6.863J Natural Language Processing
Lecture 7: parsing with hierarchical
structures — context-free parsing

Robert C. Berwick

The Menu Bar
e Administrivia:
e Schedule alert: Lab2 due Weds; Lab 3 out —
Monday (chunk parsing to ‘real’ parsing)
e Lab time today, tomorrow

e Please read notes3.pdf, englishgrammar.pdf (on
web)

e Agenda:

e Marxist analysis — simple & post-modern

e What: hierarchical representations;
constituents, representation

e How: constituent or ‘context-free’ parsing
(next time — how to do it fast)

e Why: to extract ‘meaning’

6.863J/9.611J Lecture 7 Sp03

Motivation

e What, How, and Why

e What: word chunks behave as units, like
words or endings (morphemes), like ing

e How: we have to recover these from input

 Why: chunks used to discover meaning

e Parsing: mapping from strings to
structured representation

6.863J/9.611J Lecture 7 Sp03

Programming languages

printf ("/charset [%"

(re_opcode t) *(p - 1) == charset_not ? "A" : "");
assert (p + *p < pend);
for (¢ = 0; c < 256; c++)
i f sc /| 8 <*p && (p[1 + (c/8)>] & (1 << (c %8)))) {
[* Are we starting a range? */
if (last + 1 == c & ! inrange) {
putchar ('-");
inrange = 1;
}* Have we broken a range? */
else if (last +11=c i nrange) {
putchar (I ast);
I nrange = 0;

if (! inrange
g)utchar ch;

last = c = Easy to parse.
» Designed that way!

6.863J/9.611J Lecture 7 Sp03

Natural languages

printf "/charset %", re opcode_t *p -

. "", assert + *p < pend; for 0;
*D & pl + ¢c/83 & 1 << C %8 Are we_ st
1 ==c & ! inrange putchar '-'; inr
a range? else if last + 1 1= c & inr
inrange = 0; if ! ‘inrange putchar c;

== charset_not ? "/"
256; c++7if ¢/ 8 <
a range? if last +
1; Have we broken
tchar |ast;

c

= No {} () [] to indicate scope & precedence

= Lots of overloading (arity varies)

= Grammar isn't known in advance!

= Context-free grammar not best formalism

6.863J/9.611J Lecture 7 Sp03

How: The parsing problem

correct trees

[o o o P
" A ./Q\.\
s [s [e I s I | R
» S » »
test » R > :2;:2;
sentences I
Grammar

6.863J/9.611J Lecture 7 Sp03

> accuracy

O=00wm

Recent parsers quite

accurate
at

Syntactic Parsing

e Declarative formalisms like CFGs define the legal
strings of a language but don’t specify how to
recognize or assign structure to them

e Parsing algorithms specify how to recognize the

strings of a language and assign each string one
or more syntactic structures

e Parse trees useful for grammar checking,
semantic analysis, MT, QA, information
extraction, speech recognition...and almost
every task in NLP

6.863J/9.611J Lecture 7 Sp03

Applications of parsing (1/2)

= Machine translation (Alshawi 1996, Wu 1997, ...)

— tree——
English operations > Chinese

» Speech synthesis from parses (Prevost 1996)

The government plans to raise income tax.
The government plans to raise income tax the imagination.

= Speech recognition using parsing (chelba et al 1998)
Put the file in the folder.
Put the file and the folder.

6.863J/9.611J Lecture 7 Sp03

Applications of parsing

= Grammar checking (Microsoft)

» Indexing for information retrieval (woods 72-
1997) -
... washing a car with ahose ... vehicle maintenance
= |nformation extraction (Keyser, Chomsky '62 to

=archive

‘%‘AA\. XiShabats

6.863J/9.611J Tecture 7 Sp03 lquery

Why: Q&A systems (lab 4)

(top-1level)

Shall | clear the database? (y or n) y
>John saw Mary in the park
oK.

>\Where did John see Mary

I N THE PARK.

>John gave Fido to Mary
oK.

