
6.863J Natural Language Processing

Lecture 7: parsing with hierarchical

structures – context-free parsing

Robert C. Berwick

The Menu Bar
• Administrivia:

• Schedule alert: Lab2 due Weds; Lab 3 out –
Monday (chunk parsing to ‘real’ parsing)

•	 Lab time today, tomorrow
•	 Please read notes3.pdf, englishgrammar.pdf (on

web)

•	 Agenda:
• Marxist analysis – simple & post-modern
• What: hierarchical representations;

constituents, representation
• How: constituent or ‘context-free’ parsing

(next time – how to do it fast)
• Why: to extract ‘meaning’

6.863J/9.611J Lecture 7 Sp03

Motivation

• What, How, and Why
word chunks behave as units, like• What:

words or endings (morphemes), like ing

we have to recover these from input
chunks used to discover meaning

• How:
• Why:
• Parsing: mapping from strings to

structured representation

6.863J/9.611J Lecture 7 Sp03

Programming languages

printf ("/charset [%s",
(re_opcode_t) *(p - 1) == charset_not ? "^" : "");

assert (p + *p < pend);

for (c = 0; c < 256; c++)
if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) {

/* Are we starting a range? */
if (last + 1 == c && ! inrange) {

putchar ('-');
inrange = 1;

}
/* Have we broken a range? */
else if (last + 1 != c && inrange) {

putchar (last);
inrange = 0;

}

if (! inrange)

putchar (c);

last = c; � Easy to parse.
}

� Designed that way!
6.863J/9.611J Lecture 7 Sp03

Natural languages

printf "/charset %s", re_opcode_t *p - 1 == charset_not ? "^"
: ""; assert p + *p < pend; for c = 0; c < 256; c++ if c / 8 <
*p && p1 + c/8 & 1 << c % 8 Are we starting a range? if last +
1 == c && ! inrange putchar '-'; inrange = 1; Have we broken
a range? else if last + 1 != c && inrange putchar last;
inrange = 0; if ! inrange putchar c; last = c;

� No {} () [] to indicate scope & precedence

� Lots of overloading (arity varies)

� Grammar isn’t known in advance!

� Context-free grammar not best formalism

6.863J/9.611J Lecture 7 Sp03

6.863J/9.611J Lecture 7 Sp03

How: The parsing problem

P
A
R
S
E
R

Grammar

s
c
o
r
e
r

correct test trees

test
sentences

accuracy

Recent parsers quite
accurate

Syntactic Parsing

• Declarative formalisms like CFGs define the legal
strings of a language but don’t specify how to
recognize or assign structure to them

• Parsing algorithms specify how to recognize the
strings of a language and assign each string one
or more syntactic structures

• Parse trees useful for grammar checking,
semantic analysis, MT, QA, information
extraction, speech recognition…and almost
every task in NLP

6.863J/9.611J Lecture 7 Sp03

Applications of parsing (1/2)

� Machine translation (Alshawi 1996, Wu 1997, ...)

English
tree

operations Chinese

� Speech synthesis from parses (Prevost 1996)
The government plans to raise income tax.

The government plans to raise income tax the imagination.

� Speech recognition using parsing (Chelba et al 1998)

Put the file in the folder.

Put the file and the folder.

6.863J/9.611J Lecture 7 Sp03

Applications of parsing

� Grammar checking (Microsoft)

� Indexing for information retrieval (Woods 72­
1997)

... washing a car with a hose ... vehicle maintenance
� Information extraction (Keyser, Chomsky ’62 to

6.863J/9.611J Lecture 7 Sp03

Hobbs 1996)

�NY Times
�archive

�query

�Database

Why: Q&A systems (lab 4)

(top-level)
Shall I clear the database? (y or n) y
>John saw Mary in the park
OK.
>Where did John see Mary
IN THE PARK.
>John gave Fido to Mary
OK.
>Who gave John Fido
I DON'T KNOW
>Who gave Mary Fido
JOHN
>John saw Fido
OK.
>Who did John see
FIDO AND MARY

6.863J/9.611J Lecture 7 Sp03

Why: express ‘long distance’

relationships via adjacency

• The guy that we know in Somerville likes ice-cream
• Who did the guy who lives in Somerville see __?

S

NP+sg VP+sg

The guy S

that we know in Som.

