stack, last word at bottom
• For each ending position i in the input, 0

through n, set up two sets, S and Di (“Start”,i
“Done”)

S0 ‹ all rules expanding start node of grammar

Si ‹˘ for i „ 0

Si will be treated as search queue (BFS or DFS).
Edges will be extracted one by one from Si &
put into Di . When Si becomes empty, remove
1st word from stack & go to next ending position

6.863J/9.611J Lecture 8 Sp03i +1

Or:

• Loop until Si is empty
• Remove first edge e from Si

• Add e to Di

•
 to e, using the 3Apply 3 extension operations
operators: scan, complete, predict (which may produce
new edges)

• New edges added to Si or Si+1, if they are not already in
Si, Di, or Di+1

• Pop first word off input stack

• When all ending positions processed, chart
contains all complete phrases found

6.863J/9.611J Lecture 8 Sp03

Adding edges by the 3 operations

Predict (start a phrase)

Complete (finish phrase)

– like extending a search

Scan (match words)

6.863J/9.611J Lecture 8 Sp03

Another way to view it

NP

Predict Complete phrase
Phrase

DT NN
scan scan

the guy

6.863J/9.611J Lecture 8 Sp03

6.863J/9.611J Lecture 8 Sp03

Connecting the dots

Sentence

The guy

NP

Det Noun

Dotted rule form

NP

Dot at beginning=
just started building a
phrase of this type

Predict
fi •Det Noun

6.863J/9.611J Lecture 8 Sp03

Sentence

The guy

NP

Det Noun

Dotted rule form

NPfiDet • Noun

Scan

6.863J/9.611J Lecture 8 Sp03

Dot at end

Sentence

The guy

NP

Det Noun

Dotted rule form

NPfiDet • Noun

Advance in input = scan

NPfi •

(finished building
phrase)

The dots – in the middle

Det Noun

The three ops add edges in our
full chart representation …

• Loops (Predict) – start a phrase
• Skips (Scan) – build phrase
• Pastes – glue 2 edges to make a third,

larger one (Complete) – finish a phrase

6.863J/9.611J Lecture 8 Sp03

Picture: Predict adds the ‘loops’

S fi • NP VP

I shot an elephant in my pajamas

6.863J/9.611J Lecture 8 Sp03

Picture: Scan adds the ‘jumps’

I shot an elephant in my pajamas

S fi
NP fi N
NP fi
NP fi

•NP VP
• D
• N
• NP PP

NP fi N •

6.863J/9.611J Lecture 8 Sp03

Picture: Complete combines
edges
S fi NP VP •

VP fi V NP •

VP fi VP • PP

I shot an elephant in my pajamas

NP fi N • NP fi D N •

NP fi • NP PP

S fi NP • VP
6.863J/9.611J Lecture 8 Sp03

The ops

• 3 ops: scan, predict, complete; or

scan, push, pop

move1.Scan: forward, consuming a token (word class) ­
what if this is a phrase name, though?

start building a phrase (tree) at this point2.Predict (push):
in the input; or jump to subnetwork;

finish building a phrase (tree) at this
point; pop stack and return from subnet (which also says

attached)
Scan = linear precedence;
Predict, complete: dominance

3.Complete (pop):

where the subphrase gets

6.863J/9.611J Lecture 8 Sp03

Another way to view it

Push NP

Pop NP
d n

Scan NP

6.863J/9.611J Lecture 8 Sp03

Definitions – words & symbols

• Scan
Suppose current edge e is not finished &
part of speech tag X follows the dot in the
rule for e
Scan examines next word in input
If word has pos X, create new edge e’,
identical to e except dot is moved one
place to the right & length increment by 1
Add e’ to Si+1

6.863J/9.611J Lecture 8 Sp03

Scan - formally

• Scan: (jump over a token)
• Before: [A fia•t b, k, i] in State Set S & word i= ti

