
6.863J Natural Language Processing

Lecture 7: parsing with hierarchical 

structures – context-free parsing 

Robert C. Berwick 

The Menu Bar 
• Administrivia: 

•	 Schedule alert: Lab2 due today; Lab 3 out 
late Weds. (context-free parsing) 

•	 Lab time today, tomorrow 
• 

(on web) 
Please read notes3.pdf, englishgrammar.pdf 

•	 Agenda: 
•	 Chart parsing summary; time complexity 
•	 How to write grammars 
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Chart parsing summary


• Data structures & Algorithm 
• Data structures 
• A chart parser has three data structures: 

, which holds the words of the• an input stack
input sentence (in order) 

, which holds completed phrases• a chart
organized by starting position and length 

, organized by ending position.• a set of edges
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Input sentence stack 

• The input 
• Positions in the input sentence will be 

numbered starting with zero and will be the 
positions between successive words. For 
example: 

0 I 1 shot 2 an 3 elephant 4 in 5 my 6 pajamas 7 

For now, assume POS already assigned, 
words consumed l-to-r 
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We have presented the chart 
graphically so far… 
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Chart 
• Example of chart 

S 
VP 

NP 
I shot an elephant in my pajamas 

n v 	 d n p d n 
NP NPNP 

VP
S 

PP
6.863J/9.611J Lecture 8 Sp03 



Chart in graphical form


6543210start 
ndpndvn1 

NPNP2 
PPVP3 

S4 
NP5 

VP6 

S7 

p 
length 

Position 
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At the end… 

length 6543210start 
ndpndvn1 

NPNP2 
PPVP3 

S4 
NP5 

VP6 

S7 

p 

Position 
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Corresponding to Marxist analysis 

NP 

S 

I 

VP 

V NP 

NP 

shot Det N PP 

an elephant P 
Det N 

in 
my pj’s 
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The chart 

• A cell in the chart can contain more than one 
phrase (e.g., n & np) 

• With each constituent is frequently stored 
information about which parsing rule was used 
to generate it and what smaller constituents 
make it up (to recover the parse) 

•	 Used to prevent redundant work if 2 or more 
possible internal structures for a single phrase 
(“blue socks and shoes”) 

6.863J/9.611J Lecture 8 Sp03 



Edges


• Each edge consists of a grammar rule, plus info 
about how it matches up against the input, 

specifically:

• A rule, e.g., S(entence)fi NP VP 

• The position up to which we’ve matched the rule to 
the input, indicated by a dot (• ), e.g., S fiNP • VP 

• The starting position of the edge (the first input word 
matched) (e.g., VP ‘shot…’ starts at position 1 

• The # of input words matched so far 
• Edges organized by ending position (the last 

input word matching against their rule so far) 
• Edges are added but never deleted 
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Edges, cont’d 

Start 
0 S fi • NP VP 

NP fi • Det N 
NPfi • N 
NPfi • NP PP 

1 NP fi N • 
S fi NP • VP 
NPfi NP • PP 
VP fi • V NP 
VP fi • V NP PP 
PP fi • P NP 

Etc… 
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State-set construction

S0‹initial state set= initialInitialize: 

Loop: 

Final: 


state edge

[Start fi • S , 0, n] ¨

e-closure of this set under 

predict, complete 

For word i=1,…,n 
Si computed from Si-1 
(using scan, predict, complete) 
try scan; then predict, complete 

Is a final edge in Sn?

[Start fi S• , 0, n]̨  Sn ?
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The overall algorithm 

• Suppose there are n words in the input 
• Set up chart of height and width n 
• Add input words onto stack, last word at bottom 
• For each ending position i in the input, 0 

through n, set up two sets, S and Di (“Start”,i 
“Done”)

S0 ‹ all rules expanding start node of grammar

Si ‹˘ for i „ 0 

Si will be treated as search queue (BFS or DFS). 
Edges will be extracted one by one from Si & 
put into Di . When Si becomes empty, remove 
1st word from stack & go to next ending position 
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Or:


• Loop until Si is empty 
• Remove first edge e from Si 

• Add e to Di


•
 to e, using the 3Apply 3 extension operations 
operators: scan, complete, predict (which may produce 
new edges) 

