
6.863J Natural Language Processing
Lecture 5: Finite state machines &

part-of-speech tagging

Instructor: Robert C. Berwick

The Menu Bar
• Administrivia:

• Schedule alert: Lab1 due next Weds (Feb
24)

• Lab 2, handed out Feb 24 (look for it on the
web as laboratory2.html; due the Weds
after this – March 5

• Agenda:
• Part of speech ‘tagging’ (with sneaky

intro to probability theory that we need)
• Ch. 6 & 8 in Jurafsky; see ch. 5 on

Hidden Markov models

Two finite-state approaches to
tagging

1. Noisy Channel Model (statistical)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

• PS: how do we evaluate taggers? (and
such statistical models generally?)

• 1, 2, & evaluation = Laboratory 2

The real plan…

p(X)

p(Y | X)

p(X, y)

*

=

*
p(y | Y)

Find x that maximizes
this quantity

Cartoon version

p(X)

p(Y | X)

p(X, y)

*

==

* *
p(y | Y)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

What’s the big picture? Why NLP?

Computers would be a lot more useful if
they could handle our email, do our
library research, talk to us …

But they are fazed by natural human
language.

How can we tell computers about language?
(Or help them learn it as kids do?)

What is NLP for, anyway?

• If we could do it perfectly, we could pass
the Turing test (more on this below)

• Two basic ‘engineering’ tasks – and third
scientific one

• Text-understanding
• Information extraction
• ?What about how people ‘process’

language??? [psycholinguistics]

Some applications…

• Spelling correction, grammar checking …
• Better search engines
• Information extraction
• Language identification (English vs. Polish)
• Psychotherapy; Harlequin romances; etc.
• And: plagiarism detection - www.turnitin.com
• For code:

www.cs.berkeley.edu/~aiken/moss.html
• New interfaces:

• Speech recognition (and text-to-speech)
• Dialogue systems (USS Enterprise onboard computer)
• Machine translation (the Babel fish)

Text understanding is very hard

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

• NL relies on ambiguity! (Why?)
• “We haven’t had a sale in 40 years”

What’s hard about the story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

To get a donut (spare tire) for his car?

What’s hard?

John stopped at the donut store on his way home
from work. He thought a coffee was good every
few hours. But it turned out to be too
expensive there.

store where donuts shop? or is run by donuts?
or looks like a big donut? or made of donut?
or has an emptiness at its core?

(Think of five other issues…there are lots)

What’s hard about this story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

Describes where the store is? Or when he
stopped?

What’s hard about this story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

Well, actually, he stopped there from
hunger and exhaustion, not just from
work.

What’s hard about this story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

At that moment, or habitually?
(Similarly: Mozart composed music.)

What’s hard about this story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

That’s how often he thought it?

What’s hard about this story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

But actually, a coffee only stays good for
about 10 minutes before it gets cold.

What’s hard about this story?

John stopped at the donut store on his
way home from work. He thought a
coffee was good every few hours. But
it turned out to be too expensive there.

Similarly: In America a woman has a baby
every 15 minutes. Our job is to find
that woman and stop her.

What’s hard about this story?

John stopped at the donut store on his way
home from work. He thought a coffee
was good every few hours. But it turned
out to be too expensive there.

the particular coffee that was good every
few hours? the donut store? the
situation?

What’s hard about this story?

John stopped at the donut store on his
way home from work. He thought a
coffee was good every few hours. But
it turned out to be too expensive there.

too expensive for what? what are we
supposed to conclude about what John
did?

how do we connect “it” to “expensive”?

Example tagsets

• 87 tags - Brown corpus
• Three most commonly used:
1. Small: 45 Tags - Penn treebank (Medium

size: 61 tags, British national corpus
2. Large: 146 tags
Big question: have we thrown out the right

info? Impoverished? How?

Current performance

• How many tags are correct?
• About 97% currently
• But baseline is already 90%

• Baseline is performance Homer Simpson
algorithm:

• Tag every word with its most frequent tag
• Tag unknown words as nouns

• How well do people do?

Input: the lead paint is unsafe

Output: the/Det lead/N paint/N is/V unsafe/Adj

Knowldege-based (rule-based)
vs. Statistically-based systems

A picture: the statistical, noisy
channel view

x(speech)

Wreck a nice beach?
Reckon eyes peach?
Recognize speech?

Acoustic
Model
P(x|y)

Language
Model
P(y)

y(text)

Language models, probability & info

• Given a string w, a language model gives us
the probability of the string P(w), e.g.,
• P(the big dog) > (dog big the) > (dgo gib eth)
• Easy for humans; difficult for machines
• Let P(w) be called a language model

Language models – statistical
view
• Application to speech recognition (and parsing,

generally)
• x= Input (speech)
• y= output (text)
• We want to find max P(y|x) Problem: we don’t know

this!
• Solution: We have an estimate of P(y) [the language

model] and P(x|y) [the prob. of some sound given
text = an acoustic model]

• From Bayes’ law, we have,
max P(y|x) = max P(x|y) • P(y) = max Pr acoustic

model x lang model
(hold P(x) fixed, i.e., P(x|y) • P(y) / P(x), but max is

same for both)

Can be generalized to Turing
test…!