• Result: Add [A fiat • b, k, i+1] to State Set Si+1

6.863J/9.611J Lecture 8 Sp03

Picture: Scan adds the ‘jumps’

I shot an elephant in my pajamas

S fi
NP fi N
NP fi
NP fi

•NP VP
• D
• N
• NP PP

NP fi N •

6.863J/9.611J Lecture 8 Sp03

Predict operation

• Suppose current edge e is not finished
• Predict extracts next item X needed by e –

the phrase after the dot in the edge
• Find all rules in grammar whose lefthand

side is X
• For each of these, make a new edge with

the dot on the left, and add edges to Si+1

6.863J/9.611J Lecture 8 Sp03

i

And again…

• Predict (Push):
• Before: [A fia•B b, k, i] , B=nonterminal, in S

then

•
 After: Add all new edges of form [B , i+1, i+1]fi • g
to State Set Si+1

6.863J/9.611J Lecture 8 Sp03

Picture: Predict adds the ‘loops’

S fi • NP VP

I shot an elephant in my pajamas

6.863J/9.611J Lecture 8 Sp03

Complete (finish phrase)

• Suppose current edge e is finished (dot at rh
end). Suppose e looks like:

X fi y1 y2 … yp • from start pos k, length m

• Check if X is already in chart cell (k,m). If so,
add e to set of derivations for this phrase X.

• If X is not already in cell (k,m) then:
• Examine each edge E in Dk If E is incomplete, and

the next item needed for E is X, create a new edge E’
with dot hopped over X to the right

• Length of E’ is sum of lengths of E + e
• Add E’ to Si

6.863J/9.611J Lecture 8 Sp03

Picture of this – ‘pasting’ X+Y

together

+ =

j E k e m

j E’ m
6.863J/9.611J Lecture 8 Sp03

“The fundamental rule”

NPfiVPfi

+ =

d n • V • NP

1 shot 2 2 an elephant 4

start pos= 1, len 1 start= 2, len=2

6.863J/9.611J Lecture 8 Sp03

VPfi

1 4

V NP•

start pos= 1, len 3

Adding to chart…

length 6543210start
ndpndvn1

NP2
VP3

4
5

6

7

p

Position

6.863J/9.611J Lecture 8 Sp03

This new edge E’ will itself be
processed… since dot is at end...

VPfi V NP•

1 4start pos= 1, len 3

Go back to state set 1 & see what rule was
looking for a VP

It’s the rule SfiNP•VP… so we can paste these two
subtrees together to get a complete S,
“I shot an elephant”

6.863J/9.611J Lecture 8 Sp03

Adding the S

length 6543210start
ndpndvn1

NP2
VP3

S4
5

6

7

p

Position

6.863J/9.611J Lecture 8 Sp03

More precisely

• Complete(Pop): (finish w/ phrase)
• Before: If Si contains e in form [B fi g •, k, i] then

go to state set Sk and for all rules of form
[A fia•B b, k, j], add E’ [A fiaB • b, j, i] to state
set Si

6.863J/9.611J Lecture 8 Sp03

Picture: Complete combines
edges
S fi NP VP •

VP fi V NP •

VP fi VP • PP

I shot an elephant in my pajamas

NP fi N • NP fi D N •

NP fi • NP PP

S fi NP • VP
6.863J/9.611J Lecture 8 Sp03

NPfi • Det Noun

•the book

[A fia•tb, k, i-1]

•

the • book

[A fiat •t'b¢, k, i]

NPfi Det • Noun

the •

6.863J/9.611J Lecture 8 Sp03

Scan examples NP

[A tt' k, i+1]

•
the book •

NPfi •

6.863J/9.611J Lecture 8 Sp03

Predict (‘wish’) example

S NP VP

A Bb,

•the book

S

•

B i, i

NP
NP Name

NP NP

• •

•

fia •b†,

the book

Det Noun

fi•

fia• k, i-1
fi • g,

fi•Det Noun
fi• Det… Name…

VPfiVerb • NP PP
VPfiVerb • NP

6.863J/9.611J Lecture 8 Sp03

‘Complete’ example

NPfi •

… •

VP

•NP
ate

•

…go back to previous
dot

(in all rules that called
for NP)