V
likes

NP

ice-cream

6.863J/9.611J Lecture 7 Sp03

Why: recover meaning from
structure

John ate ice-cream fi ate(John, ice-cream)

-This must be done from structure

-Actually want something like lxly ate(x,y)

How?

6.863J/9.611J Lecture 7 Sp03

Why: recover meaning from

structure

S VP(NP)= ate (john , icecream)

john
NP VP= ly.ate (y, ice-cream)

V NP ice-cream
lxly.ate (y, x) John

ate ice-cream

6.863J/9.611J Lecture 7 Sp03

Why: Parsing for the Turing Test

� Most linguistic properties are defined over
hierarchical structure
� One needs to parse to see subtle distinctions

Sara likes her. (her „ Sara)

Sara thinks that someone likes her. (her = or „ Sara)

Sara dislikes anyone’s criticism of her. (her = Sara or her „ Sara)

Who did John see? fi For which x, x a person, likes(Bill, x)

Distinction here is based on hierarchical structure = scope
in natural language

6.863J/9.611J Lecture 7 Sp03

Structure must be recovered
S

S

who

VP
did NP

‘gap’ or
V empty element
see x

6.863J/9.611J Lecture 7 Sp03

What is the structure that matters?
S

Turns out to be SCOPE for natural languages!
6.863J/9.611J Lecture 7 Sp03

The elements

1. What: hierarchical representations
(anything with recursion) using phrases
AKA “constituents”

2. How: context-free parsing (plus…)
3. Why: (meaning)

6.863J/9.611J Lecture 7 Sp03

Networks to context-free grammars

correspondence
(CFGs) and back: 1-1

Sentence:

NP:

VP:

NP VP

Det Noun

Name

Verb NP

6.863J/9.611J Lecture 7 Sp03

SfiNP VP

NPfiName
NPfiDet Noun

VPfiVerb NP

+ terminal expansion
rules

Added information

• FSA represents pure linear relation: what
can precede or (follow) what

• CFG/RTN adds a new predicate: dominate
• Claim: The dominance and precedence

relations amongst the words exhaustively
describe its syntactic structure

• When we parse, we are recovering these
predicates

6.863J/9.611J Lecture 7 Sp03

How do we move from linear to
hierarchical?

sawSentence:

Noun guythe “splice out” common
phrase: subnets

Bush

We already have the machinery for this…

6.863J/9.611J Lecture 7 Sp03

Use of epsilon transitions (‘jump’
arcs) – they consume no input

Sentence:

…note that no input is
consumed during jump

verb

determiner noun

e
e

e

NP VP

e
e

Verb phrase
subnet

e

Noun
phrase
subnet

S-0 S-1 S-2

NP-0 NP-1 NP-3

VP-0 VP-1 VP-2

6.863J/9.611J Lecture 7 Sp03

This will work… with one catch

• Consider tracing through “the guy ate the
ice-cream”

• What happens when we get to the second
noun phrase????

• Where do we return to?
• Epsilon transition takes us back to

different points

6.863J/9.611J Lecture 7 Sp03

What: Context-free grammars

(CFG)

S(entence)fiNP VP
VPfiV NP
NPfiDet N

N fi pizza, N fi guy, Det fi the } pre-terminals,
lexical entries

V fi ate

A context-free grammar (CFG):
(either lexical items or parts of speech)

(the constituents of the language)
Sets of terminals
Sets of nonterminals
Sets of rules of the form A fi a where a is a string of zero

or more terminals and nonterminals
6.863J/9.611J Lecture 7 Sp03

Derivation by a context-free
grammar:rewrite line by line

generation
1. S
2. NP VP (via SfiNP VP)
3. NP V NP (via VPfiV NP)
4. NP V Det N (via NPfiDet N)
5. NP V Det pizza (via N fi pizza)
6. NP V the pizza (via Det fi the)
7. NP ate the pizza (via V fi ate)
8. Det N ate the pizza (via NPfiDet N)
9. Det guy ate the pizza (via N fi guy)
10. the guy ate the pizza (via Det fi the)

6.863J/9.611J Lecture 7 Sp03

Context-free representation

• Is this representation adequate – Not
really…why?