>\Who gave John Fido

| DON' T KNOW

>Who gave Mary Fido

JOHN

>John saw Fi do

oK.

>Who did John see

FI DO AND MARY

6.863J/9.611J Lecture 7 Sp03

Why: express ‘long distance’
relationships via adjacency

e The guy that we know in Somerville likes ice-cream

e Who did the guy who lives in Somerville see _ ?

S
N
>P+sg Yers
Ny
The guy likes

ice-cream
that we know in Som.

6.863J/9.611J Lecture 7 Sp03

Why: recover meaning from
structure

John ate ice-cream ® ate(John, ice-cream)
-This must be done from structure

-Actually want something like | xI y ate(x,y)
How?

6.863J/9.611J Lecture 7 Sp03

Why: recover meaning from
structure

S VRA(NP)= ate (john ,icecream)

AT

john
7 NP 'eram)
‘ \Y / NP ice-cream
John ‘ley-atev, X) ‘ ﬁ
ate ice-cream

6.863J/9.611J Lecture 7 Sp03

Why: Parsing for the Turing Test

= Most linguistic properties are defined over
hierarchical structure

= One needs to parse to see subtle distinctions

Saralikes her. (her t Sara)

Sarathinks that someone likes her. (her = or * Sara)

Sara didlikes anyone' s criticism of her. (her = Saraor her t Sara)
Who did John see? ® For which x, x a person, likes(Bill, x)

Distinction here is based on hierarchical structure = scope
in natural language

6.863J/9.611J Lecture 7 Sp03

Structure must be recovered

(&

‘gap’ or
empty element
see X ~

6.863J/9.611J Lecture 7 Sp03

What is the structure that matters?

Turns out to be SCOPE for natural languages!

6.863J/9.611J Lecture 7 Sp03

The elements

1. What: hierarchical representations

(anything with recursion) using phrases
AKA *“constituents”

2. How: context-free parsing (plus...)
3. Why: (meaning)

6.863J/9.611J Lecture 7 Sp03

Networks to context-free grammars
(CFGs) and back: 1-1
correspondence

sentence OMS0—50 —) S®NPVP

NP: O%’GLQU;@, m— NP® Name

NP® Det Noun
Name

OMHQO_NE»@ :> VP® Verb NP

+ terminal expansion
rules

VP:

6.863J/9.611J Lecture 7 Sp03

Added information

e FSA represents pure linear relation: what
can precede or (follow) what

e CFG/RTN adds a new predicate: dominate

e Claim: The dominance and precedence
relations amongst the words exhaustively
describe its syntactic structure

e When we parse, we are recovering these
predicates

6.863J/9.611J Lecture 7 Sp03

How do we move from linear to
hierarchical?

Sentence: O@ O@@

O >
Noun ..!L . “gplice out” common
phrase: >0 1 subnets
Bush

We aready have the machinery for this...

6.863J/9.611J Lecture 7 Sp03

Use of epsilon transitions (‘jump’
arcs) — thev consiime nn input

Sentence:

eterminer . noun H
«

...note that no input is
consumed during jump

6.863J/9.611J Lecture 7 Sp03

This will work... with one catch

e Consider tracing through “the guy ate the
ice-cream”

e What happens when we get to the second
noun phrase????
e Where do we return to?

e Epsilon transition takes us back to
different points

6.863J/9.611J Lecture 7 Sp03

What: Context-free grammars
(CFG)

S(entence)® NP VP
VP® V NP
NP® Det N

N ® pizza, N ® guy, Det ® the } pre-terminals,
lexical entries
V ® ate

A context-free grammar (CFG):

Sets of terminals (either lexical items or parts of speech)

Sets of nonterminals (the constituents of the language)

Sets of rules of the form A ® a where a is a string of zero
or more terminals and nonterminals

6.863J/9.611J Lecture 7 Sp03

Derivation by a context-free
grammar:rewrite line by line

generation
1.S
2. NP VP (via S®B NP VP)
3.NPV NP (via VP® V NP)
4. NPV Det N (via NP® Det N)
5. NP V Det pizza (viaN ® pizza)
6. NP V the pizza (viaDet® the)
7. NP ate the pizza (viaV ® ate)

v 8. Det N ate the pizza (via NP® Det N)

9. Det guy ate the pizza (viaN ® guy)
10. the guy ate the pizza (viaDet® the)

6.863J/9.611J Lecture 7 Sp03

Context-free representation

« Is this representation adequate — Not
really...why?