[B k, i]

VPfiVerb NP • PP
VP fiVerb NP •

•

[A B k, i]

Det Noun

ate the ice-cream

the ice-cream

State Set & jump
fi g •,
fia • b,

At the end..

length 6543210start
ndpndvn1

NPNP2
PPVP3

NPS4
5

VP6

S7

p

Position

6.863J/9.611J Lecture 8 Sp03

At the end…

6543210start
ndpndvn1

NPNP2
PPVP3

S4
NP5

VP6

S7

p
length

Position

6.863J/9.611J Lecture 8 Sp03

Corresponding to Marxist analysis
S

I

VP

V NP

NP

shot Det N PP

an elephant P NP

Det N
in

my pj’s

6.863J/9.611J Lecture 8 Sp03

Please note:

• How ambiguity is handled

• Multiple attachments, with dynamic programming
principle: once we have built a PP spanning positions
[3, 7] we use it twice

• This is the key to sub-exponential parsing: we don’t
have to enumerate all the possibilities explicitly

• Why we don’t have to list identical items twice
(another part of the same rule)

• For parsing, we use backpointers to keep track
of which item causes a new item to be added ­
this gives us a chain for the state sequence =
the path

6.863J/9.611J Lecture 8 Sp03

6.863J/9.611J Lecture 8 Sp03

So time complexity picture looks
like this:

Max. # state sets x Max time to build ONE
State set

n

Max # edges x Max time to
process 1 edge

O(|G|n) O(|G|n)

Time complexity

• Decompose this in turn into:
edge in the set1. time to process a single

2. times maximum # distinct edges possible in one
state set (assuming no duplicates!)

•	 Worst case: max. # of distinct edges:
•	 Max # of distinct dotted rules x max # of distinct

return values, i.e., |G |x n
•	 (Why is this?)
•	 (Edges have form: dotted rule, start, len)

•	 Note use of grammar size here: amount of
‘chalk’ = S # symbols in G.

6.863J/9.611J Lecture 8 Sp03

Max # distinct edges: loops, incoming
from scans, incoming from paste:

at most |G|

from scan via

at most |G|

from predict (loops) –

previous state –

From complete – could come from any
preceding state – at most n•|G|

6.863J/9.611J Lecture 8 Sp03

Time complexity, continued

• The time to process a single edge is found by
separately considering time to process scan,
predict, and complete operations

• Claim: Scan, predict constant time (in |G| and n,
n= length of sentence)

• Because we can build in advance all next-state
transitions, given the Grammar

• Only action that takes more time is complete !
• For this, we have to go back to previous state

set and look at all (in worst case) edges in that
state set - and we just saw that in the worst
case this could be O (|G|x n)

6.863J/9.611J Lecture 8 Sp03

So time complexity picture looks
like this:

xMax. # state sets Max time to build ONE
State set

Max # edges
in 1 state set

x Max time to
process 1 edge

n O(|G|n) O(|G|n)

6.863J/9.611J Lecture 8 Sp03

Grand total

• O(|G|2 n3) - depends on both grammar size
and sentence length (which matters more?)

• Lots of fancy techniques to precompute & speed
this up

• We can extend this to optional elements, and
free variation of the ‘arguments’ to a verb

6.863J/9.611J Lecture 8 Sp03

How do we recover parses?

