6.863] Natural Language Processing
Lecture 6: part-of-speech tagging to
parsing

Instructor: Robert C. Berwick

The Menu Bar

e Administrivia:

e Schedule alert: Labl due next today Lab 2,
posted Feb 24; due the Weds after this —
March 5 (web only — can post pdf)

e Agenda:
e Finish up POS tagging — Brill method

e From tagging to parsing: from linear
representations to hierarchical
representations

6.8631/9.611] Lecture 6 Sp03

Two approaches

1. Noisy Channel Model (statistical) —

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, ...)

6.8631/9.611] Lecture 6 Sp03

Summary

We are modeling p(word seq, tag seq)

The tags are hidden, but we see the words

Is tag sequence X likely with these words?

Noisy channel model is a "Hidden Markov Model":

probs
fromtag{ NSNS TN

bigram PN Verb Det Noun Prep Noun Pr
model

pmbsfmm{ e L

unigram Bill directed a cortege of autos thr
replacement

e Find X that maximizes.probability product

Finding the best path from start to
stop

e What is best path from Start to each node?
e Work from left to right

e Each node stores its best path from Start (as
probability plus one backpointer)

e Special acyclic case of Dijkstra’s shortest-path
algorithm

o Faster if some:aresistates are absent

Method: Viterbi algorithm

e For each path reaching state s at step (word)
t, we compute a path probability. We call the
max of these viterbi(s,t)

e [Base step] Compute viterbi(0,0)=1

e [Induction step] Compute viterbi(s',t+1),
assuming we know viterbi(s,t) for all s

6.8631/9.611] Lecture 6 Sp03

Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t) * als,s']
probability of path to max path score * transition probability
s’ through s for state s at time t S —¢'

viterbi(s',t+1) = max . _crates Path-prob(s' | s,t)

6.8631/9.611] Lecture 6 Sp03

Viterbi Method...

e This is almost correct...but again, we need
to factor in the unigram prob of a state s’
emitting a particular word w given an
observation of that surface word w

e So the correct formula for the path prob
to s’ from s is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s']* b. (0;)

o X

Bigram Unigram
Path prob so far to s transition prob output prob at
6.8631/9.611] Lecture 6 fp§3state S’ state s’

Finally...

o As before, we want to find the max path
probability, over all states s:

MaX . _crates Path-prob(s’ | s,t)

6.8631/9.611] Lecture 6 Sp03

Or as in your text...p. 179

function VITERBI(observations of len T,state-graph) returns best-path

num-states < NUM-OF-STATES(state-graph)
Create a path probability matrix viterbif num-states+2,T+2]
viterbi[0,0] <+ 1.0
for each time step ¢t from O to 7' do
for each state s from O to num-states do
for each transition s’ from s specified by state-graph
new-score < viterbi[s. t1 * a[s.s'] * by (0;)Find the path probability
if ((viterbi[s',t+1]=0) || (new-score > viterbi[s', t+1]))
then

L Find the max so far
viterbils', t+ 1]+ new-score

back-pointer[s’, t+1]<s
Backtrace from highest probability state in the final column of viterbif | and
return path
6.8631/9.611] Lecture 6 Sp03

Two approaches

1. Noisy Channel Model (statistical) —
what's that?? (we will have to learn
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, ...)

6.8631/9.611] Lecture 6 Sp03

Fixup approach: Brill tagging (a
kind of transformation-based
learning)

6.8631/9.611] Lecture 6 Sp03

Another FST Paradigm:
Successive Fixups

o Like successive markups but alter
e Morphology

e Phonology

e Part-of-speech tagging

r

input

&
~auput

6.8631/9.611] Lecture 6 Sp03

Transformation-Based Tagging
(Brill 1995)