» We'll start here, though & illustrate parsing
methods — how to make parsing efficient (in
length of sentence, size of grammar)

e Obvious methods are exponential; we want
polynomial time (or, even linear time, or, even,
real time...)

e Challenges: recursion, ambiguity,
nondeterminism

6.863J/9.611J Lecture 7 Sp03

How: context-free parsing

e Parsing: assigning a correct hierarchical
structure (or its derivation) to a string, given
some grammar

e The leaves of the hierarchical structure cover all and
only the input;

e The hierarchical structure (‘tree’) corresponds to a
valid derivation wrt the grammar

e Note: ‘correct’ here means consistent w/ the
input & grammar — NOT the “right” tree or
“proper” way to represent (English) in any more
global sense

6.863J/9.611J Lecture 7 Sp03

Parsing

e What kinds of constraints can be used to
connect the grammar and the example
sentence when searching for the parse
tree?

e Top-down (goal-directed) strategy

e Tree should have one rot (grammar
constraint)

e Bottom-up (data-driven) strategy

e Tree should have, e.g., 3 leaves (input
sentence constraint)

6.863J/9.611J Lecture 7 Sp03

The input

e For now, assume:
e Input is not tagged (we can do this...)
e The input consists of unanalyzed word tokens
e All the words are known

 All the words in the input are available
simultaneously (ie, buffered)

6.863J/9.611J Lecture 7 Sp03

How do we do this?

e Searching FSAs
» Finding the right path through the automaton
e Search space defined by structure of FSA

e Searching CFGs

» Finding the right parse tree among all
possible parse trees

e Search space defined by the grammar

e Constraints provided by the input
sentence and the automaton or grammar

6.863J/9.611J Lecture 7 Sp03

Marxist analysis: simple version

e Suppose just linear relations to recover
 Still can be ambiguity — multiple paths
e Consider:

@ *—0—0 0 —©@

Fruit flies like a banana

6.863J/9.611J Lecture 7 Sp03

FSA, or linear Example

fruit

;Irlels : : “(: : @banana

like

1| —

6.863J/9.611J Lecture 7 Sp03

State-set parsing for fsa

Initialize: Compute initial state set, S,
1507 Qo
2. Sy— e-closure(S,)
Loop: Compute S; from S, ;

1. For each word w;, i=1,2,...,n

2§ = Ugs,d(@w)

3. Si= e-closure(S;)

4. if S; = Athen halt & reject else
continue

Final: Accept/reject
1. If g; 1 S, then accept else reject

6.863J/9.611J Lecture 7 Sp03

States in sequence dictate parse
path-

States {0} ® {0,1} ® {1,2,3} ® {2,3} ® {4} ® {5} (find)

——— Y

so:[0] SL[O Wmﬂ

State set 0 State set f

6.863J/9.611J Lecture 7 Sp03

State to state jumps...

e Progress (& ultimately parse) recorded by what

state machine is in

e Consider each transition as rule:

go ® fruit g, , also loop: g, ® fruitq,
g, ® fliesq,
g, ® like g, also epsilon transition: g,® g,

d: ® aq,
g, ® banana qs

e We can record progress path via ‘bouncing ball’

telling us how to sing the song...

6.863J/9.611J Lecture 7 Sp03

Singing the song...

