
6.863J Natural Language Processing
Lecture 6: part-of-speech tagging to

parsing

Instructor: Robert C. Berwick

6.863J/9.611J Lecture 6 Sp03

The Menu Bar
• Administrivia:

• Schedule alert: Lab1 due next today Lab 2,
posted Feb 24; due the Weds after this –
March 5 (web only – can post pdf)

• Agenda:
• Finish up POS tagging – Brill method
• From tagging to parsing: from linear

representations to hierarchical
representations

6.863J/9.611J Lecture 6 Sp03

Two approaches

1. Noisy Channel Model (statistical) –
2. Deterministic baseline tagger composed

with a cascade of fixup transducers
These two approaches will the guts of Lab 2
(lots of others: decision trees, …)

6.863J/9.611J Lecture 6 Sp03

Summary

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Pre

Bill directed a cortege of autos thro

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement

6.863J/9.611J Lecture 6 Sp03

Finding the best path from start to
stop

• Use dynamic programming
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start (as

probability plus one backpointer)

• Special acyclic case of Dijkstra’s shortest-path
algorithm

• Faster if some arcs/states are absent

Det:t
he 0

.32Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj :d
irec

ted
…

Adj:cool 0.0009Noun:cool 0.007

6.863J/9.611J Lecture 6 Sp03

Method: Viterbi algorithm
• For each path reaching state s at step (word)

t, we compute a path probability. We call the
max of these viterbi(s,t)

• [Base step] Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',t+1),

assuming we know viterbi(s,t) for all s

6.863J/9.611J Lecture 6 Sp03

Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t) * a[s,s']

probability of path to max path score * transition probability
s’ through s for state s at time t s →s’

viterbi(s',t+1) = max s ∈STATES path-prob(s' | s,t)

6.863J/9.611J Lecture 6 Sp03

Viterbi Method…

• This is almost correct…but again, we need
to factor in the unigram prob of a state s’
emitting a particular word w given an
observation of that surface word w

• So the correct formula for the path prob
to s’ from s is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * bs’ (ot)

Bigram
transition prob

to state s’

Unigram
output prob at

state s’
Path prob so far to s

6.863J/9.611J Lecture 6 Sp03

Finally…

• As before, we want to find the max path
probability, over all states s:

max s ∈STATES path-prob(s' | s,t)

6.863J/9.611J Lecture 6 Sp03

Or as in your text…p. 179

Find the path probability

Find the max so far

6.863J/9.611J Lecture 6 Sp03

Two approaches

1. Noisy Channel Model (statistical) –
what’s that?? (we will have to learn
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, …)

6.863J/9.611J Lecture 6 Sp03

Fixup approach: Brill tagging (a
kind of transformation-based
learning)

6.863J/9.611J Lecture 6 Sp03

Another FST Paradigm:
Successive Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …

Ini
tia

l a
nn

ota
tio

n

Fix
up

1

Fix
up

2input

outputFix
up

3

6.863J/9.611J Lecture 6 Sp03

Transformation-Based Tagging
(Brill 1995)

figure from Brill’s thesis

6.863J/9.611J Lecture 6 Sp03

6.863J/9.611J Lecture 6 Sp03

6.863J/9.611J Lecture 6 Sp03

Transformation based tagging

• Combines symbolic and stochastic approaches:
uses machine learning to refine its tags, via
several passes

• Analogy: painting a picture, use finer and finer
brushes - start with broad brusch that covers a
lot of the canvas, but colors areas that will have
to be repainted. Next layer colors less, but also
makes fewer mistakes, and so on.

• Similarly: tag using broadest (most general)
rule; then an narrower rule, that changes a
smaller number of tags, and so on. (We haven’t
said how the rules are learned)

• First we will see how the TBL rules are applied

6.863J/9.611J Lecture 6 Sp03

Applying the rules
1. First label every word with its most-likely tag (as

we saw, this gets 90% right…!) for example, in
Brown corpus, race is most likely to be a Noun:
P(NN|race)= 0.98
P(VB|race)= 0.02

2. …expected/VBZ to/TO race/NN tomorrow/NN
…the/DT race/NN for/IN outer/JJ space/NN

3. Use transformational (learned) rules to change
tags:
Change NN to VB when the previous tag is TO

TO race/VB

6.863J/9.611J Lecture 6 Sp03

Initial Tagging of OOV Words

figure from Brill’s thesis

6.863J/9.611J Lecture 6 Sp03

(supervised) learning pudding -
How?