• We’ll start here, though & illustrate parsing
methods – how to make parsing efficient (in
length of sentence, size of grammar)

• Obvious methods are exponential; we want
polynomial time (or, even linear time, or, even,
real time…)

• Challenges: recursion, ambiguity,
nondeterminism

6.863J/9.611J Lecture 7 Sp03

How: context-free parsing

• Parsing: assigning a correct hierarchical
structure (or its derivation) to a string, given
some grammar
• The leaves of the hierarchical structure cover all and

only the input;
• The hierarchical structure (‘tree’) corresponds to a

valid derivation wrt the grammar
• Note: ‘correct’ here means consistent w/ the

input & grammar – NOT the “right” tree or
“proper” way to represent (English) in any more
global sense

6.863J/9.611J Lecture 7 Sp03

Parsing

• What kinds of constraints can be used to
connect the grammar and the example
sentence when searching for the parse
tree?

• Top-down (goal-directed) strategy
• Tree should have one rot (grammar

constraint)

• Bottom-up (data-driven) strategy

• Tree should have, e.g., 3 leaves (input
sentence constraint)

6.863J/9.611J Lecture 7 Sp03

The input

• For now, assume:
• Input is not tagged (we can do this…)
• The input consists of unanalyzed word tokens
• All the words are known
• All the words in the input are available

simultaneously (ie, buffered)

6.863J/9.611J Lecture 7 Sp03

How do we do this?

• Searching FSAs
• Finding the right path through the automaton
• Search space defined by structure of FSA

• Searching CFGs
• Finding the right parse tree among all

possible parse trees

• Search space defined by the grammar

• Constraints provided by the input
sentence and the automaton or grammar

6.863J/9.611J Lecture 7 Sp03

Marxist analysis: simple version

• Suppose just linear relations to recover
• Still can be ambiguity – multiple paths
• Consider:

Fruit flies like a banana

6.863J/9.611J Lecture 7 Sp03

banana

fruit flies like a

6.863J/9.611J Lecture 7 Sp03

FSA, or linear Example

fruit flies like a banana

fruit

fruit flies
flies

1 2 3 4

5

like
like
e

a
0

fruit

fruit

0 1
flies

flies

fruit

fruit
0 2

e
3

like
like

flies
flies1

a
4

like
like e

2 3

banana

banana
4

5

a

6.863J/9.611J Lecture 7 Sp03

State-set parsing for fsa

Accept/reject
1. If qf ˛ Sn then accept else reject

Final:

Compute Si from Si-1

1. For each word wi , i=1,2,…,n
2.
3. Si‹ e-closure(Si)
4. if Si = ˘ then halt & reject else

continue

Loop:

Compute initial state set, S0

1. S0‹q0

2. S0‹ e-closure(S0)

Initialize:

1
(,)

ii q S iS q wd
-˛‹ ∪

States in sequence dictate parse
path:

States: {0} fi{0,1} fi{1,2,3} fi{2,3} fi{4} fi{5} (final)

S0:[0] S1:[0,1] S2:[1, 2, 3] S3:[2, 3] S4:[4] S5:[5]

State set fState set 0

6.863J/9.611J Lecture 7 Sp03

State to state jumps…

• Progress (& ultimately parse) recorded by what
state machine is in

q

• Consider each transition as rule:
q0 fi fruit q1 , also loop: q0 fi fruit q0

q1 fi flies q2

2 fi like q3 also epsilon transition: q2 fi q3

q3 fi a q4

q4 fi banana q5

• We can record progress path via ‘bouncing ball’
telling us how to sing the song…

6.863J/9.611J Lecture 7 Sp03

6.863J/9.611J Lecture 7 Sp03

q0 fi 0

Singing the song…

Fruit flies like a banana
q0 fi 1

q0 q1

q0 fi 1

Fruit flies like a banana

S0 S1

q0 fi 1
q1 fi 2

fruit • q

•fruit q

fruit • q

fruit • S flies • q

But now we have a more
complex Marxist analysis

• I shot an elephant in my pajamas

• This is hierarchically ambiguous – not
just linear! (each possible hierarchical
structure corresponds to a distinct
meaning)

6.863J/9.611J Lecture 7 Sp03

Marxist analysis

NP

S

I

VP

V NP

NP

shot Det N PP

an elephant P
Det N

in
my pj’s

6.863J/9.611J Lecture 7 Sp03

How can we extend this bouncing

ball?