Unannotated

Corpus

Annotated
Corpus

Errors = 5,100

Annotated
Corpus

Errors = 3,145

Tl

12

Annotated
Corpus

Errors = 3.310

T1
Initial State
Annotator
T2
Annotated B
Corpus L3
Errors = 5,100
T4

Annotated
Corpus

Errors = 3,910

Annotated
Corpus

Errors = 6,300

T3

T4

Annotated
Corpus

Errors = 2,110

Annotated
Corpus

Errors = 1,231

figure from Brill’s thesis

11

T2

Annotated

Corpus

Errors = 1,410

Annotated
Corpus

Errors = 1,251

Annotated
Corpus

Errors = 4,255

T4

Annotated
Corpus

Errors = 1,231

Annotated
Corpus

Errors = 1,231

A

File Edt ¥ew LHo Lommunicator Help

e« » A &4 2 M S & @ G
Frint Security Shop SO

Reload Home Search Metzcape
_g%lnstantMessage E.3E3 Syllabus Google BE7ES Biologica Members ialebibd il Connections Bizlourmal Smartlpdate Mktplace Huarme
| ED7 wha

-

Back Fonward

hittp: A v ling. gu. ze/~lager/Homebrillkagger_ o html

f ‘;‘;&tvﬁnnkmarks A Location:

Brill Tagger
Powered by p-TEL Technology

€ Swedish @ [English

Text:

|Secretariat iz expected to race LomWoOrrow

W Trace Analyzel

@ Torhjirn Lager 1999, Russian tagger by Matalia Zinovjes

File Edt ¥ew LHo Lommunicator Help

-

<« » A N o W S & O

Back Fanward Reload Home Search Metzcape Frint Securty Shop S.t

_g%lnstantMessage E.3E3 Syllabus Google BE7ES Biologica Members ialebibd il Connections Bizlourmal Smartlpdate Mktplace Huarme

‘.ﬁt " Bookmarks xg& Location: | http: A Awee ling. gu.se/~lager/tagger. coilanguage=E nglish&input=5 ecretanat+iz+expected-+to+ace+tomonowitiace=an

; 4 ST twih

Tolenization

Zecretariat is expected to race tomorrow

Lexical lookup

Secretaridt/NNF is/VEZ expected/VEN to/TO race /NN tomorrow

Guessing

Contextual-rule application

Intermediate analysis:
Secretarigt/NNP :s5/VBI expected/VEBN to/TO race/WH tomorrowd NI
Applied rule:

tag:NN>VE <— tag:TOH[-17.

Analysis

Secretariat/NNP is/VBI expected/VBN to/TO race/WVE tomorrow NN

Transformation based tagging

Combines symbolic and stochastic approaches:
uses machine learning to refine its tags, via
several passes

Analogy: painting a picture, use finer and finer
brushes - start with broad brusch that covers a
lot of the canvas, but colors areas that will have
to be repainted. Next layer colors less, but also
makes fewer mistakes, and so on.

Similarly: tag using broadest (most general)
rule; then an narrower rule, that changes a
smaller number of tags, and so on. (We haven't
said how the rules are learned)

First we will see how the TBL rules are applied

ecture

Applying the rules

1. First label every word with its most-likely tag (as
we saw, this gets 90% right...!) for example, in
Brown corpus, race is most likely to be a Noun:

P(NN|race)= 0.98
A(VB|race)= 0.02 _—~

2. ...expected/VBZ to/T TO morrow/NN
..the/DT for/IN outer/]] space/NN

3. Use transformational (learned) rules to change
tags:
Change NN to VB when the previous tag is TO

6.8631/9.611] Lecture 6 Sp03

figure from Brill’s thesis

Initial Tagging of OOV Words

Change Tag
| From | 'lo Condition
1 NN NNS Has suflix -s
2 NN CD Has character .
3 NN JJ Has character -
4 NN VBN Has suffix -ed
5 NN | VBG Has sutlix -ing
6 2 RB Has suffix -1y
7 o JJ Adding suffix -ly results in a word,
8 NN CD The word $ can appear to the left.
Y NN JJ Has suflix -al
10 | NN VB | The word would can appear to the left,
11 | NN D Has character 0
12 | NN JJ The word be can appear to the left.
13 | NNS JJ Has suflix -~us
14 | NNS | VBZ The word 1t can appear to the left,
15| NN JJ Has suffix -ble
16 | NN JJ Has sutfix -1¢
17| NN CD Has character 1
I8 | NNS | NN Has suffix -ss
19 | 77 JJ Deleting the prefix un- results 1n a word
20 | NN JJ Has suffix -1ve

