6.863] Natural Language Processing
Lecture 22: Language Learning, Part 2
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The Menu Bar

Administrivia:
e Project-p?

Can we beat the standard?
e Review of the framework
e Various stochastic extensions

Modern learning theory & sample size
e (Gold results still hold!

Learning by setting parameters: the
triggering learning al%orithm
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The problem

e From finite data, induce infinite set

e How is this possible, given limited time &
computation?

e Children are not told grammar rules

e Ans: put constraints on class of possible
grammars (or languages)
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To review: the Gold framework

e Components:

e Target language L, or L, (with target grammar
g;), drawn from hvpothe5|s family H

e Data (input) sequences D and texts t; ¢,

e |earning algorithm (mapping) A ; output
nypothesis after input 7, A (¢,)

e Distance metric d, hypotheses #
e Definition of learnability:
d(gt ’ hn) %n%ooo
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Framework for learning

1. Target Language Le L is a target language
drawn from a class of possible target languages L

2. Example sentences s;e L,are drawn from the
target language & presented to learner.
3. Hypothesis Languages h e H drawn from a class

of possible hypothesis languages that child
learners construct on the basis of exposure to the
example sentences in the environment

4. Learning algorithm A is a computable procedure
by which languages from H are selected given

the examples
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Some details

e Languages/grammars — alphabet >*

e Example sentences
e Independent of order

e Or: Assume drawn from probability distribution
(relative frequency of various kinds of sentences) —
eg, hear shorter sentences more often

e If u e L,, then the presentation consists of positive
examples, 0.w.,

o examples in both L, & X* — L, (nhegative examples),
I.e., all of Z* (Yinformant presentation”)
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Learning algorithms & texts

A is mapping from set of all finite data streams to
hypotheses in H

Finite data stream of k examples (s1, S
Set of all data streams of length k,
Dk= {(s;, s, _sp)|si€ X" }= (Z*)k
Set of all finite data sequences D = u,_, D (enumerable), so:
A.D-—->H
- Can consider A to flip coins if need be

If learning by enumeration: The sequence of hypotheses after each
sentence is k1, h2, ...,

Hypothesis after » sentences is /4
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ID in the limit - dfns

e Text ¢ of language L is an infinite sequence of sentences
of L with each sentence of L occurring at least once
(“fair presentation”)

o Text #,is the first n sentences of ¢

e |earnability: Language L is learnable by algorithm A if
for each ¢ of L if there exists a number m s.t. for all
n>m, A(t,)=L

e More formally, fix distance metric d, a target grammar g,

and a text 7 for the target language. Learning algorithm
A identifies (learns) g in the limit if

d(A (tk)a gt) — 0 k —oo
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Convergence in the limit

d(g:, 1y ) —nse
e This quantity is called generalization error

e Generalization error goes to 0 as # of
examples goes to infinity

o In statistical setting, this error is a random
variable & converges to 0 only in

probabilistic sense (Valiant — PAC
learning)
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e—learnability & “locking sequence/data
set”

Ball of radius €

Locking sequence:

If (finite) sequence I,
gets within ¢ of target
& then it stays there
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Locking sequence theorem

e Thm 1 (Blum & Blum, 1975, ¢ version)
If A identifies a target grammar g in the

limit, then, for every £>0, 3 a locking
sequence /,e D s.t.

() l.c Lg (i) dA(L).g)<e &
(i) d(A (I,.0),2)<e,VoeD, ccL,

e Proof by contradiction. Suppose no such /,
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Proof...

e If no such /,, then 3 some g, s.t.
d(A (leo;,g)>¢€

e Use this to construct a text ¢ on which A
will not identify the target L,

e Evil daddy: every time guesses get ¢ close
to the target, we'll tack on a piece of ¢,
that pushes it outside that e-ball — so,

conjectures on g greater than ¢ infinitely
often
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The adversarial parent...

e Remember: d(A (le0;,2) > ¢
e Easy to be evil: construct =5, 5,, ..., s, ...
for L,
e Let g, = s, If d(A(¢,,2) <€ ,then pick a o,
and tack it onto the text sequence,
di+1 = 4iOqiSi+1
0.W. , d is already too large (>¢ ), so can
leave ¢,., sequence as g;followed by s,
di+1 — 4iSi+1
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Pinocchio sequence...