• Can’t just be linear…
• How do we pack these possibilities

together?
• We will augment… let’s see how

6.863J/9.611J Lecture 7 Sp03

From this…

fruit flies like a banana

6.863J/9.611J Lecture 7 Sp03

To this… what is called a Chart

S
VP

NP
I shot an elephant in my pajamas

n v 	 d n p d n
NP NPNP

VP
S

PP
6.863J/9.611J Lecture 7 Sp03

Three senses of rules

• generation (production): S fi NP VP
• parsing (comprehension): S ‹ NP VP
• verification (checking): S = NP VP
• CFGs are declarative – tell us what the

well-formed structures & strings are
• how toParsers are procedural – tell us

compute the structure(s) for a given
string

6.863J/9.611J Lecture 7 Sp03

6.863J/9.611J Lecture 7 Sp03VP � V NP
Nom � Nom PP

PropN � Boston | UnitedNom � N
Prep �from | to | onNom � N Nom
Aux � doesNP �PropN
V � book | include | preferNP �

N � book | flight | meal |
money

S � VP
Det � that | this | aS � Aux NP VP
VP � VS � NP VP

CFG minigrammar

Det Nom

Parse Tree for ‘Book that flight’

S

VP

NP

Nom

V Det N

Book that flight

6.863J/9.611J Lecture 7 Sp03

Strategy 1: Top-down parsing

• Goal or expectation driven – find tree rooted at
S that derives input

• Trees built from root to leaves
• Assuming we build all trees in parallel:

• Find all trees with root S (or all rules w/lhs S)
• Next expand all constituents in these trees/rules
• Continue until leaves are parts of speech (pos)
• Candidate trees failing to match pos of input string

are rejected (e.g. Book that flight can only match
subtree 5)

6.863J/9.611J Lecture 7 Sp03

Example: book the flight
S

S S SS S S

NP VP NPNPAux VP VPNP VP NPNPAux VP VP

S S S
S S S

NP VP NPNPAux VP VPNP VP NPAux VP VP

Det N V NPDet N

6.863J/9.611J Lecture 7 Sp03

Top-down strategy

• Depth-first search:
• Agenda of search states: expand search space

incrementally, exploring most recently generated
state (tree) each time

• When you reach a state (tree) inconsistent with
input, backtrack to most recent unexplored state
(tree)

• Which node to expand?
• Leftmost or rightmost

• Which grammar rule to use?
• Order in the grammar

6.863J/9.611J Lecture 7 Sp03

Top-down, left-to-right, depth-first

• Initialize agenda with ‘S’ tree and ptr to first
word and make this current search state (cur)

• Loop until successful parse or empty agenda
• to leftmostApply all applicable grammar rules

unexpanded node of cur
• If this node is a POS category and matches that of the

current input, push this onto agenda
• O.w. push new trees onto agenda

• Pop new cur from agenda

• Does this flight include a meal?

6.863J/9.611J Lecture 7 Sp03

Strategy 2: Bottom-up

• Parser begins with words of input and

builds up trees, applying grammar rules
w/rhs that match
• Book that flight

N Det N V Det N
Book that flight Book that flight

• ‘Book’ ambiguous
• Parse continues until an S root node reached

or no further node expansion possible
6.863J/9.611J Lecture 7 Sp03

Bottom-up search space

Book that flight

N Det N V Det N

Book that flight Book that flight

Noun Nom Nom

N Det N V Det N

Book that flight Book that flight

NP NP

Noun Nom Nom VP Nom

N Det N V Det N V Det N

Book that flight Book that flight Book that flight
6.863J/9.611J Lecture 7 Sp03

Comparing t-d vs. b-u

• never explore illegal parsesTop-Down parsers
(e.g. can’t form an S) -- but waste time on trees
that can never match the input

• never explore treesBottom-Up parsers
inconsistent with input -- but waste time
exploring illegal parses (no S root)

• For both: how to explore the search space?
• Pursuing all parses in parallel or …?
• Which rule to apply next?
• Which node to expand next?