If we could solve this (the?) NLP problem, we
could solve the Turing test…. (but not the Twain
test)! Language modeling solves the Turing
test!

human

computer

Interrogator

q?

a!

q?

P(a|q)= pr human answers q with a =
P(q,a)/P(q)

P(b|q)= pr computer answers q with b =
P(q,b)/P(q)

If P(q,a) = P(q,b) then computer
successfully imitates humanb!

Some applications…

• Spelling correction, grammar checking …
• Better search engines
• Information extraction
• Language identification (English vs. Polish)
• Psychotherapy; Harlequin romances; etc.
• And: plagiarism detection - www.turnitin.com
• For code:

www.cs.berkeley.edu/~aiken/moss.html
• New interfaces:

• Speech recognition (and text-to-speech)
• Dialogue systems (USS Enterprise onboard computer)
• Machine translation (the Babel fish)

What’s this stuff for anyway?
Information extraction

• Information extraction involves processing
text to identify selected information:
• particular types of names
• specified classes of events.
• For names, it is sufficient to find the name in

the text and identify its type
• for events, we must extract the critical

information about each event (the agent,
objects, date, location, etc.) and place this
information in a set of templates (data base)

Example – “Message
understanding” (MUC)

ST1-MUC3-0011

SANTIAGO, 18 MAY 90 (RADIO COOPERATIVA NETWORK) -- [REPORT] [JUAN
ARAYA]
[TEXT]
EDMUNDO VARGAS CARRENO, CHILEAN FOREIGN MINISTRY UNDER
SECRETARY, HAS STATED THAT THE BRYANT TREATY WITH THE UNITED STATES WILL
BE APPLIED IN THE LETELIER CASE ONLY TO COMPENSATE THE RELATIVES OF THE
FORMER CHILEAN FOREIGN MINISTER MURDERED IN WASHINGTON AND THE
RELATIVES OF HIS U.S. SECRETARY, RONNIE MOFFIT. THE CHILEAN FOREIGN UNDER
SECRETARY MADE THIS STATEMENT IN REPLY TO U.S. NEWSPAPER REPORTS STATING
THAT THE TREATY WOULD BE PARTIALLY RESPECTED.

FOLLOWING ARE VARGAS CARRENO'S STATEMENTS AT A NEWS CONFERENCE HE
HELD IN BUENOS AIRES BEFORE CONCLUDING HIS OFFICIAL VISIT TO
ARGENTINA:

Extracted info – names, events
0. MESSAGE: ID TST1-MUC3-0011
1. MESSAGE: TEMPLATE 1
2. INCIDENT: DATE 18 MAY 90
3. INCIDENT: LOCATION UNITED STATES: WASHINGTON D.C. (CITY)
4. INCIDENT: TYPE ATTACK
5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED
6. INCIDENT: INSTRUMENT ID -
7. INCIDENT: INSTRUMENT TYPE -
8. PERP: INCIDENT CATEGORY STATE-SPONSORED VIOLENCE
9. PERP: INDIVIDUAL ID -
10. PERP: ORGANIZATION ID "CHILEAN GOVERNMENT"
11. PERP: ORGANIZATION

CONFIDENCE REPORTED AS FACT: "CHILEAN GOVERNMENT"
12. PHYS TGT: ID -
13. PHYS TGT: TYPE -
14. PHYS TGT: NUMBER -
15. PHYS TGT: FOREIGN NATION -
16. PHYS TGT: EFFECT OF INCIDENT -
17. PHYS TGT: TOTAL NUMBER -
18. HUM TGT: NAME "ORLANDO LETELIER"

"RONNIE MOFFIT"
19. HUM TGT: DESCRIPTION "FORMER CHILEAN FOREIGN MINISTER": "ORLANDO

LETELIER"
"U.S. SECRETARY" / "ASSISTANT" /
"SECRETARY": "RONNIE MOFFIT"

20. HUM TGT: TYPE GOVERNMENT OFFICIAL: "ORLANDO LETELIER"
CIVILIAN: "RONNIE MOFFIT"

21.

Text understanding vs. Info
extraction

• For information extraction:
• generally only a fraction of the text is relevant; for

example, in the case of the MUC-4 terrorist reports,
probably only about 10% of the text was relevant;

• information is mapped into a predefined, relatively
simple, rigid target representation; this condition
holds whenever entry of information into a database
is the task;

• the subtle nuances of meaning and the writer's goals
in writing the text are of at best secondary interest.

Properties of message understanding
task

• Simple, fixed definition of the information
to be sought.

• Much, or even most, of the text is
irrelevant to the information extraction
goal.

• Large volumes of text need to be
searched.

Text understanding

• the aim is to make sense of the entire
text;

• the target representation must
accommodate the full complexities of
language;

• one wants to recognize the nuances of
meaning and the writer's goals

MUC 5 - business

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern and a Japanese
trading house to produce golf clubs to be shipped to Japan. The joint venture, Bridgestone Sports Taiwan Co.,
capitalized at 20 million new Taiwan dollars, will start production in January 1990 with production of 20,000
iron and "metal wood" clubs a month.