\PUPMCI VIOUTU) ICdI TNy PUUUlly

How?

e 3 stages
1. Start by labeling every word with most-likely
tag

2. Then examine every possible transformation,
and selects one that results in most improved
tagging

3. Finally, re-tags data according to this rule

4. Repeat 1-3 until some stopping criterion (no
new improvement, or small improvement)

e Output is ordered list of transformations that
constitute a tagging procedure

6.8631/9.611] Lecture 6 Sp03

How this works

e Set of possible ‘transforms’ is infinite, e.q.,
“transform NN to VB if the previous word
was MicrosoftWindoze & word braindead

occurs between 17 and 158 words before
that”

e To limit: start with small set of abstracted
transforms, or templates

6.8631/9.611] Lecture 6 Sp03

Templates used: Change ato b
when...

The preceding (following) word is tagged z.

The word two before (after) is tagged z.

One of the two preceding (following) words 1s tagged z.

One of the three preceding (following) words is tagged z.

The preceding word 1s tagged z and the following word is tagged w.

The preceding (following) word 1s tagged z and the word
two before (after) 1s tagged w.

Variables a, b, z, w, range over parts of speech

6.8631/9.611] Lecture 6 Sp03

Method

1. Call Get-best-transform with list of
potential templates; this calls

2. Get-best-instance Which instantiates

each template over all its variables (given
specific values for where we are)

3. Try it out, see what score is (improvement

over known tagged system -- supervised
learning); pick best one locally

6.8631/9.611] Lecture 6 Sp03

function TBL(corpus) returns transforms-queue

INTIALIZE-WITH-MOST-LIKELY-TAGS(corpus)

until end condition is met do
templates < GENERATE-POTENTIAL-RELEVANT-TEMPLATES
best-transform < GET-BEST-TRANSFORM(corpus, templates)
APPLY-TRANSFORM(best-transform, corpus)
ENQUEUE(best-transform-rule, transforms-queue)

end

return(fransforms-queue)

function GET-BEST-TRANSFORM(corpus, templates) returns transform
for each remplate in templates
(instance, score) < GET-BEST-INSTANCE(corpus, template)
if (score > best-transform.score) then best-transform < (instance, score)
return(best-transform)

6.8631/9.611] Lecture 6 Sp03

function GET-BEST-INSTANCE(corpus, template) returns transform
for from-tag <+ from rag—1 to tag—n do
for to-tag < from tag—1 to tag—n do
for pos < from 1 to corpus-size do
if (correct-tag(pos) == to-tag && current-tag(pos) == from-tag)
num-good-transforms(current-tag(pos—1))++
elseif (correct-tag(pos)==from-tag && current-tag(pos)==from-tag)
num-bad-transforms(current-tag(pos—1))++
end
best-Z <+ ARGMAX;(num-good-transforms(t) - num-bad-transforms(t)
if(num-good-transforms(best-Z) - num-bad-transforms(best-Z)
> best-instance.Z) then
best-instance < *“Change tag from from-tag to to-tag
if previous tag is best-Z~

procedure APPLY-TRANSFORM(transform, corpus)
for pos< from 1 to corpus-size do
if (current-tag(pos)==best-rule-from)
&& (current-tag(pos—1)==best-rule-prev))
current-tag(pos) = best-rule-to