• New edges added to Si or Si+1, if they are not already in 
Si, Di, or Di+1 

• Pop first word off input stack 

• When all ending positions processed, chart 
contains all complete phrases found 
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Adding edges by the 3 operations 


Predict (start a phrase) 

Complete (finish phrase) 

– like extending a search 

Scan (match words) 
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Another way to view it 

NP 

Predict Complete phrase 
Phrase 

DT NN 
scan scan


the guy
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Connecting the dots 

Sentence 

The guy 

NP 

Det Noun 

Dotted rule form 

NP

Dot at beginning= 
just started building a 
phrase of this type 

Predict 
fi •Det Noun 
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Sentence 

The guy 

NP 

Det Noun 

Dotted rule form 

NPfiDet • Noun 

Scan 
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Dot at end 

Sentence 

The guy 

NP 

Det Noun 

Dotted rule form 

NPfiDet • Noun 

Advance in input = scan 

NPfi • 

(finished building 
phrase) 

The dots – in the middle 

Det Noun 



The three ops add edges in our 
full chart representation … 

• Loops (Predict) – start a phrase 
• Skips (Scan) – build phrase 
• Pastes – glue 2 edges to make a third, 


larger one (Complete) – finish a phrase
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Picture: Predict adds the ‘loops’ 

S fi • NP VP 

I shot an elephant in my pajamas 
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Picture: Scan adds the ‘jumps’


I shot an elephant in my pajamas 

S fi 
NP fi N 
NP fi 
NP fi 

•NP VP 
• D  
• N 
• NP PP 

NP fi N • 
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Picture: Complete combines 
edges 
S fi NP VP • 

VP fi V NP • 

VP fi VP • PP 

I shot an elephant in my pajamas 

NP fi N • NP fi D N • 

NP fi • NP PP 

S fi NP • VP 
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The ops


• 3 ops: scan, predict, complete; or

scan, push, pop


move1.Scan: forward, consuming a token (word class) ­
what if this is a phrase name, though? 

start building a phrase (tree) at this point2.Predict (push): 
in the input; or jump to subnetwork; 

finish building a phrase (tree) at this 
point; pop stack and return from subnet (which also says 

attached) 
Scan = linear precedence; 
Predict, complete: dominance 

3.Complete (pop): 

where the subphrase gets 
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Another way to view it 

Push NP 

Pop NP 
d n 

Scan NP 
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Definitions – words & symbols


• Scan 
Suppose current edge e is not finished & 
part of speech tag X follows the dot in the 
rule for e 
Scan examines next word in input 
If word has pos X, create new edge e’, 
identical to e except dot is moved one 
place to the right & length increment by 1 
Add e’ to Si+1 
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Scan - formally 

• Scan: (jump over a token) 
• Before: [A fia•t b, k, i] in State Set S & word i= ti 

• Result: Add [A fiat • b, k, i+1] to State Set Si+1 
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Picture: Scan adds the ‘jumps’


I shot an elephant in my pajamas 

S fi 
NP fi N 
NP fi 
NP fi 

•NP VP 
• D  
• N 
• NP PP 

NP fi N • 
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Predict operation 

• Suppose current edge e is not finished 
• Predict extracts next item X needed by e – 

the phrase after the dot in the edge 
• Find all rules in grammar whose lefthand 

side is X 
• For each of these, make a new edge with 

the dot on the left, and add edges to Si+1 
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i 

And again…


• Predict (Push): 
• Before: [A fia•B b, k, i] , B=nonterminal, in S

then


•
 After: Add all new edges of form [B , i+1, i+1]fi • g
to State Set Si+1 
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Picture: Predict adds the ‘loops’ 

S fi • NP VP 

I shot an elephant in my pajamas 
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Complete (finish phrase)


• Suppose current edge e is finished (dot at rh 
end). Suppose e looks like:

X fi y1 y2 … yp • from start pos k, length m


• Check if X is already in chart cell (k,m). If so, 
add e to set of derivations for this phrase X. 