6.863J/9.611J Lecture 8 Sp03

State set pointer structure that

represents both parses

•	 Just like fruit flies like a banana
•	 Keep multiple backpointers to keep track of

multiple ways that we use a ‘completed’ item
(a whole phrase)

•	 The actual backpointer structure looks
something like the following (one can show
that it takes just log(n) extra time to construct
this)

6.863J/9.611J Lecture 8 Sp03

6.863J/9.611J Lecture 8 Sp03

StartfiS

Sfi

VPfi VPfi

NPfi Name PP

PPfi Prep NP

NPfi

Backpointer structure

• (34)

NP VP • (33)

V NP PP • (31) V NP • (35)

• (32)

• (30)

Det N • (29)

Recovering parses (structure, state

sequence)

• Two basic methods: online & offline
• Simple offline method can build parse ptrs for all

possible parses in time O(n3) – key is to build a
‘pruned’ collection of items (triples) in the state
sets

• Why do we want to prune the state sets?
• Many items ‘die out’ because they fit the first

part of an input sentence, but not the rest: e.g.,
I think that blocks the light

• Here we predict an NP for that and an NP for
that blocks – one or more might die out.

6.863J/9.611J Lecture 8 Sp03

Recovering parses

• Since semantic interpretation routines will
run on syntactic structure and these are
often more costly (why?) we want to
reduce false paths ASAP

6.863J/9.611J Lecture 8 Sp03

Simple queue algorithm to do this, based on
the notion of ‘useful’ items- those that actually
cause others to get added

[s,i] in state set j
-Any item
in final state set is useful:

q r

g

-If item s=[A fia•B,i]
is in state set k & useful
-then item q=[A fiaB •,k]a
& item r= =[B fig •,j] are

j usefuli k

Let [s,i] denote an item with a dotted rule s &
return pointer i.

6.863J/9.611J Lecture 8 Sp03

Algorithm for recovering parses

[Initialize] Mark all items in state set Sn in the form Start fi
aS•, 0

[Loop] for j=n downto 0 do
for i=0 to j do

for every marked [s,i] in state set j do
for i£ k £j, if

[q,i]˛ Sk &
[r,k] ˛ Sj &
s= q˜ r then
mark [q,i] and [r,k]

6.863J/9.611J Lecture 8 Sp03

�

This is called a ‘parse forest’

• Exponential # of paths, but we avoid
building them all explicitly – we can
recover any one parse efficiently

6.863J/9.611J Lecture 8 Sp03

Worst case time for Earley
algorithm

• Is the cubic bound ever reached in artificial or natural
languages?

•	 Here is the artificial ‘worst case’ - # of parses
arbitrarily large with sentence length; infinite
ambiguity

•	 Here is the grammar:
Sfi SS, SSfi a

{a, aa, aaa, aaaa,…}

•	 # of binary trees with n leaves=
1,1,2,5,14,42,132,429,1430,4862,16796,…=

1 � 2n �
(n +1) Ł

� n ł
6.863J/9.611J Lecture 8 Sp03

Does this ever happen in natural

languages?

• It does if you write cookbooks… this
from an actual example (from 30M word
corpus)

Combine grapefruit with bananas, strawberries and
bananas, bananas and melon balls, raspberries or
strawberries and melon balls, seedless white grapes
and melon balls, or pineapple cubes with orange
slices.

parses with 10 conjuncts is 103, 049
(grows as 6#conjuncts)

6.863J/9.611J Lecture 8 Sp03

6.863J/9.611J Lecture 8 Sp03

example

3020100
0

2

4

6

8

10

12

NP–PP ambiguity sentences NP P NP...

with Earley's algorithm

length,
words

T
im

e,
 s

ec
on

ds

time, secs.

This does indeed get costly -Verb NP PP

How this algorithm is clever
• Handling left-recursion
• Tail-recursion trick
• Example: John’s brother’s book
• NPfi NP NP | NP fi Noun | Noun ’s

• Note how this loops on endless call to

book

NP NP

NP

NP NP Noun

John NP
brother

NP

’s
’s

…but predict cuts
off after 1 round!

6.863J/9.611J Lecture 8 Sp03

Note tail recursion

• State set S0 :
• Add triples: [NPfi • Noun, 0, 0]

[NPfi • NP NP, 0, 0] predict:
?[NPfi • NP NP, 0, 0] … No need!