N BN = 3t

nonlexicalized rules learned by
TBL tagger

From
NN
VBP
NN
VB
VBD

Change tags

To
VB
VB
VB
NN
VBN

Condition
Previous tag 1s TO
One of the previous 3 tags 1s MD
One of the previous 2 tags 1s MD
One of the previous 2 tags is DT
One of the previous 3 tags i1s VBZ

6.8631/9.611] Lecture 6 Sp03

Example

to/TO race/NN — VB
might/MD vanish/VBP — VB
might/MD not reply/NN — VB

figure from Brill’s thesis

Transformations Learned

Change Lag
| I'rom To Condition
| NN VB Previous tagis 170
2 | VBP VDB One of the previous three tags 1s MD
3 | NN VB One of the previous two tags 1s MD
4 VB NN One of the previous two tags 1s DT
5 | VBD | VBN | One of the previous three tags 1s VIDZ
6 | VBN | VBD Previous tag is PRP
7 | VBN | ¥VBD Previous tag is NNFP
8§ | VBD | VBN Previous tag is VBD
9 | VB VB Previous tag s 1'0
10 | POS | VBZ Previous tag is PRP
11| VB vVBr Previous tag is NNS
12 | VBD | VBN One of previous three tags 1s V3P
131 IN WDT One of next two tagsis Vi3
14 | VBD | VBN One of previous two tags 1s VI3
15| VvB | vBP Previous tag 1s P’RFP
16 | IN WDl Next tag 1s VBZ
17 | IN DT Next tag 1s NN
15| JJ NNP Next tag s NNV
19 | IN WDl Next tag 1s VBD
20| JJR | RBR Next tag is JJ

—_—— ——— [p———— —_————— - - - - =

BaselineTag*
NN@>VB// TO _
VBP @> VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups

“all at once.”

Error analysis: what's hard for
taggers

e Common errors (> 4%)

e NN vs .NNP (proper vs. other nouns) vs. 1]
(adjective): hard to distinguish prenominally;
important to distinguish esp. for information
extraction

e RP vs. RB vs IN: all can appear in sequences
immed. after verb

e VBD vs. VBN vs.]J: distinguish past tense,
past participles (raced vs. was raced vs. the
out raced horse)

6.8631/9.611] Lecture 6 Sp03

What's hard

e Unknown words
e Order 0 idea: equally likely over all parts of speech

o Better idea: same distribution as ‘Things seen once’
estimator of ‘things never seen’ - theory for this
done by Turing (again!)

e Hapax legomenon

e Assume distribution of unknown words is like this

e But most powerful methods make use of how word is
spelled

e See file in the course tagging dir on this

6.8631/9.611] Lecture 6 Sp03

Or unknown language

e Vse schastlivye sen’i pokhozhi brug na
druga, kazhdaja neschastlivaja sem’ja
neschastliva po-svoemu

6.8631/9.611] Lecture 6 Sp03

File Edit Wiew [GEo Communicator Help

T

< ® A 4 o @M S &

Back Forward Feload Haome Seaich Metzcape Print Securty

| "?‘E-E‘

Shop

3l

it

g%lnstanth’lessage B.BE3] Syllabus Google BE7E2 Biolagica Members Wbk ail Connechons Bizlournal Smartlpdate Mktplace Harne:

‘dvﬂnnkmarks \g&. Location: | http: A fwia ling, gu. 28/~ lagerHome Brillkagger_ui html

= 4 N wiha

Brill Tagger
Powered hy p-TEL Technology
" Swedish © Englhsh & Fussian

Text:

ﬁ!ﬂe schastlivye senl pokhozhi brug na druga, kazhdaja neschastlivaja semja neschastliva po

I Trace Analyzel

@ Torhjirn Lager 1999, Russian tazzer by Matalia Zinovjes

Most powerful unknown word
detectors

e 3 inflectional endings (-ed, -s, -ing); 32
derivational endings (-ion, etc.);
capitalization; hyphenation

e More generally: should use morphological
analysis! (and some kind of machine
learning approach)