*—0—0—©0

o ® fruit = g0

4

gy ® efruit q,

*—0@—0

ike a banana

g, ® fruite S, q, ® flies « g,

6.863J/9.611J Lecture 7 Sp03

But now we have a more
complex Marxist analvsis

e | shot an elephant in my pajamas

e This is hierarchically ambiguous — not
just linear! (each possible hierarchical
structure corresponds to a distinct
meaning)

6.863J/9.611J Lecture 7 Sp03

Marxist analysis

N\

NP YRE
YRS
shot DTt |\1
an elephant PR
1 pet N
in | |
my pJ's

6.863J/9.611J Lecture 7 Sp03

How can we extend this bouncing
ball?

e Can’t just be linear...

e How do we pack these possibilities
together?

e We will augment... let’'s see how

6.863J/9.611J Lecture 7 Sp03

From this...

L RRRA?

fruit flies like a banana

6.863J/9.611J Lecture 7 Sp03

To this... what is called a Chart

NP
elephant in my pajama

PP

6.863J/9.611J Lecture 7 Sp03

Three senses of rules

e generation (production): S® NP VP
e parsing (comprehension): S - NP VP
« verification (checking): S =NPVP
e CFGs are declarative — tell us what the
well-formed structures & strings are

e Parsers are procedural — tell us how to
compute the structure(s) for a given
string

6.863J/9.611J Lecture 7 Sp03

CFG minigrammar

S > NPVP VP>V

S = Aux NP VP Det = that | this | a

S>VP N - book | flight | meal |
money

NP = Det Nom V. = book | include | prefer

NP_—>PropN Aux = does

Nom = N Nom Prep =>from | to | on

Nom = N PropN = Baoston | United

Nom = Nom PP

VP > VV NP 6.8630/9.611J Lecfure 7 5p03

Parse Tree for ‘Book that flight’

T

P

NTm

ILook that flight

V Det

6.863J/9.611J Lecture 7 Sp03

Strategy 1: Top-down parsing

e Goal or expectation driven — find tree rooted at
S that derives input

e Trees built from root to leaves

e Assuming we build all trees in parallel:
e Find all trees with root S (or_all rules w/lhs S)
» Next expand all constituents in these trees/rules
e Continue until leaves are parts of speech (pos)

» Candidate trees failing to match pos of input string
are rejected (e.g. Book that flight can only match
Subtree 5)

6.863J/9.611J Lecture 7 Sp03

Example: book the flight

S
S
/\ /l\ |
NP VP AUX NP VP VP
S S
/\ T |
NP VP AUX NP VP VP
/N /N ™
Det N Det N V. NP

6.863J/9.611J Lecture 7 Sp03

Top-down strategy

e Depth-first search:

e Agenda of search states: expand search space
incrementally, exploring most recently generated
state (tree) each time

 When you reach a state (tree) inconsistent with
input, backtrack to most recent unexplored state
(tree)

e Which node to expand?
e Leftmost or rightmost

e Which grammar rule to use?
e Order in the grammar

6.863J/9.611J Lecture 7 Sp03

Top-down, left-to-right, depth-first

« Initialize agenda with ‘S’ tree and ptr to first
word and make this current search state (cur)

e Loop until successful parse or empty agenda

» Apply all applicable grammar rules to leftmost
unexpanded node of cur

« If this node is a POS category and matches that of the
current input, push this onto agenda

e O.w. push new trees onto agenda
e Pop new cur from agenda

e Does this flight include a meal?

6.863J/9.611J Lecture 7 Sp03

Strategy 2: Bottom-up

e Parser begins with words of input and
builds up trees, applying grammar rules
w/rhs that match

e Book that flight
N Det N \Y Det N
Book that flight Book that flight
e ‘Book’ ambiguous

e Parse continues until an S root node reached
or no further node expansion possible

6.863J/9.611J Lecture 7 Sp03

Bottom-up search space

Book that flight
N Det N Det N

ELook that flight Book that flight

Noun Nom Nom

foop gy e

ook that flight Book that flight

| / Ny
I‘Iloun /\Ir)m Ner V\Ij Nor|‘n

Det Det Det N
Book that flight Book that flight Book that fIith

6.863J/9.611J Lecture 7 Sp03

Comparing t-d vs. b-u

e Top-Down parsers never explore illegal parses
(e.g. can’t form an S) -- but waste time on trees
that can never match the input

» Bottom-Up parsers never explore trees
inconsistent with input -- but waste time
exploring illegal parses (no S root)

» For both: how to explore the search space?

e Pursuing all parses in parallel or ...?
e Which rule to apply next?
e Which node to expand next?