• If X is not already in cell (k,m) then: 
• Examine each edge E in Dk If E is incomplete, and 

the next item needed for E is X, create a new edge E’ 
with dot hopped over X to the right 

• Length of E’ is sum of lengths of E + e 
• Add E’ to Si 
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Picture of this – ‘pasting’  X+Y 

together 

+ = 

j E k e m 

j E’ m 
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“The fundamental rule”


NPfiVPfi 

+ = 

d n • V • NP 

1 shot 2 2 an elephant 4

start pos= 1, len 1 start= 2, len=2
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VPfi 

1 4 

V NP• 

start pos= 1, len 3 

Adding to chart…


length 6543210start 
ndpndvn1 

NP2 
VP3 

4 
5 

6 

7 

p 

Position 
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This new edge E’ will itself be 
processed… since dot is at end... 

VPfi V NP• 

1 4start pos= 1, len 3 

Go back to state set 1 & see what rule was 
looking for a VP 

It’s the rule  SfiNP•VP… so we can paste these two 
subtrees together to get a complete S, 
“I shot an elephant” 
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Adding the S 

length 6543210start 
ndpndvn1 

NP2 
VP3 

S4 
5 

6 

7 

p 

Position 
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More precisely


• Complete(Pop): (finish w/ phrase) 
• Before: If Si contains e in form [B fi g •, k, i] then 

go to state set Sk and for all rules of form 
[A fia•B b, k, j], add E’ [A fiaB • b, j, i] to state 
set Si 
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Picture: Complete combines 
edges 
S fi NP VP • 

VP fi V NP • 

VP fi VP • PP 

I shot an elephant in my pajamas 

NP fi N • NP fi D N • 

NP fi • NP PP 

S fi NP • VP 
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NPfi • Det Noun

•the book

[A fia•tb, k, i-1]

•

the • book

[A fiat •t'b¢, k,  i] 

NPfi Det • Noun

the •
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Scan examples NP 

[A tt' k, i+1] 

• 
the book • 

NPfi • 
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Predict (‘wish’) example 

S NP VP 

A Bb, 

•the book 

S 

• 

B i, i 

NP
NP Name 

NP NP 

• • 

• 

fia •b†, 

the book 

Det Noun 

fi•

fia• k, i-1 
fi • g,  

fi•Det Noun 
fi• Det… Name… 



VPfiVerb • NP PP
VPfiVerb • NP
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‘Complete’ example 

NPfi • 

… • 

VP 

•NP 
ate 

• 

…go back to previous 
dot 

(in all rules that called 
for NP) 

[B k, i] 

VPfiVerb NP • PP 
VP fiVerb NP • 

• 

[A B k, i] 

Det Noun 

ate the ice-cream 

the ice-cream

State Set & jump 
fi g •, 
fia • b, 

At the end.. 

length 6543210start 
ndpndvn1 

NPNP2 
PPVP3 

NPS4 
5 

VP6 

S7 

p 

Position 
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At the end…


6543210start 
ndpndvn1 

NPNP2 
PPVP3 

S4 
NP5 

VP6 

S7 

p 
length 

Position 
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Corresponding to Marxist analysis 
S 

I 

VP 

V NP 

NP 

shot Det N PP 

an elephant P NP 

Det N 
in 

my pj’s 
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Please note:

• How ambiguity is handled 

• Multiple attachments, with dynamic programming 
principle: once we have built a PP spanning positions 
[3, 7] we use it twice 

• This is the key to sub-exponential parsing: we don’t 
have to enumerate all the possibilities explicitly 

• Why we don’t have to list identical items twice 
(another part of the same rule) 

• For parsing, we use backpointers to keep track 
of which item causes a new item to be added ­
this gives us a chain for the state sequence = 
the path 
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So time complexity picture looks 
like this: 

Max. # state sets x Max time to build ONE 
State set 

n 

Max # edges x Max time to 
process 1 edge 

O(|G|n) O(|G|n) 



Time complexity


• Decompose this in turn into: 
edge in the set1. time to process a single 

2. times maximum # distinct edges possible in one 
state set (assuming no duplicates!) 