» How hard is this? We don‘t know - we
actually dont know how children do this,
either (they make mistakes)

6.8631/9.611] Lecture 6 Sp03

Laboratory 2

Goals:
1. Use both HMM and Brill taggers

2. Find errors that both make, relative to
genre

3. Compare performance — use of kappa &
‘confusion matrix’

4. All the slings & arrows of corpora — use
Wall Street Journal excerpts, as well as
‘switchboard’ corpus

6.8631/9.611] Lecture 6 Sp03

J. text,
p. 297
Fig 8.6

1M words
60K tag

counts

Brown/Upenn corpus tags

Tag Description Example
CC Coordin. Conjunction and, but, or
CD Cardinal number one, two, three
DT Determiner a, the
EX Existential ‘there’ there
FW Foreign word mea culpa
IN Preposition/sub-conj of, in, by
1] Adjective yellow
JJR Adj., comparative bigger
JJS Adj., superlative wildest
LS List item marker 1, 2, One
MD Modal can, should
NN Noun, sing. or mass [lama
NNS Noun, plural llamas
NNP Proper noun, singular /BM
NNPS Proper noun, plural Carolinas
PDT Predeterminer all, both
POS Possessive ending 'S
PP Personal pronoun I, you, he
PP$ Possessive pronoun your, one’s
RB Adverb quickly, never
RBR Adverb, comparative faster
RBS Adverb, superlative fastest
RP Particle up, off

©.8505J/9.011J LeCture o 5pus

Tag Description Example
SYM Symbol +,%, &
TO “to” to

UH Interjection ah, oops
VB Verb, base form eat

VBD Verb, past tense ate

VBG Verb, gerund eating
VBN Verb, past participle eaten

VBP Verb, non-3sg pres eat

VBZ Verb, 3sg pres eats

WDT Wh-determiner which, that
WP Wh-pronoun what, who
WP$ Possessive wh- whose
WRB Wh-adverb how, where
$ Dollar sign $

Pound sign

“ Left quote (‘or*)

7 Right quote (Cor”)

(Left parenthesis (LG <)
) Right parenthesis (],), }, >)

b

Comma ,
Sentence-final punc (. ! ?7)
Mid-sentence punc (: ;... — -)

Coda on kids

C: “Mommy, nobody don’t like me”
A: No, say, “nobody likes me”

C: Nobody don’t likes me

A: Say, “nobody likes me”

C: Nobody don’t likes me

| 7 repetitions]

6.8631/9.611] Lecture 6 Sp03

Parsing words - review

e We are mapping between surface,
underlying forms

e Sometimes, information is ‘invisible’ (I.e.,
erased e, or an underlying/surface 0)

e There is ambiguity (more than one parse)

6.8631/9.611] Lecture 6 Sp03

From lines to hierarchical
respresentions...

e From this:
morph-ology yp rhead=voulor....]

e To this: /\

V[head=vouloir,

tense=Present,
Qum=SG, person=P3]
oblem |
the P veut

(\\Word Shape ’)

What can’t linear relations
represent?

e wine dark sea — (wine (dark sea)) or
((wine dark) sea) ?

e deep blue sky

e Can fsa’s represent this?

e Not really: algebraically, defined as being
associative (doesn’t matter about
concatenation order)

6.8631/9.611] Lecture 6 Sp03

So, from linear relations... to
hierarchies

6.8631/9.611] Lecture 6 Sp03

/K N
Det V V
The /\ has A

V V
plan /\ been
to VP V NP
/\ thrilling Otto
V NP

swallow Wanda

Examples

Verb — thrills
VP— Verb NP S
SoNPVP
NP VP
Verb NP

T

A roller coaster thrills every teenager

6.8631/9.611] Lecture 6 Sp03

Parsing for fsa’'s: keep track of
what ‘next state’ we could be in
at each step

banana

fruit flies like a banana

NB: ambiguity = > 1 path through network
= > 1 sequence of states (* parses ’)