TIE-UP-1:
Relationship: TIE-UP
Entities: "Bridgestone Sports Co."

"a local concern“
"a Japanese trading house"

Joint Venture Company: "Bridgestone Sports Taiwan Co." Activity: ACTIVITY-1
Amount: NT$20000000

ACTIVITY-1:
Activity: PRODUCTION
Company: "Bridgestone Sports Taiwan Co."
Product: "iron and `metal wood' clubs"
Start Date: DURING: January 1990

Applications

• IR tasks:
• Routing queries to prespecified topics
• Text classification/routing

• Summarization
• Highlighting, clipping
• NL generation from formal output

representation
• Automatic construction of knowledge

bases from text

Message understanding tasks

Business News:Joint Ventures (English and
Japanese),

Labor Negotiations, Management Succession

Geopolitical News:Terrorist Incidents

Military Messages:DARPA Message Handler

Legal English:Document Analysis Tool

Integration with OCR

Name recognition: a fsa task

Shallow parsing or ‘chunking’ –
Lab 3

Recognizing domain patterns

What about part of speech tagging
here?
• Advantages

• Ambiguity can be potentially reduced (but we shall
see in our laboratory if this is true)

• Avoid errors due to incorrect categorization of rare
senses e.g., “has been” as noun

• Disadvantages
• Errors taggers make often those you’d most want to

eliminate
• High performance requires training on similar genre
• Training takes time

Proper names…

• Proper names are particularly important
for extraction systems

• Because typically one wants to extract
events, properties, and relations about
some particular object, and that object is
usually identified by its name

…A challenge…

• Problems though…
• proper names are huge classes and it is

difficult, if not impossible to enumerate their
members

• Hundreds of thousands of names of locations
around the world

• Many of these names are in languages other
than the one in which the extraction system
is designed

How are names extracted?

• (Hidden) Markov Model
• Hypothesized that there is an underlying finite

state machine (not directly observable, hence
hidden) that changes state with each input
element

• probability of a recognized constituent is
conditioned not only on the words seen, but the
state that the machine is in at that moment

• “John” followed by “Smith” is likely to be a
person, while “John” followed by “Deere” is
likely to be a company (a manufacturer of heavy
farming and construction equipment).

HMM statistical name tagger

Person name

End

Not-a-name

Company nameStart

HMM
• Whether a word is part of a name or not is a random

event with an estimable probability
• The probability of name versus non-name readings can

be estimated from a training corpus in which the names
have been annotated

• In a Hidden Markov model, it is hypothesized that there
is an underlying finite state machine (not directly
observable, hence hidden) that changes state with each
input element

• The probability of a recognized constituent is
conditioned not only on the words seen, but the state
that the machine is in at that moment

• “John” followed by “Smith” is likely to be a person,
while “John” followed by “Deere” is likely to be a
company (a manufacturer of heavy farming and
construction equipment).

HMM construction

• Hidden state transition model governs word
sequences

• Transitions probabilistic
• Estimate transition probabilities from an

annotated corpus
• P(sj | sj-1, wj)
• Based just on prior state and current word seen

(hence Markovian assumption)
• At runtime, find maximum likelihood path

through the network, using a max-flow
algorithm (Viterbi)

How much data is needed?

• System performance bears a roughly log-
linear relationship to the training data
quantity, at least up to about 1.2 million
words

• Obtaining 1.2 million words of training
data requires transcribing and annotating
approximately 200 hours of broadcast
news programming, or if annotating text,
this would amount to approximately 1,777
average-length Wall Street Journal articles

If you think name recog is not
relevant, then…

• Microsoft announced plans to include
“Smart Tags” in its browser and other
products. This is a feature that
automatically inserts hyperlinks from
concepts in text to related web pages
chosen by Microsoft.

• The best way to make automatic
hyperlinking unbiased is to base it on an
unbiased source of web pages, such as
Google.

How to do this?

• The main technical problem is to find pieces of
text that are good concept anchors… like
names!

• So: Given a text, find the starting and ending
points of all the names. Depending on our
specific goals, we can include the names of
people, places, organizations, artifacts (such as
product names), etc.

• . Once we have the anchor text, we can send it
to a search engine, retrieve a relevant URL (or
set of URLs, once browsers can handle multi-
way hyperlinks), and insert them into the original
text on the fly.

OK, back to the tagging task

• This will illustrate all the issues with name
recognition too

Brown/Upenn corpus tags

J. text,
p. 297
Fig 8.6
1M words
60K tag
counts

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Ok, what should we look at?

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Ok, what should we look at?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb

Adj some possible tags for
Prep each word (maybe more)
…?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

Finite-state approaches

• Noishy Chunnel Muddle (statistical)

noisy channel X Y

real language X

yucky language Y

want to recover X from Y

part-of-speech tags

insert words

text

Noisy channel – and prob intro

noisy channel X Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

choose sequence of tags X that maximizes p(X | Y)
[oops… this isn’t quite correct… need 1 more step]

Two approaches

• Fix up Homer Simpson idea with more
than unigrams – look at tag sequence

• Go to more powerful Hidden Markov
model

What are unigrams and bigrams?