6.863J/9.611J Lecture 7 Sp03

Problems...

e Left-recursion
e Ambiguity: multiple parses
e Principle AWP

6.863J/9.611J Lecture 7 Sp03

Left-recursion

* Rules of form: X® X a
e Example:A NP ® NP ‘s NP | Name

John’s brother’s bhook

6.863J/9.611J Lecture 7 Sp03

Structural ambiguity

e Multiple legal structures

e Attachment (e.g. | saw a man on a hill with a
telescope)

e Coordination (e.g. younger cats and dogs)

e NP bracketing (e.g. Spanish language
teachers)

6.863J/9.611J Lecture 7 Sp03

How to fix?

e Principle AWP! Dynamic programming...
e Create table of solutions to sub-problems (e.g.
subtrees) as parse proceeds

e Look up subtrees for each constituent rather
than re-parsing

« Since all parses implicitly stored, all available for
later disambiguation

e Examples: Cocke-Younger-Kasami (CYK) (1960),
Graham-Harrison-Ruzzo (GHR) (1980) and
Earley (1970) algorithms

6.863J/9.611J Lecture 7 Sp03

General method: Chart Parsing

* Note: parses share common constituents

e Build chart = graph data structure for storing
partial & complete parses (AKA well-formed
substring table)

e Graph:

= Vertices: used to delimit subsequences of the input
» Edges (active, inactive)

« Active = denote incompletely parsed (or found) phrase

e Inactive = completely found phrase

e Labels = name of phrase

e Note: chart sufficient to attain polynomial time
parsability = O (n3 |G]), |G| = ‘size’ of
grammar, no matter what strategy we use

6.863J/9.611J Lecture 7 Sp03

How do we build the chart?

e |ldea: as parts of the input are successfully
parsed, they are entered into chart

e Like memoization

e Can use any combo strategy of t-d, b-u,
or in between to build the edges

e Annotate edges as they are built w/ the
corresponding dotted rule

e Parser is a combination of chart +
strategy

6.863J/9.611J Lecture 7 Sp03

Chart parsing

e Example of chart

elephant in my pajama

6.863J/9.611J Lecture 7 Sp03 PP

Chart parsing

e Think of chart entries as sitting between

words in the input string keeping track of
states of the parse at these positions

e For each word position, chart contains the
set of states representing all partial parse
trees generated to date

6.863J/9.611J Lecture 7 Sp03

Chart parsing

e Chart entries represent three type of
constituents (phrases):
* predicted constituents
* in-progress constituents
e completed constituents

6.863J/9.611J Lecture 7 Sp03

Representing complete (inactive) vs.
incomnlem (active) ednesg

e Complete: full phrase found, e.g., NP, VP

e So: corresponding rule something like
e NP® NP PP (“an elephant in my pajamas”)
e S® NP VP (“I saw an elephant”)
e NP ® Det N (“an elephant”)
e Representation: use “dot” in rule to denote
progress in discovering LHS of the rule:
NP® « Det NP = I've just started to find an NP (“predict™)
NP ® Det « NP = Found a Det in input, now find NP
NP ® Det NP « = Completed phrase (dot at end)

6.863J/9.611J Lecture 7 Sp03

Chart we displayed has only
Inactive (completed) edges

elephant in my pajama

PP

6.863J/9.611J Lecture 7 Sp03

Complete (Inactive) vs. In-
proaress (active) ednes

e Completed edges correspond to “having found a
phrase” so really should be labeled with info like
NP ® Det NP

e We should go back & annotate our chart like
this

e These edges are “inactive” because there is no
more processing to be done to them

e Incomplete or “active” edges: work in progress,
l.e., NP® « Det NP or NP ® Det « NP

e We build up the chart by extending active
edges, gluing them together — let's see how