6.863J/9.611J Lecture 7 Sp03

Problems…

• Left-recursion
• Ambiguity: multiple parses
• Principle AWP

6.863J/9.611J Lecture 7 Sp03

Left-recursion

• Rules of form: Xfi X a
• Example: NP fi NP ‘s NP | Name

John’s brother’s book
6.863J/9.611J Lecture 7 Sp03

Structural ambiguity

• Multiple legal structures
• Attachment (e.g. I saw a man on a hill with a

telescope)
• Coordination (e.g. younger cats and dogs)
• NP bracketing (e.g. Spanish language

teachers)

6.863J/9.611J Lecture 7 Sp03

How to fix?

• Principle AWP! Dynamic programming…
• Create table of solutions to sub-problems (e.g.

subtrees) as parse proceeds
• Look up subtrees for each constituent rather

than re-parsing
• Since all parses implicitly stored, all available for

later disambiguation
• Examples: Cocke-Younger-Kasami (CYK) (1960),

Graham-Harrison-Ruzzo (GHR) (1980) and
Earley (1970) algorithms

6.863J/9.611J Lecture 7 Sp03

General method: Chart Parsing

• Note: parses share common constituents
• Build chart = graph data structure for storing

partial & complete parses (AKA well-formed
substring table)

• Graph:
• Vertices: used to delimit subsequences of the input
• Edges (active, inactive)

• Active = denote incompletely parsed (or found) phrase
• Inactive = completely found phrase
• Labels = name of phrase

• Note: chart sufficient to attain polynomial time
parsability = O (n3 |G|), |G| = ‘size’ of
grammar, no matter what strategy we use

6.863J/9.611J Lecture 7 Sp03

How do we build the chart?

• Idea: as parts of the input are successfully
parsed, they are entered into chart

• Like memoization
• Can use any combo strategy of t-d, b-u,

or in between to build the edges
• Annotate edges as they are built w/ the

corresponding dotted rule
• Parser is a combination of chart +

strategy

6.863J/9.611J Lecture 7 Sp03

Chart parsing
• Example of chart

S
VP

NP
I shot an elephant in my pajamas

n v 	 d n p d n
NP NPNP

VP
S

PP
6.863J/9.611J Lecture 7 Sp03

Chart parsing

• Think of chart entries as sitting between
words in the input string keeping track of
states of the parse at these positions

• For each word position, chart contains the
set of states representing all partial parse
trees generated to date

6.863J/9.611J Lecture 7 Sp03

Chart parsing

• Chart entries represent three type of
constituents (phrases):
• predicted constituents
• in-progress constituents
• completed constituents

6.863J/9.611J Lecture 7 Sp03

Representing complete (inactive) vs.
incomplete (active) edges

• Complete: full phrase found, e.g., NP, VP
• So: corresponding rule something like

• NPfiNP PP (“an elephant in my pajamas”)
• S fi NP VP (“I saw an elephant”)
• NP fi Det N (“an elephant”)

• Representation: use “dot” in rule to denote
progress in discovering LHS of the rule:
NPfi• Det NP = I’ve just started to find an NP (“predict”)
NP fi Det • NP = Found a Det in input, now find NP
NP fi Det NP • = Completed phrase (dot at end)

6.863J/9.611J Lecture 7 Sp03

Chart we displayed has only

6.863J/9.611J Lecture 7 Sp03

inactive (completed) edges

I shot an elephant in my pajamas

n v d n p d n
NP

PP

NP

NP

S
VP

NP

VP
S

Complete (Inactive) vs. In-
progress (active) edges
• Completed edges correspond to “having found a

phrase” so really should be labeled with info like

NP fi Det NP •

• We should go back & annotate our chart like

this

• These edges are “inactive” because there is no

more processing to be done to them

• Incomplete or “active” edges: work in progress,

i.e., NPfi• Det NP or NP fi Det • NP

• We build up the chart by extending active

edges, gluing them together – let’s see how

6.863J/9.611J Lecture 7 Sp03

Note correspondence between
“dotted rules” & states in
corresponding fsa - isomorphic

6.863J/9.611J Lecture 7 Sp03

Dotted rule – fsa correspondence

1 2 3

NP Det N

NP fi •Det N = being in State 1

NP fi Det • N = being in State 2

NP fi Det N • = being in State 3

6.863J/9.611J Lecture 7 Sp03

6.863J/9.611J Lecture 7 Sp03

Correspondence

Sentence

The guy

NP

Det Noun

Dotted rule form

NP

Dot at beginning=
just started building a
phrase of this type

6.863J/9.611J Lecture 7 Sp03

Correspondence

Sentence

The guy

NP

Det Noun

Dotted rule form

NPfiDet • Noun

fi •Det Noun

6.863J/9.611J Lecture 7 Sp03

Correspondence

Sentence

The guy

NP

Det Noun

Dotted rule form

NPfiDet • Noun

Advance in input = scan

NPfi •

(finished building
phrase)