‘syntactic rep’ = >1 ‘meaning’
6. 863J/9 611J LectuYe 6 Sp03

A

File Edt ¥ew LHo Lommunicator Help
v« » A &4 2 M| F &
Frint Security Shop SO

Reload Home Search | Metzcape
_g%lnstantMessage E.3E3 Syllabus Google BE7ES Biologica Members ialebibd il Connections Bizlourmal Smartlpdate Mktplace Huarme
| ED7 wha

-

Back Farnand

hittp: A v ling. gu. ze/ ~lager/tagger. coi?language=E nglizhfinput=fruit+lies+like+a+bananattrace=on

f ‘@tvﬁnnkmarks A Location:

Brill Tagger
Powered by p-TEL Technology

¢ Swedish & English ¢ Russian

Text:

[
W Trace Analyzel

Tolenization

fruit f£lies like a banana

Lexical lookup
Fruit/MNN flies/VEBZ 1ike/IN a/DT banarna/ MM

Guessing

Contextual-rule application

FSA Terminology

e Transition function: next state unique =
deterministic fsa

e Transition relation: > 1 next state =
nondeterministic fsa

banana

fruit flies like a banana

6.8631/9.611] Lecture 6 Sp03

Methods for parsing

e How do we handle ambiguity?

e Methods:
1. Backtrack

2. Convert to deterministic machine (ndfsa — dfsa):
offline compilation

3. Pursue all paths in parallel: online computation
(“state set” method)

4. Use lookahead

— We will use all these methods for more
complex machines/language representations

6.8631/9.611] Lecture 6 Sp03

FSA terminology

e Input alphabet,X; transition mapping, o;
finite set of states, Q, start state q,; set of
final states, g,

e 3q,s)—q
e Transition function: next state unique =
deterministic fsa

e Transition relation: > 1 next state =
nondeterministic fsa

6.8631/9.611] Lecture 6 Sp03

State-set method: simulate a
nondeterministic fsa

Compute all the possible next states the
machine can be in at a step = state-set

Denote this by S; = set of states machine can
be in after analyzing i tokens

Algorithm has 3 parts: (1) Initialize; (2) Loop,
(3) Final state?

Initialize: S,denotes initial set of states we're
in, before we start parsing, that is, g,

Loop: We must compute S;, given S, ;

Final?: S;= set of states machine is in after

reading all tokens; we want to test if there is a
final state insthepeectures spos

State-set parsing

Initialize: Compute initial state set, S,
1. S54¢—q,
2. Sy e—closure(S,)

Loop: Compute S; from S, 4

1. For each word w,, i=1,2,...,n
2' Sz’ queSi_lg(qﬂm}i)

3. S« e—closure(S;)
4. if S5, = K then halt & reject else
continue

Final: Accept/reject
1. Ifsqee.9-then accept else reject

What’s the minimal data

structure we need for this?

e [S,i | where S= denotes set of states we

could be in; i denotes current point we're at in
sentence

o As we'll see, we can use this same
representation for parsing w/ more complex
networks (grammars) - we just need to add one
new piece of information for state names

e In network form _.3_,
e In rule form:
g—te3 g- where ==some token of the input,

and B = remainder (so ‘dot’ represents how far
we have traveled

6.8631/9.611J Lecture 6 Sp03

6.8631/9.611] Lecture 6 Sp03

Use backpointers to keep track of
the different paths (parses):

\A ~NQ/\
SO:[OW@] S3:[A2,/§] S4:[41€—S5:[3]

State set 0 State set

6.8631/9.611] Lecture 6 Sp03

When is it better to convert at
compile time vs. run time? (for fsa)

e Run time: compute next state set on the
fly
e Compile time: do it once and for all

e When would this difference show up in
natural languages (if at all)?