• 3 stages
1. Start by labeling every word with most-likely

tag
2. Then examine every possible transformation,

and selects one that results in most improved
tagging

3. Finally, re-tags data according to this rule
4. Repeat 1-3 until some stopping criterion (no

new improvement, or small improvement)
• Output is ordered list of transformations that

constitute a tagging procedure

6.863J/9.611J Lecture 6 Sp03

How this works

• Set of possible ‘transforms’ is infinite, e.g.,
“transform NN to VB if the previous word
was MicrosoftWindoze & word braindead
occurs between 17 and 158 words before
that”

• To limit: start with small set of abstracted
transforms, or templates

6.863J/9.611J Lecture 6 Sp03

Templates used: Change a to b
when…

Variables a, b, z, w, range over parts of speech

6.863J/9.611J Lecture 6 Sp03

Method

1. Call Get-best-transform with list of
potential templates; this calls

2. Get-best-instance which instantiates
each template over all its variables (given
specific values for where we are)

3. Try it out, see what score is (improvement
over known tagged system -- supervised
learning); pick best one locally

6.863J/9.611J Lecture 6 Sp03

6.863J/9.611J Lecture 6 Sp03

6.863J/9.611J Lecture 6 Sp03

nonlexicalized rules learned by
TBL tagger

6.863J/9.611J Lecture 6 Sp03

Transformations Learned
figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*

6.863J/9.611J Lecture 6 Sp03

Error analysis: what’s hard for
taggers
• Common errors (> 4%)

• NN vs .NNP (proper vs. other nouns) vs. JJ
(adjective): hard to distinguish prenominally;
important to distinguish esp. for information
extraction

• RP vs. RB vs IN: all can appear in sequences
immed. after verb

• VBD vs. VBN vs. JJ: distinguish past tense,
past participles (raced vs. was raced vs. the
out raced horse)

6.863J/9.611J Lecture 6 Sp03

What’s hard

• Unknown words
• Order 0 idea: equally likely over all parts of speech
• Better idea: same distribution as ‘Things seen once’

estimator of ‘things never seen’ - theory for this
done by Turing (again!)

• Hapax legomenon
• Assume distribution of unknown words is like this
• But most powerful methods make use of how word is

spelled

• See file in the course tagging dir on this

6.863J/9.611J Lecture 6 Sp03

Or unknown language

• Vse schastlivye sen’i pokhozhi brug na
druga, kazhdaja neschastlivaja sem’ja
neschastliva po-svoemu

6.863J/9.611J Lecture 6 Sp03

6.863J/9.611J Lecture 6 Sp03

Most powerful unknown word
detectors

• 3 inflectional endings (-ed, -s, -ing); 32
derivational endings (-ion, etc.);
capitalization; hyphenation

• More generally: should use morphological
analysis! (and some kind of machine
learning approach)

• How hard is this? We don’t know - we
actually don’t know how children do this,
either (they make mistakes)

6.863J/9.611J Lecture 6 Sp03

Laboratory 2

• Goals:
1. Use both HMM and Brill taggers
2. Find errors that both make, relative to

genre
3. Compare performance – use of kappa &

‘confusion matrix’
4. All the slings & arrows of corpora – use

Wall Street Journal excerpts, as well as
‘switchboard’ corpus

6.863J/9.611J Lecture 6 Sp03

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts

6.863J/9.611J Lecture 6 Sp03

Coda on kids

C: “Mommy, nobody don’t like me”

A: No, say, “nobody likes me”

C: Nobody don’t likes me

A: Say, “nobody likes me”

C: Nobody don’t likes me
[7 repetitions]

C: Oh! Nobody don’t like me!

6.863J/9.611J Lecture 6 Sp03

Parsing words - review

• We are mapping between surface,
underlying forms

• Sometimes, information is ‘invisible’ (I.e.,
erased e, or an underlying/surface 0)

• There is ambiguity (more than one parse)

6.863J/9.611J Lecture 6 Sp03

From lines to hierarchical
respresentions…

• From this:
morph-ology

• To this:
VPVP [head=vouloir,...]

VV[head=vouloir,
tense=Present,
num=SG, person=P3]

......

veutveutthe problem

of morphology

(“word shape”) -

an area of linguistics

6.863J/9.611J Lecture 6 Sp03

What can’t linear relations
represent?

• wine dark sea → (wine (dark sea)) or
((wine dark) sea) ?