Det Noun

Representing the edges

• 0 Book 1 that 2 flight 3

S fi • VP, [0,0] (predicting VP)

NP fi Det • Nom, [1,2] (finding NP)

VP fi V NP •, [0,3] (found VP)

• [x,y] tells us where a phrase begins (x) and where
the dot lies (y) wrt the input – how much of the
phrase is built so far

• So, a FULL description of a chart edge is:
Edge Label, [start node, current progress dot pos]

.e.g.,
NP fi Det • Nom, [1,2]

6.863J/9.611J Lecture 7 Sp03

flies like

6.863J/9.611J Lecture 7 Sp03

Set of dotted rules encodes state
of parse

• = all states parser could be in after
processing i tokens

• We now have almost all the ingredients…

6.863J/9.611J Lecture 7 Sp03

FSA, or linear Example

fruit flies like a banana

fruit

fruit flies
flies

1 2 3 4

5

like
like
e

a
banana

0
fruit

fruit

0 1

fruit

flies
flies

fruit

fruit
0 2

e
3

like
like

flies
flies1

a
4

a

like
like e

2 3

banana

banana
4

5

a

State-set parsing for fsa

Compute initial state set, S0

0‹q0

Initialize:
1. S
2. S0‹ e-closure(S0)

Loop: Compute S from Si-1 i

1. For each word wi , i=1,2,…,n
2. Si ‹ ∪ d (q w,)q Si -1 i˛

3. S ‹ e-closure(S)i i

4. if Si = ˘ then halt & reject else
continue

Final: Accept/reject
1. If qf ˛ Sn then accept else reject

6.863J/9.611J Lecture 7 Sp03

Use backpointers to keep track of
the different paths (parses):

S0:[0] S1:[0,1] S2:[1, 2, 3] S3:[2, 3] S4:[4] S5:[5]

State set 0 State set f

6.863J/9.611J Lecture 7 Sp03

Chart parsing is the same,
except…

• Notion of ‘state set’ is just more

complicated – not just the state #, but

also the # of the state we started building

the phrase at = the return ptr

• Note this is what the chart graph structure

encodes

6.863J/9.611J Lecture 7 Sp03

State set = chart after i words

string w=w1 w2• Given grammar G, input
…wn
Note: we mark interword positions 0w1 w2 …wn

write down what can be in “start• Initialize:
state set” S0

• Loop: for each word wi , compute Si
from Si-1

see if final state is in last state set• Final:
Sn

6.863J/9.611J Lecture 7 Sp03

6.863J/9.611J Lecture 7 Sp03

Compute initial state set S0 Compute initial state set S0
1. S0‹q0
2. S0‹ 0)

1. S0‹q0
2. S0‹ 0)

q0= [Startfi•S, 0] q0= [Startfi•S, 0, 0]

closure of jump arcs of Predict and Complete

FTN Parser CFG Parser

Initialize:

Compute Sifrom S Compute Si from S
For each word, wi , 1=1,...,n

Si (q, wi)
q S̨

Si (q, wi)
q S̨

= Scan(S)
q=itemSi‹ i) Si‹ i)

closure(Predict, Complete)

Loop:

Accept/reject:
If qf ˛ Snthen accept;
else reject

If qf S̨nthen accept;
else reject

Accept/reject:

qf= [StartfiS•, 0] qf= [StartfiS•, 0, n]

Final:

eta-closure (S eta-closure (S

eta-closure= transitive eta-closure= transitive closure

i-1 i-1
For each word, wi, 1=1,...,n

‹̈ d
i-1

‹ d̈
i-1

i-1
e-closure(S e-closure(S

e-closure=

6.863J/9.611J Lecture 7 Sp03

Parsing procedure w/ chart

• in order,
applying one of three operators to each
state:

predictions,
to the chart

corresponding active edge to chart

then see if we can glue two edges together to
form a larger one

Move through each set of states

• predictor: add new active edges,

• scanner: read input and advance dot, add

• completer: if dot at the right end of a rule,

Note:

• Results (new edges) added to current or
next set of states in chart

• No backtracking and no edges removed:
keep complete history of parse

• When we get to the end, there ought to
be an edge labeled S, extending from 0 to
n (n= length of sentence)

6.863J/9.611J Lecture 7 Sp03

As in

S
VP

NP

I shot an elephant in my pajamas

n v d n p d n
NP NPNP

VP
S

PP
6.863J/9.611J Lecture 7 Sp03

Predictor (‘wishor’)

• Intuition: new states represent top-down
expectations

• Applied when non part-of-speech non-terminals
are to the right of a dot – until closure

S fi • VP [i,i]

• Adds new states to current chart
• One new state for each expansion of the non-

terminal in the grammar

VP fi • V [i,i]

VP fi • V NP [i,i]

6.863J/9.611J Lecture 7 Sp03

Scanner (as in fsa)

• New states for predicted part of speech
• Applicable when part of speech is to the

right of a dot

VP fi • V NP [0,0] ‘Book…’

• Looks at current word in input
• If match, adds dotted rule edge starting

at next point over, e.g.,
VP fi V • NP [0,1]

Just as with fsa’s – jump to next point
6.863J/9.611J Lecture 7 Sp03

Completer

• Intuition: 	parser has discovered a
complete constituent, so must see if this
completed edge can be pasted together
with any preceding active edge to make a
bigger one…

• E.g., NP[0, 2] & VP[2, 7] yields S[0,7]
• “Glue together” two edges
• Must do this until closure…

6.863J/9.611J Lecture 7 Sp03

Examples – will use v, v simple G

• S fi
• VP fi
• VP fi
• NP fi
• NP fi
• NP fi
• PP fi

NP VP
V NP
V NP PP
D N
N
NP PP
P NP

6.863J/9.611J Lecture 7 Sp03

Strategies w/ Chart

• Top-down
• Bottom-up
• Left-corner (what’s that??)

6.863J/9.611J Lecture 7 Sp03

Example: Top-down w/ chart

S fi
NP fi N [from predict]
NP fi [from predict]
NP fi [from predict]

•NP VP
• D
• N
• NP PP

I shot an elephant in my pajamas

State set S0 - nothing more can be added, so scan next word

Note how top-down strategy can introduce rules unconnected
to the input.. 6.863J/9.611J Lecture 7 Sp03

Scan to next word…follow the
bouncing dot…

I shot an elephant in my pajamas

S fi
NP fi N
NP fi
NP fi

•NP VP
• D
• N
• NP PP

NP fi N •

6.863J/9.611J Lecture 7 Sp03

Dot at end…so we ‘complete’ NP

I shot an elephant in my pajamas

S fi
NP fi N
NP fi
NP fi

NP fi

S fi fi
fi

NP fi

•NP VP
• D
• N
• NP PP

N •

•NP VP + NP N • yields new
edge S NP • VP

NP • PP

S fi NP • VP
6.863J/9.611J Lecture 7 Sp03

And now predict…expand VP (t-d)

I shot an elephant in my pajamas

NP fi

S fi

PP fi

VP fi NP
VP fi

NP fi

VP fi NP

N •

NP • VP

• P NP

• V
• V

NP • PP

• VP

6.863J/9.611J Lecture 7 Sp03

Scan Verb

VP fi V • NP

I shot an elephant in my pajamas

NP fi

VP fi PP

What next? … Predict NPN •

• VP

S fi NP • VP
6.863J/9.611J Lecture 7 Sp03

NP Predictions added

NP fi N
NP fi
NP fi

I shot an elephant in my pajamas

NP fi

S fi

VP fi

VP fi PP

Skip ahead a bit to where next NP ‘an elephant’
is done

• D
• N
• NP PP

N •

NP • VP

V • NP

• VP

6.863J/9.611J Lecture 7 Sp03

Process NP object

VP fi V NP •

VP fi VP • PP

I shot an elephant in my pajamas

NP fi N • NP fi D N •

NP fi • NP PP

S fi NP • VP
6.863J/9.611J Lecture 7 Sp03

Enough…no more! Demo easier!

6.863J/9.611J Lecture 7 Sp03