Duplicate!

Note tail recursion: the call returns to itself – so no
need to ‘keep’ return addresses in stack!

6.863J/9.611J Lecture 8 Sp03

The edge loops to itself:

[NPfi • NP NP, 0, 0]

6.863J/9.611J Lecture 8 Sp03

Anything else?

• If anything, Earley parsing is too good – it
gets all the parses, even ones that people
do not

• We shall see how to deal with this, using
probabilities on rules; and

• Other parsing methods
• But first, what do people do?
• Consider the examples

6.863J/9.611J Lecture 8 Sp03

Wouldn’t matter so much – but it

does seem to match what people do

• Both left- and right- branching ‘structures’
seem to be readily parseable by people
without any sort of memory load (all other
things being equal)

• John’s brother’s mother’s aunt….
• I believed that Mary saw that Fred knew

that Bill shoveled snow

6.863J/9.611J Lecture 8 Sp03

Pictures of this..

saw that Fred knew thatJohn’s brother’s book
Bill shoveled snow

6.863J/9.611J Lecture 8 Sp03

So what’s hard for people to
process?

The rat died

the cat chased

the dog bit “center-embedded”

6.863J/9.611J Lecture 8 Sp03

Why is this hard?

• Model: people have to “hold onto” open
predicates (definition: open if verb+arguments
have not yet been put together)

• In the preceding example, we have to hold onto
a stack of Subjects (the rat, the cat, the dog…)
before the corresponding verbs are seen

• This even shows up in unexpected places –
speech intonational pattern actually seems to
transduce center-embedded structures into left-
or right- branching ones

6.863J/9.611J Lecture 8 Sp03

Chomsky & Miller, 1959-63

analysis

the dog that chased the cat that bit the rat

6.863J/9.611J Lecture 8 Sp03

Parsing vs. intonational contours
Syntactic structure is center-embedded:

NP

NP S

the rat NP VP

that

chased NP

pro
 NP S

the cat
NP VP

that
bit NP

pro
6.863J/9.611J Lecture 8 Sp03 the rat

But the intonational structure
follows this:

NP S NP
NPVPNP NP

the cat
the rat that

chased
pro

Suggests 2-stage parser (proposed by C&M):

Stage 1: parse into ‘flat’ structure

Stage 2: make 2nd pass & rearrange hierarchically

6.863J/9.611J Lecture 8 Sp03

Also hints at how to do semantic
interpretation – akin to syntax-driven
translation

• Recall from compilers: if we complete the right-

hand side of a rule, we can now fire off any

associated semantic action (because we now

have the item and all its ‘arguments’

• This amounts to getting left-most complete

subtree at each point to interpret

• Example:
VPfiV NP• , e.g., “ate the ice-cream”

Can now ‘interpret’ this

pair syntactic, ‘semantic’ rule:

VPfiV NP, apply VP(NP)

6.863J/9.611J Lecture 8 Sp03

One more search space enumeration
that will be of some value

• Left-corner parsing
• Looks bottom-up in serial fashion for the

first symbol (left-corner) of a phrase; and
then tries to confirm the rest of the
phrase top-down

• Tries to combine best features of b-u and
t-d

• Clearly geared to the way a particular
language (eg English) is set up

6.863J/9.611J Lecture 8 Sp03

A picture of left-corner parsing

S Sfi NP VP

NPfi the Noun
NP

VP VPfi ate NP
2

1 predict

the
find Noun ate

6.863J/9.611J Lecture 8 Sp03

This works well

• In a language like English:
• A head-first language (function-argument)
• What about German, Dutch, Japanese?
• dat het mesije van Holland houdt
• “that the girl from Holland liked”
• These are languageshead-final

6.863J/9.611J Lecture 8 Sp03

What about constructing
grammars?

6.863J/9.611J Lecture 8 Sp03