• deep blue sky

• Can fsa’s represent this?
• Not really: algebraically, defined as being

associative (doesn’t matter about
concatenation order)

6.863J/9.611J Lecture 6 Sp03

So, from linear relations… to
hierarchies

Det
The

N
plan

to

VP

VP

V
swallow

NP
Wanda

V
has

V
been

V
thrilling

NP
Otto

NP

VP

VP

VP

S

N

6.863J/9.611J Lecture 6 Sp03

Examples

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb → thrills
VP→ Verb NP
S → NP VP

6.863J/9.611J Lecture 6 Sp03

Parsing for fsa’s: keep track of
what ‘next state’ we could be in
at each step

NB: ambiguity = > 1 path through network
= > 1 sequence of states (‘parses’)
= > 1 ‘syntactic rep’ = >1 ‘meaning’

fruit flies like a banana

fruit

fruit flies
flies

0 1 2 3
0 4

5

like

like
ε

a
banana

6.863J/9.611J Lecture 6 Sp03

6.863J/9.611J Lecture 6 Sp03

FSA Terminology

• Transition function: next state unique =
deterministic fsa

• Transition relation: > 1 next state =
nondeterministic fsa

fruit flies like a banana

fruit

fruit flies
flies

0 1 2 3
0 4

5

like

like
ε

a
banana

6.863J/9.611J Lecture 6 Sp03

Methods for parsing

• How do we handle ambiguity?
• Methods:

1. Backtrack
2. Convert to deterministic machine (ndfsa → dfsa):

offline compilation
3. Pursue all paths in parallel: online computation

(“state set” method)
4. Use lookahead

– We will use all these methods for more
complex machines/language representations

6.863J/9.611J Lecture 6 Sp03

FSA terminology

• Input alphabet,Σ; transition mapping, δ;
finite set of states, Q; start state q0; set of
final states, qf

• δ(q, s)→ q’
• Transition function: next state unique =

deterministic fsa
• Transition relation: > 1 next state =

nondeterministic fsa

6.863J/9.611J Lecture 6 Sp03

State-set method: simulate a
nondeterministic fsa
• Compute all the possible next states the

machine can be in at a step = state-set
• Denote this by Si = set of states machine can

be in after analyzing i tokens
• Algorithm has 3 parts: (1) Initialize; (2) Loop;

(3) Final state?
• Initialize: S0 denotes initial set of states we’re

in, before we start parsing, that is, q0

• Loop: We must compute Si , given Si-1

• Final?: Sf = set of states machine is in after
reading all tokens; we want to test if there is a
final state in there

6.863J/9.611J Lecture 6 Sp03

State-set parsing

Accept/reject
1. If qf ∈ Sn then accept else reject

Final:

Compute Si from Si-1

1. For each word wi , i=1,2,…,n
2.
3. Si← ε−closure(Si)
4. if Si = ∅ then halt & reject else

continue

Loop:

Compute initial state set, S0

1. S0←q0

2. S0← ε−closure(S0)

Initialize:

1
(,)

ii q S iS q wδ
−∈← ∪

6.863J/9.611J Lecture 6 Sp03

What’s the minimal data
structure we need for this?
• [S, i] where S = denotes set of states we

could be in; i denotes current point we’re at in
sentence

• As we’ll see, we can use this same
representation for parsing w/ more complex
networks (grammars) - we just need to add one
new piece of information for state names

• In network form
• In rule form:

qi→t•β qf where τ= some token of the input,
and β = remainder (so ‘dot’ represents how far
we have traveled)

qkαqi β

6.863J/9.611J Lecture 6 Sp03

Example

fruit flies like a banana

fruit

fruit flies
flies

1 2 3 4

5

like

like
ε

a
banana

0
fruit

fruit

0 1

fruit

flies
flies

fruit

fruit

flies

0 2
ε

3

like

like

like
flies

flies
1

a
4

a

like

like ε
2 3

banana

banana
4

5

a

6.863J/9.611J Lecture 6 Sp03

Use backpointers to keep track of
the different paths (parses):

S0:[0] S1:[0,1] S2:[1, 2, 3] S3:[2, 3] S4:[4] S5:[5]

State set 0 State set f

6.863J/9.611J Lecture 6 Sp03

When is it better to convert at
compile time vs. run time? (for fsa)

• Run time: compute next state set on the
fly

• Compile time: do it once and for all
• When would this difference show up in

natural languages (if at all)?

6.863J/9.611J Lecture 6 Sp03

Where do the fsa states come from?