6.8631/9.611] Lecture 6 Sp03

Where do the fsa states come from?

o States are equivalence classes of words
(tokens) under the operation of substitution

e Linguistic formulation (Wells, 1947, pp. 81-
82): "A word A belongs to the class
determined by the environment Xif AXis
either an utterance or occurs as a part of
some utterance” (distributional analysis)

e This turns out to be algebraically correct

e Can be formalized - the notion of syntactic
equivalenCesssys.siu Lecure s spo3

X-files: fragments from an alien
language

1.

N A WDN

.

Kem lost the election

Gore will lose the election

Gore could lose the election

Gore should lose the election

Gore did lose the election

Gore could have lost the election

Gore should have lost the election

Gore will have lost the election

Gore could have been losing the election

10. Gore should have been losing the election
11. Gore will have been losing the election
12. Gore has |lost'the-election

More X-files
14. Bush lost the election

15. Bush will lose the election

16. Bush could lose the election

17.Bush should lose the election

18. Bush did lose the election

19. Bush could have lost the election

20.Bush should have lost the election
21.Bush will have lost the election

22.Bush could have been losing the election
23.Bush should have been losing the election
24. Bush will have been losing the election

25.Bush haslastthe.elegtion

S I

Formally...

Definition. A binary relation between sets A, B,

iS @ subset (possibly empty) of Ax B
Definition. Strings k,r are left-substitutable in a

language L, if, for all strings w defined over X,
kweLiff rwel

Fact. Left-substitutability is an equivalence
relation (reflexive, transitive, symmetric)

Definition. An equivalence relation over X is

finite rank if it divides X into finitely many

equivalence classes
Definition. A binary relation R is called right-

invariant if, for all p,r e ~*, pRr= pwRrw

6.8631/9.611] Lecture 6 Sp03

And formally...

e Fact. A right-invariant relation R is an
equivalence relation

e Theorem (Myhill-Nerode, 1956)

6.8631/9.611] Lecture 6 Sp03

Theorem (Myhill-Nerode, 1956).

Let LcX*. Then the following 3 propositions
are equivalent:

. L is generated (accepted) by some finite-

state automaton (finite transition network);

L is the union of certain equivalence classes
of a right-invariant equivalence relation of
finite rank

Let the equivalence relation R be defined as
follows: xRy iff xand y are left-substitutable
in L. Then this relation R is of finite-rank and
IS right-invariant [this is Wells’ definition]

6.8631/9.611] Lecture 6 Sp03

Finite # of bins = finite state

e Gives easy way to show what is not finite-state
e Eg, a"cb”, for all n> 0

e Proof by contradiction.

Suppose there was such an FSA. By the theorem,
this FSA is of finite rank, and classifies all strings in
>* into one of a finite number of classes.

By the pigeonhole principle, there must exist some
string a's.t. & with j = i is in the same equivalence
class as & . But then the fsa must recognize both
aca and ac &, a contradiction

6.8631/9.611] Lecture 6 Sp03

Why not fsa’s forever?

e Can't yield the right set of strings= weak
generative capacity (antiantimissle...)

e Can't yield the right set of structures =
strong generative capacity (dark blue

Sky)
e How do these failures show up?

6.8631/9.611] Lecture 6 Sp03

A more complex fsa

eat

/ be
have ° been ° eating *
4 > »

will, can has, . ice-cream
18, been

are
2 cats

guy is
is, eaten

have

will, ca are poon
2 have > Deen g bemg
be
be

6.8631/9.611] Lecture 6 Sp03

Conversion to deterministic
machine

6.8631/9.611] Lecture 6 Sp03

What are we missing here?