• Letter or word frequencies: 1-grams
• useful in solving cryptograms: ETAOINSHRDLU…

• If you know the previous letter: 2-grams
• “h” is rare in English (4%; 4 points in Scrabble)
• but “h” is common after “t” (20%)

• If you know the previous 2 letters: 3-grams
• “h” is really common after “ ” “t”

etc. …

In our case

• Most likely word? Most likely tag t given a word
w? = P(tag|word)

• Task of predicting the next word
• Woody Allen:

“I have a gub”

In general: predict the Nth word (tag) from the
preceding N-1 word (tags) aka N-gram

Homer Simpson: just use the current word (don’t
look at context) = unigram (1-gram)

Where do these probability info
estimates come from?

• Use tagged corpus e.g. “Brown corpus” 1M
words (fewer token instances); many others –
Celex 16M words

• Use counts (relative frequencies) as estimates
for probabilities (various issues w/ this, these
so-called Maximum-Likelihood estimates – don’t
work well for low numbers)

• Train on texts to get estimates – use on new
texts

General probabilistic decision
problem

• E.g.: data = bunch of text
• label = language
• label = topic
• label = author

• E.g.2: (sequential prediction)
• label = translation or summary of entire text
• label = part of speech of current word
• label = identity of current word (ASR) or

character (OCR)

Formulation, in general

)|Pr(maxarg DataLabelLabel
Label

=

How far should we go?

• “long distance___”
• Next word? Call?
• p(wn|w
• Consider special case above
• Approximation says that

| long distance call|/|distance call| ≈ |distance call|/|distance|
• If context 1 word back = bigram
But even better approx if 2 words back: long distance___

Not always right: long distance runner/long distance call
Further you go: collect long distance_____

Bigrams, fsa’s, and Markov
models – take two

• We approximate p(tag| all previous tags)
Instead of

p(rabbit|Just then the white…) we use:
P(rabbit|white)

• This is a Markov assumption where past
memory is limited to immediately previous
state – just 1 state corresponding to the
previous word or tag

Forming classes

• “n-gram” = sequence of n “words”
• unigram
• bigram
• trigram
• four-gram

• In language modeling, the conditioning
variables are sometimes called the “history” or
the “context.”

• The Markov assumption says that the prediction
is conditionally independent of ancient history,
given recent history.

• I.e., we divide all possible histories into equiv.
classes based on the recent history.

3-gram

[Genmetheyesse orils of Ted you doorder [6], the Grily
Capiduatent pildred and For thy werarme: nomiterst halt i,
what production the Covers, in calt cations on wile ars,
was name conch rom the exce of the man, Winetwentagaint up,
and and Al1. And of Ther so i hundal panite days th the
res of th rand ung into the forD six es, wheralf the hie
soulsee, frelatche rigat. And the LOperact camen
unismelight fammedied: and nople,

4-gram

[1] By the returall benefit han every familitant of all thou
go? And At the eld to parises of the nursed by thy way of
all histantly be the ~aciedfag . to the narre gread abrasa
of thing, and vas these conwuning clann com to one language;
all Lah, which for the greath othey die. -

5-gram

[Gen 3:1] In the called up history of its opposition of
bourgeOIS AND Adam to rest, that the existing of heaven; and
land the bourgeoiS ANger anything but concealed, the land
whethere had doth know ther: bury thy didst of Terature their
faces which went masses the old society [2] is the breaks out
of oppressor of all which, the prolETARiat goest, unto German
pleast twelves applied in manner with these, first of this
polities have all

3-word-gram

[Gen 4:25] And Adam gave naines to ail feudal,

patriarchal, idyllic relations. It bas but –established

new classes, new conditions of oppression, new forme of

struggle in place of the West? The bourgeoisie keeps

more and more splitting up into two great lights;

the greater light to rule the day of my house is this

Eliezer of Damascus.

How far can we go??

Shakespeare in lub…
The unkindest cut of all

• Shakespeare: 884,647 words or tokens
(Kucera, 1992)

• 29,066 types (incl. proper nouns)
• So, # bigrams is 29,0662 > 844 million. 1

million word training set doesn’t cut it –
only 300,000 difft bigrams appear

• Use backoff and smoothing
• So we can’t go very far…

Reliability vs. discrimination

“large green ___________”

tree? mountain? frog? car?

“swallowed the large green ________”

pill? broccoli?

Reliability vs. discrimination

• larger n: more information about the
context of the specific instance (greater
discrimination)

• smaller n: more instances in training
data, better statistical estimates (more
reliability)

Choosing n

1.6 x 10174 (4-grams)

8,000,000,000,0003 (trigrams)

400,000,0002 (bigrams)

Number of binsn

Suppose we have a vocabulary (V) = 20,000 words

Statistical estimators

Example:

Corpus: five Jane Austen novels

N = 617,091 words

V = 14,585 unique words

Task: predict the next word of the trigram “inferior to ________”

from test data, Persuasion:

“[In person, she was] inferior to both [sisters.]”

Instances in the Training Corpus:
“inferior to ________”

Maximum likelihood estimate

Actual probability distribution

Comparison

Smoothing

• Develop a model which decreases
probability of seen events and allows the
occurrence of previously unseen n-grams

• a.k.a. “Discounting methods”
• “Cross-Validation” – Smoothing methods

which utilize a second batch of data.