6.863J/9.611J Lecture 7 Sp03

Note correspondence between
“dotted rules” & states in
corresponding fsa - isomorphic

6.863J/9.611J Lecture 7 Sp03

Dotted rule — fsa correspondence

¢ o e

NP Det N

NP ® eDet N = beingin State 1
NP ® Det « N = being in State 2

NP ® Det Ne = being in State 3

6.863J/9.611J Lecture 7 Sp03

Correspondence

Sentence
NP Dotted rule form
i\ —> NP® - Det Noun
& [Noun Dot at beginning=
The gquy just started building a
ﬂ phrase of thistype
Correspondence

?ence
NP Dotted rule form

ézﬁ —> NP® Det - Noun
o

Theﬂ guy

6.863J/9.611J Lecture 7 Sp03

Correspondence

Sentence
NP Dotted rule form
N\ > NP® Det - Noun
et |Noun ,[],
The guy NP® Det Noun -
ﬂ (finished building

Advanceininput = scan Phrase)

6.863J/9.611J Lecture 7 Sp03

Representing the edges

» , Book ; that , flight 5
S ® VP, [0,0] (predicting VP)
NP ® Dete Nom, [1,2] (finding NP)
VP ® V NP e, [0,3] (found VP)

e [x,y] tells us where a phrase begins (x) and where
the dot lies (y) wrt the input — how much of the
phrase is built so far

* So, a FULL description of a chart edge is:

Edge Label, [start node, current progress dot pos]
.e.g.,

NP ® Det « Nom, [1,2]

6.863J/9.611J Lecture 7 Sp03

Set of dotted rules encodes state

of parse

» = all states parser could be in after
processing i tokens

e We now have almost all the ingredients...

6.863J/9.611J Lecture 7 Sp03

FSA, or linear Example

ruit

flies

like

T

bhanana |

6.863J/9.611J Lecture 7 Sp03

State-set parsing for fsa

Initialize: Compute initial state set, S,
1. Spm do
2. Sym e-closure(Sy)
Loop: Compute S; from S, ;

1. For each word w;, i=1,2,...,n

2§~ Ugq,d(a,w)

3. S;= e-closure(S;)

4. if S; = AEthen halt & reject else
continue

Final: Accept/reject
1. If g, T S, then accept else reject

6.863J/9.611J Lecture 7 Sp03

Use backpointers to keep track of
the different naths (narse<)-

_ ~A~>~."\
so:fq@ﬁ@] ss:[gj SA[4K S5[5]
0 i)

State set 0 State set f

6.863J/9.611J Lecture 7 Sp03

Chart parsing is the same,
excent

e Notion of ‘state set’ is just more
complicated — not just the state #, but
also the # of the state we started building
the phrase at = the return ptr

e Note this is what the chart graph structure
encodes

6.863J/9.611J Lecture 7 Sp03

State set = chart after | words

e Given grammar G, input string w=w,; W,
W),
Note: we mark interword positions jw; w, ...w,
* Initialize: write down what can be in “start
state set” S,
» Loop: for each word w; , compute S;
from S;

e Final: see if final state is in last state set
Sn

6.863J/9.611J Lecture 7 Sp03

FTN Parser CFG Parser

Computeinitial state set § Computeinitial state set g
Initialize;, | - 07 D L% do
2. ~ etaclosure (Sg 2. ~ etaclosure (Sp
o= [Start®-S, 0] o [Start® S, 0, (]
eta-closure= transitive eta-closure= transitive closurg
closure of jJump arcs of Predict and Complete
Compute $from §_q Compute $ from §_1
For each word, wi, 1=1,...,n For each word, w, 1=1,...,n
Loop: §-Edq, w) S- EO% w)
al's. ql S,
31 - Sealih g
S§-e-closure(S) 5 ﬂgzclltgg& re(S)
e-closure=
closure(Predict, Complete)
Accept/reject: Accept/reject:
Find: If g1 Sythen accept; If g1 S, then accept;
esergect dsergect
G- [Sart®S, Q] o= [Start® S, 0, n]