6.8631/9.611] Lecture 6 Sp03

We are missing the symmetry

eat

have been ° eating *

will, can has,
been
have

are
eats

S %@% GEs eoxr e aa» e
18,

will, ca are

been
have been bemg

\}

6.8631/9.611] Lecture 6 Sp03

ice-cream

Having a poor representation...

e Shows up in having duplicated states (with no
other connection to each other)

e System would be ‘just as complex'= have the
same size (what is size of automaton?) even if
the network were not symmetric

e So we have failed to capture this regularity &
the network could be compressed

e HOw?

6.8631/9.611] Lecture 6 Sp03

Compressability reveals rendundancy
(pattern)that we have missed

Active: OW \b

Rule that flips network=

. ‘S
Passive: -

a

Aka “transformational grammar”

6.8631/9.611] Lecture 6 Sp03

But it's worse than that... more
redundancy even So

the guy Saw the guy

OO0 —O0=0
Bus Bush

So, obvious programming approach:
use a subroutine

6.8631/9.611] Lecture 6 Sp03

Subnetworks as subroutines, to
compress the description

the guy Saw the guy

000 000
Bus ﬂ Bush

Sentence: O—)O—)O—)@

Noun

phrase: CD: ’9 ;@ “splice out” common
subnets

Bush

6.8631/9.611] Lecture 6 Sp03

Could be worse...

Could be raining...

Noun “specifiers”

6.8631/9.611] Lecture 6 Sp03

It could be even worse...

Examples

Verb — thrills
VP— Verb NP S
SoNPVP
NP VP
Verb NP

T

A roller coaster thrills every teenager

6.8631/9.611] Lecture 6 Sp03

The notion of a common
subnetwork

e Equivalent to the notion of a phrase
e A Noun Phrase (NP)

o Defined by substitution class of a sequence of
words (aka “a constituent”) - extension
beyond substitution of single words

e A phrase iff we can interchangeably substitute
that sequence of words regardless of context

e S0 also gives us the notion of a context-free
grammar (CFG)

6.8631/9.611] Lecture 6 Sp03

Constituents, aka phrases

e Building blocks that are units of words
concatenated together

e Why?
e AnNS:

1. They act together (i.e., behave alike
under operations) - what operations?

2. Succinctness
3. (Apparently) nonadjacent constraints

6.8631/9.611] Lecture 6 Sp03

The deepest lesson

e Claim: all apparently nonadjacent
relationships in languge can be reduced to
adjacent ones via projection to a new
level of representation

e (In one sense, vacuous; in another, deep)

e Example: Subject-Verb agreement
(agreement generally)

e Example: so-called wh-movement

6.8631/9.611] Lecture 6 Sp03

Gaps ("deep” grammar!)

e Pretend “kiss” is a pure transitive verb.

o [s “the president kissed” grammatical?
e If so, what type of phrase is it?

e the sandwich that)| the president kissed

o I wonder what Sa
- Sa
e What else has Sa

y said the president kissed
y consumed the pickle with
y consumed e with the pickle

6.8631/9.611] Lecture 6 Sp03

Examples

e The guy that we know in Somerville likes ice-
cream

e Who did the guy who lives in Somerville see

_? 7N

NP-+sing VP+sing

/\ J
The guy th&
&\/S\ 1ce-cream
at we Know in Som.

6.8631/9.611] Lecture 6 Sp03

The deep reason why

e Machinery of the mind: based only on
concatenation of adjacent elements - not
on ‘counting’ eg., “take the 7th element &
move it...”

e Runs through all of linguistic
representations (stress, metrical patterns,
phonology, syntay, ...)

e Strong constraint on what we have to
represent

6.8631/9.611] Lecture 6 Sp03

Constituents

Basic ‘is-a’ relation
Act as ‘whole units’ -
o [want this student to solve the problem

o ?? Student, I want this to solve the problem
e This student, I want to solve the problem

Sometimes, we don’t see whole constituents...book
titles (claimed as objection to constituency):

e Sometimes a Great Notion

e The Fire Next Time

Why might that be?

6.8631/9.611] Lecture 6 Sp03