How to use Pr(Label | Data) ?

• Assume we have a training corpus, i.e. a bunch
of Data with their Labels.

• Then we can compute Maximum Likelihood
Estimates (MLEs) of the probabilities as relative
frequencies:

• To predict a Label for a new bunch of Data, we
just look up Pr(Label | Data) for all possible
Labels and output the argmax.

)(

),(
)|Pr(

Datacount

DataLabelcount
DataLabel =

Practical limitations

• Equivalently,

• Let Data = (w1, w2, …, wd).
• Let v = size of vocabulary.
• Then we need vd probability

estimates!

)Pr(

),Pr(
)|Pr(

Data

DataLabel
DataLabel =

We can use n-grams for tagging

• Replace ‘words’ with ‘tags’
• Find best maximum likelihood estimates
• Estimates calculated this way:

• P(noun|det) = p(det, noun)/p(det) replace:
• ≈ count(det at position i-1 & noun at i)

count(det at position i-1)
• Correction: include frequency of context word
 ≈ count(det at position i-1 & noun at I)

count(det at position i-1)*count noun at i)
 Find optimal path – highest p, using dynamic

programming algorithm, approx. linear in length
of tag sequence

Example

The guy still saw her
Det NN NN NN PPO

VB VB VBD PP$
RB

Table 2 from DeRose (1988)
Det=determiner, NN=noun, VB=verb,
RB=adverb, VBD=past-tense-verb, PPO=object
pronoun and PP$=possessive pronoun

Find the Max likelihood estimate (MLE) path
through this ‘trellis’

Transitional probability estimates
from counts

DT NN PPO PP$ RB VB VBD

DT 0 186 0 8 1 8 9

NN 40 1 3 40 9 66 186

PPO 7 3 16 164 109 16 313

PP$ 176 0 0 5 1 1 2

RB 5 3 16 164 109 16 313

VB 22 694 146 98 9 1 59

VBD 11 584 143 160 2 1 91

Tagging search tree (trellis)

Det NN NN NN PPO

VB VB VBD PP$

RB

The guy still saw her

Step 1. c(DT-NN)= 186
c(DT-VB) = 1

Keep both paths. (Why?)
Step 2. Pick max to each of the tags NN, VB, RB

need keep only the max. Why?

Trellis search

Det NN NN NN PPO

VB VB VBD PP$

RB

The guy still saw her
1
66

186

9

1

Det NN NN NN PPO

VB VB VBD PP$

RB

1
9

6941

Smoothing

• We don’t see many of the words in English
(uniqram)

• We don’t see the huge majority of bigrams in
English

• We see only a tiny sliver of the possible trigrams
• So: most of the time, bigram model assigns p(0) to

bigram:
p(food|want) = |want food| /|want| = 0/whatever

But means event can’t happen – we aren’t warranted
to conclude this… therefore, we must adjust…how?

Simplest idea: add-1 smoothing

• Add 1 to every cell of
• P(food | want) = |want to| ÷ |want| = 1 ÷

2931 = .0003

Laplace’s law (add 1)

Laplace’s Law (add 1)

Laplace’s Law

Initial counts – Berkeley
restaurant project

Old vs.New table

Changes

• All non-zero probs went down
• Sometimes probs don’t change much
• Some predictable events become less

predictable (P(to|want) [0.65 to 0.22])
• Other probs change by large factors (

P(lunch|Chinese) [0.0047 to 0.001]
• Conclusion: generally good idea, but effect on

nonzeroes not always good – blur original model
– too much prob to the zeros, we want less
‘weight’ assigned to them (zero-sum game,
‘cause probs always sum to 0)

So far, then…

• n-gram models are a.k.a. Markov
models/chains/processes.

• They are a model of how a sequence of
observations comes into existence.

• The model is a probabilistic walk on a
FSA.

• Pr(a|b) = probability of entering state a,
given that we’re currently in state b.

How well does this work for
tagging?
• 90% accuracy (for unigram) pushed up to

96%
• So what?
• How good is this? Evaluation!

Evaluation of systems

• The principal measures for information
extraction tasks are recall and precision.

• Recall is the number of answers the system got
right divided by the number of possible right
answers
• It measures how complete or comprehensive the

system is in its extraction of relevant information
• Precision is the number of answers the system

got right divided by the number of answers the
system gave
• It measures the system's correctness or accuracy
• Example: there are 100 possible answers and the

system gives 80 answers and gets 60 of them right,
its recall is 60% and its precision is 75%.

A better measure - Kappa

• Takes baseline & complexity of task into
account – if 99% of tags are Nouns, getting
99% correct no great shakes

• Suppose no “Gold Standard” to compare
against?