•	 Worst case: max. # of distinct edges: 
•	 Max # of distinct dotted rules x max # of distinct 

return values, i.e., |G |x n 
•	 (Why is this?) 
•	 (Edges have form: dotted rule, start, len) 

•	 Note use of grammar size here: amount of 
‘chalk’ = S # symbols in G. 
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Max # distinct edges: loops, incoming 
from scans, incoming from paste: 

at most |G| 

from scan via 

at most |G| 

from predict (loops) – 

previous state – 

From complete – could come from any 
preceding state – at most n•|G| 

6.863J/9.611J Lecture 8 Sp03 



Time complexity, continued


• The time to process a single edge is found by 
separately considering time to process scan, 
predict, and complete operations 

• Claim: Scan, predict constant time (in |G| and n, 
n= length of sentence) 

• Because we can build in advance all next-state 
transitions, given the Grammar 

• Only action that takes more time is complete ! 
• For this, we have to go back to previous state 


set and look at all (in worst case) edges in that 
state set - and we just saw that in the worst 
case this could be O (|G|x n) 
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So time complexity picture looks 
like this: 

xMax. # state sets Max time to build ONE 
State set 

Max # edges 
in 1 state set 

x Max time to 
process 1 edge 

n O(|G|n) O(|G|n) 
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Grand total


• O(|G|2 n3) - depends on both grammar size 
and sentence length (which matters more?) 

• Lots of fancy techniques to precompute & speed 
this up 

• We can extend this to optional elements, and 
free variation of the ‘arguments’ to a verb 
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How do we recover parses?
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State set pointer structure that 

represents both parses 

•	 Just like fruit flies like a banana 
•	 Keep multiple backpointers to keep track of 

multiple ways that we use a ‘completed’ item 
(a whole phrase) 

•	 The actual backpointer structure looks 
something like the following (one can show 
that it takes just log(n) extra time to construct 
this) 
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StartfiS

Sfi 

VPfi VPfi 

NPfi Name PP 

PPfi Prep NP 

NPfi 

Backpointer structure 

• (34) 

NP VP • (33) 

V NP PP • (31) V NP • (35) 

• (32) 

• (30) 

Det N • (29) 



Recovering parses (structure, state 

sequence) 

• Two basic methods: online & offline 
• Simple offline method can build parse ptrs for all 

possible parses in time O(n3 ) – key is to build a 
‘pruned’ collection of items (triples) in the state 
sets 

• Why do we want to prune the state sets? 
• Many items ‘die out’ because they fit the first 

part of an input sentence, but not the rest: e.g., 
I think that blocks the light 

• Here we predict an NP for that and an NP for 
that blocks – one or more might die out. 
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Recovering parses 

• Since semantic interpretation routines will 
run on syntactic structure and these are 
often more costly (why?) we want to 
reduce false paths ASAP 
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Simple queue algorithm to do this, based on 
the notion of ‘useful’ items- those that actually 
cause others to get added 

[s,i] in state set j 
-Any item 
in final state set is useful: 

q r 

g 

-If item s=[A fia•B,i] 
is in state set k & useful 
-then item q=[A fiaB •,k]a 
& item r= =[B fig •,j] are 

j usefuli k 

Let [s,i] denote an item with a dotted rule s & 
return pointer i. 
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Algorithm for recovering parses


[Initialize] Mark all items in state set Sn in the form Start fi 
aS•, 0 

[Loop] for j=n downto 0 do 
for i=0 to j do 

for every marked [s,i] in state set j do 
for i£ k £j, if 

[q,i]˛ Sk & 
[r,k] ˛ Sj & 
s= q˜ r then 
mark [q,i] and [r,k] 
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� 

This is called a ‘parse forest’


• Exponential # of paths, but we avoid 
building them all explicitly – we can 
recover any one parse efficiently 
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Worst case time for Earley 
algorithm 

• Is the cubic bound ever reached in artificial or natural 
languages? 

•	 Here is the artificial ‘worst case’ - # of parses 
arbitrarily large with sentence length; infinite 
ambiguity 

•	 Here is the grammar: 
Sfi SS, SSfi a


{a, aa, aaa, aaaa,…}


•	 # of binary trees with n leaves= 
1,1,2,5,14,42,132,429,1430,4862,16796,…= 

1 � 2n � 
(n +1) Ł

� n ł 
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Does this ever happen in natural 

languages? 

• It does if you write cookbooks… this 
from an actual example (from 30M word 
corpus) 

Combine grapefruit with bananas, strawberries and 
bananas, bananas and melon balls, raspberries or 
strawberries and melon balls, seedless white grapes 
and melon balls, or pineapple cubes with orange 
slices. 