• States are equivalence classes of words
(tokens) under the operation of substitution

• Linguistic formulation (Wells, 1947, pp. 81-
82): “A word A belongs to the class
determined by the environment ____X if AX is
either an utterance or occurs as a part of
some utterance” (distributional analysis)

• This turns out to be algebraically correct
• Can be formalized - the notion of syntactic

equivalence

6.863J/9.611J Lecture 6 Sp03

X-files: fragments from an alien
language
1. Gore lost the election
2. Gore will lose the election
3. Gore could lose the election
4. Gore should lose the election
5. Gore did lose the election
6. Gore could have lost the election
7. Gore should have lost the election
8. Gore will have lost the election
9. Gore could have been losing the election
10.Gore should have been losing the election
11.Gore will have been losing the election
12.Gore has lost the election

6.863J/9.611J Lecture 6 Sp03

More X-files
14.Bush lost the election
15.Bush will lose the election
16.Bush could lose the election
17.Bush should lose the election
18.Bush did lose the election
19.Bush could have lost the election
20.Bush should have lost the election
21.Bush will have lost the election
22.Bush could have been losing the election
23.Bush should have been losing the election
24.Bush will have been losing the election
25.Bush has lost the election
26 B h h b l i th l ti

6.863J/9.611J Lecture 6 Sp03

Formally…

• Definition. A binary relation between sets A, B,
is a subset (possibly empty) of A x B

• Definition. Strings k,r are left-substitutable in a
language L, if, for all strings w defined over Σ∗,
kw∈L iff rw ∈L

• Fact. Left-substitutability is an equivalence
relation (reflexive, transitive, symmetric)

• Definition. An equivalence relation over Σ is
finite rank if it divides Σ into finitely many
equivalence classes

• Definition. A binary relation R is called right-
invariant if, for all p,r ∈ Σ∗, pRr⇒ pwRrw

6.863J/9.611J Lecture 6 Sp03

And formally…

• Fact. A right-invariant relation R is an
equivalence relation

• Theorem (Myhill-Nerode, 1956)

6.863J/9.611J Lecture 6 Sp03

Theorem (Myhill-Nerode, 1956).

• Let L⊆Σ∗. Then the following 3 propositions
are equivalent:

1. L is generated (accepted) by some finite-
state automaton (finite transition network);

2. L is the union of certain equivalence classes
of a right-invariant equivalence relation of
finite rank

3. Let the equivalence relation R be defined as
follows: xRy iff x and y are left-substitutable
in L. Then this relation R is of finite-rank and
is right-invariant [this is Wells’ definition]

6.863J/9.611J Lecture 6 Sp03

Finite # of bins = finite state

• Gives easy way to show what is not finite-state
• Eg, ancbn, for all n> 0
• Proof by contradiction.

Suppose there was such an FSA. By the theorem,
this FSA is of finite rank, and classifies all strings in
Σ∗ into one of a finite number of classes.

By the pigeonhole principle, there must exist some
string ai s.t. aj with j ≠ i is in the same equivalence
class as ai . But then the fsa must recognize both
ai c aj and ai c ai , a contradiction

6.863J/9.611J Lecture 6 Sp03

Why not fsa’s forever?

• Can’t yield the right set of strings= weak
generative capacity (antiantimissle…)

• Can’t yield the right set of structures =
strong generative capacity (dark blue
sky)

• How do these failures show up?

6.863J/9.611J Lecture 6 Sp03

A more complex fsa

0 1

2

3

5 6 7

8
11

12

10

4

9

the
guy

guy

have

will, can

will, can

eats

ice-cream

eaten

eating

be
eat

be

be

have

been

been being

has,
have

has,
have

is,
are

is

been

been

is,
are

6.863J/9.611J Lecture 6 Sp03

Conversion to deterministic
machine

0 1
the

2,3

4,8

7

11

12

guy

is

will

be
eaten

ice-cream

10,11

eats eat

6, 7,
10, 11

ice-cream

being

being

being

have, has

been
5,9

eating

6,10
11

eating

eating

eaten

eaten
have

6.863J/9.611J Lecture 6 Sp03

What are we missing here?

6.863J/9.611J Lecture 6 Sp03

We are missing the symmetry

0 1

2

3

5 6 7

8
11

12

10

4

9

the
guy

guy

have

will, can

will, can

eats

ice-cream

eaten

eating

be
eat

be

be

have

been

been being

has,
have

has,
have

is,
are

is

been

been

is,
are

6.863J/9.611J Lecture 6 Sp03

Having a poor representation…

• Shows up in having duplicated states (with no
other connection to each other)

• System would be ‘just as complex’= have the
same size (what is size of automaton?) even if
the network were not symmetric

• So we have failed to capture this regularity &
the network could be compressed

• How?