• P(A) = proportion of times hypothesis agrees
with standard (% correct)

• P(E) = proportion of times hypothesis and
standard would be expected to agree by chance
(computed from some other knowledge, or
actual data)

Kappa [p. 315 J&M text]

• Note K ranges between 0 (no agreement,
except by chance; to complete
agreement, 1)

• Can be used even if no ‘Gold standard’
that everyone agrees on

• K> 0.8 is good

)(1
)()(

EP
EPAP

−
−=κ

Kappa

• A = actual agreement; E = expected
agreement

• consistency is more important than “truth”
• methods for raising consistency

• style guides (often have useful insights into
data)

• group by task, not chronologically, etc.
• annotator acclimatization

)(1
)()(

EP
EPAP

−
−=κ

Statistical Tagging Methods

• Simple bigram – ok, done
• Combine bigram and unigram

Markov chain…

1

.4

1

.3
.3

.4

.6 1

.6

.4

te

h
a p

i

Start

∑ =∀
x

yxy 1)|Pr(

note: Pr(h|h) = 0

First-order Markov (bigram)
model as fsa

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov inferences

1. Given a Markov model M, we can compute the
(MLE) probability of a given observation
sequence.

2. Given the states of a Markov model, and an
observation sequence, we can estimate the
state transition probabilities.

3. Given a pair of Markov models and an
observation sequence, we can choose the
more likely model.

From Markov models to Hidden
Markov models (HMMs)

• The HMM of how an observation sequence
comes into existence adds one step to a
(simple/visible) Markov model.

• Instead of being observations, the states now
probabilistically emit observations.

• The relationship between states and
observations is, in general, many-to-many.

• We can’t be sure what sequence of states
emitted a given sequence of observations

HMM for ice-cream consumption

• Predict Boston weather given my
consumption (observable) of ice-creams,
1, 2, 3.

• Underlying state is either H(ot) or C(old)
• Prob of moving between states, and also

prob of eating 1, 2, 3, given in state H or
C. Formally:

HMM

• Start in state Si with probability pi.
• While (t++) do:

• Move from Si to Sj with probability aij (i.e.
Xt+1=j)

• Emit observation ot=k with probability bjk.

S1=Cold S2=Hot

2 1 1 2 3

3 .6.3
.1

.1
.2

.7

.2

.2

.8

.8

S.5 .5

Noisy channel maps well to our
fsa/fst notions

• What’s p(X)?
• Ans: p(tag sequence) – i.e., some finite state

automaton
• What’s p(Y|X)?
• Ans: transducer that takes tags→words
• What’s P(X,Y)?
• The joint probability of the tag sequence, given

the words (well, gulp, almost… we will need one
more twist – why? What is Y?)

The plan modeled as composition (x-
product) of finite-state machines

p(X)

p(Y | X)

p(X,Y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

*

=

a:D
/0.

63a:C
/0.

07 b:C/0.24b:D/0.06

Note p(x,y) sums to 1.

Cross-product construction for
fsa’s (or fst’s)

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*
0 1

2

3
4

ε
ε
ε

εε
ε

Pulled a bit of a fast one here…

• So far, we have a plan to compute P(X,Y) – but
is this correct?

• Y= all the words in the world
• X= all the tags in the world (well, for English)
• What we get to see as input is y∈Y not Y!
• What we want to compute is REALLY this:

want to recover x∈X from y∈Y
choose x that maximizes p(X | y) so…

The real plan…

p(X)

p(Y | X)

p(X, y)

*

=

*
p(y | Y)

Find x that maximizes
this quantity

Cartoon version

p(X)

p(Y | X)

p(X, y)

*

==

* *
p(y | Y)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

This is an HMM for tagging

• Each hidden tag state produces a word in
the sentence

• Each word is
• Uncorrelated with all the other words and

their tags
• Probabilistic depending on the N previous

tags only

The plan modeled as composition
(product) of finite-state machines

p(X)

p(Y | X)

p(X,Y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

*

=

a:D
/0.

63a:C
/0.

07 b:C/0.24b:D/0.06

Note p(x,y) sums to 1.
Suppose y=“C”; what is best “x”?

We need to factor in one more machine
that models the actual word sequence, y

p(X)

p(Y | X)

find x to
maximize p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

*

=

a:C
/0.

07 b:C/0.24

* *
c:C/1 p(y | Y)restrict just to

paths compatible
with output “C”

best path

The statistical view, in short:

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the

words
• What is the most likely tag sequence?
• Use a finite-state automaton, that can

emit the observed words
• FSA has limited memory
• AKA this Noisy channel model is a “Hidden

Markov Model” -

Put the punchline before the joke

Bill directed a cortege of autos through the dunes

Recover tags

Punchline – recovering (words,
tags)

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

Find tag sequence X that maximizes probability product

tags X→

words Y→

Punchline – ok, where do the pr
numbers come from?

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

tags X→

words Y→

0.4 0.6

0.001

the tags are not observable & they are states of some fsa
We estimate transition probabilities between states
We also have ‘emission’ pr’s from states
En tout: a Hidden Markov Model (HMM)

Our model uses both bigrams &
unigrams:

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

tags X→

words Y→

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement

This only shows the
best path… how do
we find it?