# parses with 10 conjuncts is 103, 049 
(grows as 6#conjuncts) 
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example 

3020100 
0 

2 

4 

6 

8 

10 

12 

NP–PP ambiguity sentences NP P NP... 

with Earley's algorithm 

length, 
words 

T
im

e,
 s

ec
on

ds
 

time, secs. 

This does indeed get costly -Verb NP PP 



How this algorithm is clever 
• Handling left-recursion 
• Tail-recursion trick 
• Example: John’s brother’s book 
• NPfi NP NP | NP fi Noun | Noun ’s 

• Note how this loops on endless call to 

book 

NP NP 

NP 

NP NP Noun 

John NP 
brother 

NP 

’s 
’s 

…but predict cuts 
off after 1 round!
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Note tail recursion 

• State set S0 : 
• Add triples: [NPfi • Noun, 0, 0] 

[NPfi • NP NP, 0, 0] predict: 
?[NPfi • NP NP, 0, 0] … No need! 

Duplicate! 

Note tail recursion: the call returns to itself – so no 
need to ‘keep’ return addresses in stack! 
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The edge loops to itself:


[NPfi • NP NP, 0, 0] 
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Anything else? 

• If anything, Earley parsing is too good – it 
gets all the parses, even ones that people 
do not 

• We shall see how to deal with this, using 
probabilities on rules; and 

• Other parsing methods 
• But first, what do people do? 
• Consider the examples 
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Wouldn’t matter so much – but it 

does seem to match what people do 

• Both left- and right- branching ‘structures’ 
seem to be readily parseable by people 
without any sort of memory load (all other 
things being equal) 

• John’s brother’s mother’s aunt…. 
• I believed that Mary saw that Fred knew 

that Bill shoveled snow 
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Pictures of this.. 

saw that Fred knew thatJohn’s brother’s book 
Bill shoveled snow 
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So what’s hard for people to 
process? 

The rat died 

the cat chased 

the dog bit “center-embedded” 
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Why is this hard? 

• Model: people have to “hold onto” open 
predicates (definition: open if verb+arguments 
have not yet been put together) 

• In the preceding example, we have to hold onto 
a stack of Subjects (the rat, the cat, the dog…) 
before the corresponding verbs are seen 

• This even shows up in unexpected places – 
speech intonational pattern actually seems to 
transduce center-embedded structures into left-
or right- branching ones 
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Chomsky & Miller, 1959-63 

analysis


the dog that chased the cat that bit the rat 
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Parsing vs. intonational contours 
Syntactic structure is center-embedded: 

NP 

NP S 

the rat NP VP

that


chased NP

pro
 NP S 

the cat 
NP VP 

that 
bit NP 

pro
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But the intonational structure 
follows this: 

NP S NP 
NPVPNP NP 

the cat
the rat that 

chased 
pro 

Suggests 2-stage parser (proposed by C&M):

Stage 1: parse into ‘flat’ structure

Stage 2: make 2nd pass & rearrange hierarchically
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Also hints at how to do semantic 
interpretation – akin to syntax-driven 
translation 

• Recall from compilers: if we complete the right-

hand side of a rule, we can now fire off any 

associated semantic action (because we now 

have the item and all its ‘arguments’


• This amounts to getting left-most complete 

subtree at each point to interpret


• Example: 
VPfiV NP• , e.g., “ate the ice-cream”

Can now ‘interpret’ this

pair syntactic, ‘semantic’ rule:

VPfiV NP, apply VP(NP) 
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One more search space enumeration 
that will be of some value 

• Left-corner parsing 
• Looks bottom-up in serial fashion for the 

first symbol (left-corner) of a phrase; and 
then tries to confirm the rest of the 
phrase top-down 

• Tries to combine best features of b-u and 
t-d 

• Clearly geared to the way a particular 
language (eg English) is set up 
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A picture of left-corner parsing 

S Sfi NP VP 

NPfi the Noun 
NP 

VP VPfi ate NP 
2


1 predict


the 
find Noun ate 
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This works well


• In a language like English: 
• A head-first language (function-argument) 
• What about German, Dutch, Japanese? 
• dat het mesije van Holland houdt 
• “that the girl from Holland liked” 
• These are languageshead-final 
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What about constructing 
grammars? 
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