Parsing procedure w/ chart

e Move through each set of states in order,
applying one of three operators to each
state:

 predictor: add new active edges, predictions,
to the chart

e scanner: read input and advance dot, add
corresponding active edge to chart

e completer: if dot at the right end of a rule,
then see if we can glue two edges together to
form a larger one

6.863J/9.611J Lecture 7 Sp03

Note:

e Results (new edges) added to current or
next set of states in chart

* No backtracking and no edges removed:
keep complete history of parse

e When we get to the end, there ought to
be an edge labeled S, extending from O to
n (n= length of sentence)

6.863J/9.611J Lecture 7 Sp03

As in

NP
elephant in my pajama

PP

6.863J/9.611J Lecture 7 Sp03

Predictor (‘wishor’)

e Intuition: new states represent top-down
expectations

» Applied when non part-of-speech non-terminals
are to the right of a dot — until closure
S® = VP [i,i]

e Adds new states to current chart

e One new state for each expansion of the non-
terminal in the grammar
VP ® =V [ii]
VP ® =V NP [i,i]

6.863J/9.611J Lecture 7 Sp03

Scanner (as in fsa)

New states for predicted part of speech

Applicable when part of speech is to the
right of a dot

VP ® <V NP [0,0] ‘Book...

Looks at current word in input

If match, adds dotted rule edge starting
at next point over, e.g.,

VP ® Ve NP [0,1]

Just as with fsa’'s — jump to next point

6.863J/9.611J Lecture 7 Sp03

Completer

e Intuition: parser has discovered a
complete constituent, so must see if this
completed edge can be pasted together
with any preceding active edge to make a
bigger one...

e E.g., NP[O, 2] & VP[2, 7] yields S[0,7]

e “Glue together” two edges

e Must do this until closure...

6.863J/9.611J Lecture 7 Sp03

Examples — will use v, v simple G

eS® NP VP

«VP® V NP
«VP® VNPPP
«NP® D N
«NP® N
«NP® NPPP

PP® PNP

6.863J/9.611J Lecture 7 Sp03

Strategies w/ Chart

e Top-down
e Bottom-up
e Left-corner (what's that??)

6.863J/9.611J Lecture 7 Sp03

Example: Top-down w/ chart

S ® NP VP

NP ® <D N [from predict]
P® <N [from predict]

NP ® « NP PP [from predict]

| shot an elephant in my pajamas

State set S, - nothing more can be added, so scan next word

Note how top-down strategy can introduce rules unconnected
to the Input . 6.863J/9.611J Lecture 7 Sp03

Scan to next word...follow the
bouncing dot...

S® NP VP

shot an elephant in my pajamas

NP ® N e

6.863J/9.611J Lecture 7 Sp03

Dot at end...so we ‘complete’ NP

S ® NP VP S ® NP VP + NP ®N e yields new
DN ©dgeS® NPeVP

P® <N
NP ® « NP PP
® &6 & o o @
shot an elephant in my pajamas
NP ® N e
NP ® NP « PP

S® NP e«VP

6.863J/9.611J Lecture 7 Sp03

And now predict...expand VP (t-d)

PP® «P NP
VP® oV

VP ® «V NP
VP ® «VP NP

shot an elephant in my pajamas

NP ® NP « PP

S® NP e<VP

6.863J/9.611J Lecture 7 Sp03

Scan Verb

VP ® V NP

VP ® « VP (PP

® & o o @
shot an elephant in my pajamas

®* What next? ... Predict NP

S® NP e«VP

6.863J/9.611J Lecture 7 Sp03

NP Predictions added

VP ® V «NP

NP® «D N
NP ® <N

NP ® « NP PP

® & o o @
shot an elephant in my pajamas

Skip ahead a bit to where next NP ‘an elephant’
is done

S® NP e<VP

6.863J/9.611J Lecture 7 Sp03

Process NP object

® O @
my pajamas
P ® « NP PP

S® NP e«VP

6.863J/9.611J Lecture 7 Sp03

Enough...no more! Demo easier!

6.863J/9.611J Lecture 7 Sp03