Submenu for probability theory –
redo n-grams a bit more formally

• Define all this p(X), p(Y|X), P(X,Y)
notation

• p, event space, conditional probability &
chain rule;

• Bayes’ Law
• (Eventually) how do we estimate all these

probabilities from (limited) text? (Backoff
& Smoothing)

Rush intro to probability

p(Paul Revere wins | weather’s clear) = 0.9

What’s this mean?

p(Paul Revere wins | weather’s clear) = 0.9

• Past performance?
• Revere’s won 90% of races with clear weather

• Hypothetical performance?
• If he ran the race in many parallel universes …

• Subjective strength of belief?
• Would pay up to 90 cents for chance to win $1

• Output of some computable formula?
• But then which formulas should we trust?

p(X | Y) versus q(X | Y)

p is a function on event sets

weather’s
clear

Paul Revere
wins

All Events (races)

p(win | clear) ≡ p(win, clear) / p(clear)

p is a function on event sets

weather’s
clear

Paul Revere
wins

All Events (races)

p(win | clear) ≡ p(win, clear) / p(clear)
syntactic sugar predicate selecting

races where
weather’s clear

logical conjunction
of predicates

p measures total
probability of a
set of events.

Commas in p(x,y) mean conjunction –
on the left…

p(Paul Revere wins, Valentine places, Epitaph
shows | weather’s clear)
what happens as we add conjuncts to left of bar ?

• probability can only decrease
• numerator of historical estimate likely to go to zero:

times Revere wins AND Val places… AND weather’s clear
times weather’s clear

Commas in p(x,y)…on the right

p(Paul Revere wins | weather’s clear,
ground is dry, jockey getting over sprain, Epitaph
also in race, Epitaph was recently bought by Gonzalez,
race is on May 17, …)
what happens as we add conjuncts to right of bar ?

• probability could increase or decrease

• probability gets more relevant to our case (less bias)

• probability estimate gets less reliable (more variance)
times Revere wins AND weather clear AND … it’s May 17

times weather clear AND … it’s May 17

Backing off: simplifying the right-
hand side…

p(Paul Revere wins | weather’s clear,
ground is dry, jockey getting over sprain, Epitaph
also in race, Epitaph was recently bought by Gonzalez,
race is on May 17, …)

not exactly what we want but at least we can get a
reasonable estimate of it!

try to keep the conditions that we suspect will have
the most influence on whether Paul Revere wins

Recall ‘backing off’ in using just p(rabbit|white)
instead of p(rabbit|Just then a white) – so this is a
general method

What about simplifying the left-
hand side?

p(Paul Revere wins, Valentine places,
Epitaph shows | weather’s clear)

NOT ALLOWED!

but we can do something similar to help …

We can FACTOR this information – the so-called

“Chain Rule”

Chain rule: factoring lhs

p(Revere, Valentine, Epitaph | weather’s clear)
= p(Revere | Valentine, Epitaph, weather’s clear)

* p(Valentine | Epitaph, weather’s clear)
* p(Epitaph | weather’s clear)

True because numerators cancel against denominators

Makes perfect sense when read from bottom to top

Moves material to right of bar so it can be ignored

RVEW/W

= RVEW/VEW

* VEW/EW

* EW/W

If this prob is unchanged by backoff, we say Revere was
CONDITIONALLY INDEPENDENT of Valentine and Epitaph
(conditioned on the weather’s being clear). Often we just
ASSUME conditional independence to get the nice product above.

The plan: summary so far

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.9

a:C/0.1 b:C/0.8b:D/0.2

a:a/0
.7

b:b/0.3

*

=

a:C/0.07 b:C/0.24

* *
C:C/1 p(y | Y)

best path

automaton: p(tag sequence)

transducer: tags words

automaton: the observed words

transducer: scores candidate tag seqs
on their joint probability with obs words;

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”

First-order Markov (bigram)
model as fsa

Det

Start

Adj
Noun

Verb

Prep

Stop

Add in transition probs - sum to 1

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3 0.7

0.4 0.5

0.1

Same as bigram

P(Noun|Det)=0.7 ≡

Det Noun

Add in start & etc.

Det

Start

Adj
Noun

Verb

Prep

Stop

0.70.3

0.8

0.2
0.4 0.5

0.1

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

0.7

p(tag seq)

0.1

Markov model as fsa

Det

Start

Adj
Noun

Verb

Prep

Stop

0.70.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

p(tag seq)

0.1

Add ‘output tags’ (transducer)

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Det 0.8

ε 0.2

p(tag seq)

Tag bigram picture

Det

Start

Adj
Noun Stop

Adj 0.3

Adj 0.4
Noun
0.5

ε 0.2

Det 0.8

p(tag seq)

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Our plan

p(X)

p(Y | X)

p(X, y)

*

=

*

=

* *
p(y | Y)

automaton: p(tag sequence)

transducer: tags words

automaton: the observed words

transducer: scores candidate tag seqs
on their joint probability with obs words;

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”

Cartoon form again

p(X)

p(Y | X)

p(X, y)

*

==

* *
p(y | Y)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2 *

Next up: unigram replacement
model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

p(word seq | tag seq)

Compose

Det

Start

Adj
Noun

Verb

Prep

Stop

Adj 0.3

Adj 0.4
Noun
0.5

Det 0.8

ε 0.2

p(tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

Compose

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Verb

Prep

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun
0.5

Det 0.8

ε 0.2

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos

ε

Observed words as straight-line fsa

word seq

the cool directed autos

Compose with

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autos

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos

ε

Compose with

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autos

Adj

why did this
loop go away?