6.863J/9.611J Lecture 6 Sp03

Compressability reveals rendundancy
(pattern)that we have missed

Active:

+
Rule that flips network=

Passive:

Aka “transformational grammar”

6.863J/9.611J Lecture 6 Sp03

But it’s worse than that… more
redundancy even so

the guy

Bush Bush

the guysaw

So, obvious programming approach:
use a subroutine

6.863J/9.611J Lecture 6 Sp03

Subnetworks as subroutines, to
compress the description

the guy

Bush Bush

the guysaw

saw

the guy

Bush

Sentence:

Noun
phrase: “splice out” common

subnets

6.863J/9.611J Lecture 6 Sp03

Could be worse…

1 2

the, these
those,

first

e

every

most,

e,

15
16

5

4

twodozen,

e

e

very

books

the,

e

e

very

beautiful

e

two

some

first

some,

e

e

e,

a

this,

e
first

book

e

e
every two

e

two

0

3

10

beautiful
12

11

8

9

17

most,

7

e

e

6

14

13

beautiful

that

Noun “specifiers”

Could be raining…

6.863J/9.611J Lecture 6 Sp03

It could be even worse…

1 2

the, these
those,

first

e

every

most,

e,

15
16

5

4

twodozen,

e

e

very

books

the,

e

e

very

beautiful

e

two

some

first

some,

e

e

e,

a

this,

e
first

book

e

e
every two

e

two

0

3

10

beautiful
12

11

8

9

17

most,

7

e

e

6

14

13

beautiful

that

1 2
the, these

those,
first

e

every

most,

e,

15
16

5

4

twodozen,

e
e

very

books

the,

e
e

very

beautiful

e

two

some
first

some,

e

e

e,

a

this,

e
first

book

e

e every two

e

two

0
3

10

beautiful12

11

8

9

17

most,

7

e

e

6

14

13

beautiful

that

saw

Noun specifiers

6.863J/9.611J Lecture 6 Sp03

Examples

NPVerb

VPNP

S

A roller coaster thrills every teenager

Verb → thrills
VP→ Verb NP
S → NP VP

6.863J/9.611J Lecture 6 Sp03

The notion of a common
subnetwork

• Equivalent to the notion of a phrase
• A Noun Phrase (NP)
• Defined by substitution class of a sequence of

words (aka “a constituent”) - extension
beyond substitution of single words

• A phrase iff we can interchangeably substitute
that sequence of words regardless of context

• So also gives us the notion of a context-free
grammar (CFG)

6.863J/9.611J Lecture 6 Sp03

Constituents, aka phrases

• Building blocks that are units of words
concatenated together

• Why?
• Ans:
1. They act together (i.e., behave alike

under operations) - what operations?
2. Succinctness
3. (Apparently) nonadjacent constraints

6.863J/9.611J Lecture 6 Sp03

The deepest lesson

• Claim: all apparently nonadjacent
relationships in languge can be reduced to
adjacent ones via projection to a new
level of representation

• (In one sense, vacuous; in another, deep)
• Example: Subject-Verb agreement

(agreement generally)
• Example: so-called wh-movement

6.863J/9.611J Lecture 6 Sp03

Gaps (“deep” grammar!)

• Pretend “kiss” is a pure transitive verb.
• Is “the president kissed” grammatical?

• If so, what type of phrase is it?

• the sandwich that
• I wonder what
• What else has

the president kissed e
Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

6.863J/9.611J Lecture 6 Sp03

Examples

• The guy that we know in Somerville likes ice-
cream

• Who did the guy who lives in Somerville see
__?

S

NP+sing VP+sing

SThe guy

that we know in Som.

V NP
likes

ice-cream

6.863J/9.611J Lecture 6 Sp03

The deep reason why

• Machinery of the mind: based only on
concatenation of adjacent elements - not
on ‘counting’ eg., “take the 7th element &
move it…”

• Runs through all of linguistic
representations (stress, metrical patterns,
phonology, syntax, …)

• Strong constraint on what we have to
represent

6.863J/9.611J Lecture 6 Sp03

Constituents

• Basic ‘is-a’ relation
• Act as ‘whole units’ -

• I want this student to solve the problem
• ?? Student, I want this to solve the problem
• This student, I want to solve the problem

• Sometimes, we don’t see whole constituents…book
titles (claimed as objection to constituency):
• Sometimes a Great Notion
• The Fire Next Time

• Why might that be?