Adj:directed 0.00020
N:autos

ε

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

Adj
Adj:directed 0.00020

N:autos

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009*0.00020…

the cool directed autos

ε

But…how do we find this ‘best’
path???

All paths together form ‘trellis’

Det:t
he 0

.32Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj :d
irec

ted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj:cool 0.0009Noun:cool 0.007

WHY?

Cross-product construction forms
trellis

So all paths here must have 5 words on output side

All paths here are 5 words

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

*

0 1

2

3
4

ε
ε
ε

εε
ε

Trellis isn’t complete

Det:t
he 0

.32Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj :d
irec

ted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj:cool 0.0009Noun:cool 0.007

Lattice has no Det Det or Det Stop arcs; why?

Trellis incomplete

Noun:autos…

Det:t
he 0

.32Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed…

ε 0.2

Adj :d
irec

ted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj:cool 0.0009

Lattice is missing some other arcs; why?

Noun:cool 0.007

And missing some states…

Noun:autos…

Det:t
he 0

.32Det

Start Stop

p(word seq, tag seq)

Adj

Noun

Adj

Noun Noun

Adj:directed…

Adj :d
irec

ted
…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …

the cool directed autos

Adj:cool 0.0009

Lattice is missing some states; why?

Noun:cool 0.007 ε 0.2

Finding the best path from start to
stop

• Use dynamic programming
• What is best path from Start to each node?

• Work from left to right
• Each node stores its best path from Start (as

probability plus one backpointer)

• Special acyclic case of Dijkstra’s shortest-path
algorithm

• Faster if some arcs/states are absent

Det:t
he 0

.32Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj :d
irec

ted
…

Adj:cool 0.0009Noun:cool 0.007

Method: Viterbi algorithm
• For each path reaching state s at step (word)

t, we compute a path probability. We call the
max of these viterbi(s,t)

• [Base step] Compute viterbi(0,0)=1
• [Induction step] Compute viterbi(s',t+1),

assuming we know viterbi(s,t) for all s

Viterbi recursion

path-prob(s'|s,t) = viterbi(s,t) * a[s,s']

probability of path to max path score * transition p
s’ through s for state s at time t s →s’

viterbi(s',t+1) = max s in STATES path-prob(s' | s,t)

Method…

• This is almost correct…but again, we need
to factor in the unigram prob of a state s’
given an observed surface word w

• So the correct formula for the path prob
is:
path-prob(s'|s,t) = viterbi(s,t) * a[s,s'] * bs’ (ot)

bigram unigram

Or as in your text…p. 179

Summary

• We are modeling p(word seq, tag seq)
• The tags are hidden, but we see the words
• Is tag sequence X likely with these words?
• Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Pre

Bill directed a cortege of autos thro

0.4 0.6

0.001

• Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement

Evaluation of systems…redux

• The principal measures for information
extraction tasks are recall and precision.

• Recall is the number of answers the system got
right divided by the number of possible right
answers
• It measures how complete or comprehensive the

system is in its extraction of relevant information
• Precision is the number of answers the system

got right divided by the number of answers the
system gave
• It measures the system's correctness or accuracy
• Example: there are 100 possible answers and the

system gives 80 answers and gets 60 of them right,
its recall is 60% and its precision is 75%.

A better measure - Kappa

• Takes baseline & complexity of task into
account – if 99% of tags are Nouns, getting
99% correct no great shakes

• Suppose no “Gold Standard” to compare
against?

• P(A) = proportion of times hypothesis agrees
with standard (% correct)

• P(E) = proportion of times hypothesis and
standard would be expected to agree by chance
(computed from some other knowledge, or
actual data)

Kappa [p. 315 J&M text]

• Note K ranges between 0 (no agreement,
except by chance; to complete
agreement, 1)

• Can be used even if no ‘Gold standard’
that everyone agrees on

• K> 0.8 is good

)(1
)()(

EP
EPAP

−
−=κ

Two approaches

1. Noisy Channel Model (statistical) –
what’s that?? (we will have to learn
some statistics)

2. Deterministic baseline tagger composed
with a cascade of fixup transducers

These two approaches will the guts of Lab 2
(lots of others: decision trees, …)

Fixup approach: Brill tagging

Another FST Paradigm:
Successive Fixups

• Like successive markups but alter
• Morphology
• Phonology
• Part-of-speech tagging
• …

Ini
tia

l a
nn

ota
tio

n

Fix
up

1

Fix
up

2input

outputFix
up

3

Transformation-Based Tagging
(Brill 1995)

figure from Brill’s thesis

Transformations Learned
figure from Brill’s thesis

NN @ VB // TO _
VBP @ VB // ... _

etc.

Compose this
cascade of FSTs.

Get a big FST that
does the initial
tagging and the

sequence of fixups
“all at once.”

BaselineTag*

Initial Tagging of OOV Words

figure from Brill’s thesis

Laboratory 2

• Goals:
1. Use both HMM and Brill taggers
2. Find errors that both make
3. Compare performance – use of kappa &

‘confusion matrix’
4. All the slings & arrows of corpora – use

Wall Street Journal excerpts