Evil daddy sequence
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Gold’s theorem

e Suppose A is able to identify the family
L. Then it must identify the infinite

language, L, .
e By Thm, a locking sequence exists, o,

e Construct a finite language L ;. from this
locking sequence to get locking sequence
for L, - a different language from L,,,

e A can'tidentify L, ., a contradiction
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Example of identification (learning) in the
limit — whether TM halts or not

Dfn of learns: 3 some point m after which (i) algorithm A outputs correct answer; and
(ii) no longer changes its answer.
The following A will work:

Given any Turing Machine M; , at each time i, run the machine for i steps.
If after i steps, if M has not halted, output 0 (i.e., "NO"), o.w., output 1 (i.e, “Yes")

Suppose TM halts:

1 2 3 4 5. m m+l..
NO NO NO NO NO ... NO YES YES YES ..

A

Suppose TM does not halt:

1 2 3 4 5 ..
NO NO NO NO NO ... NO NO NO NO ...
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Exact learning seems too stringent

e Why should we have to speak perfect
French forever?

e Can’t we say "MacDonald’s” once in a
while?

e Or what about this:

e You say potato; I say pohtahto; You say
potato; I say pohtahto;...
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Summary of learnability given Gold

o With positive-only evidence, no interesting
families of languages are learnable

e Even if given (sentence, meaning)
e Even if a stochastic grammar (mommy is

talking via some distribution u )

e BUT if learner knew what the distribution
was, they could learn in this case — however,
this is almost like knowing the language
anyway
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If a parent were to provide true negative evidence of

the type specified by Gold, interactions would look like
the Osbournes:

Child: me want more.

Father: ungrammatical.

Child: want more milk.

Father: ungrammatical.

Child: more milk !

Father: ungrammatical.

Child: cries

Father: ungrammatical
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When is learnability possible?

e Strong constraints on distribution
e Finite number of languages/grammars
e Both positive and (lots of) negative

evidence

e the negative evidence must also be *fair’ —in
the sense of covering the distribution of
possibilities (not just a few pinpricks here and
there...)
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Positive results from Gold

e Active learning: suppose learner can
query membership of arbitrary elts of X~

e Then DFAs learnably in poly time, but
CFGs still unlearnable

e S0, does enlarge learnability possibilities —
but arbitrary query power seems
questionable
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Relaxing the Gold framework constraints:
toward the statistical framework

e Exact identification — e—identification

o Identification on all texts — identification
only on > 1-0 (so lose, say, 1% of the
time)

e This is called a (g, 6) framework
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Statistical learning theory approach

Removes most of the assumptions.of the Gold
framework —

It does not ask for convergence to exactly the
right language

The learner receives positive and negative
examples

The learning process has to end after a certain
number of examples

Get bounds on the # of examples sentences
needed to converge with high probability

Can also remove assumption of arbitrary
resources: efficient (poly time) [Valiant/PAC]
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Modern statistical learning: VC dimension
& Vapnik-Chervonenkis theorem (1971,1991)

o Distribution-free (no assumptions on the
source distribution)

e No assumption about learning algorithm
TWO key results:

1. Necessary & sufficient conditions for
learning to be possible at all (“capacity”
of learning machinery)

2. Upper & lower bounds on # of examples
needed
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Statistical learning theory goes
further — but same results

e Languages defined as before:
1, (s)=11ifs e L,00.w. (an ‘indicator function’)

o Examples provided by some distribution P
on set of all sentences

e Distances between languages defined as
well by the probability measure P

d(L;—Ly) =Zs | 115 (s) - 112(s) [P(s)
This is a ‘'graded distance’ - L, (P) topology
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Learnability in statistical framework

Model:

e Examples drawn randomly, depending on P

o After / data pts, learner conjectures hypothesis
h; - note, this is now a random variable, because
it depends on the randomly generated data

e Dfn: Learner’s hypothesis /;,converges to the
target (1;) with probability 1, iff for every € >0
Prob[d(h;, 1) > €] —1 -0
P is not known to the learner except through the
draws

(What about how 7 is chosen? We might want to
minimize error from target...)
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Standard P(robably) A(approximately)
C(orrect) formulation (PAC learning)

o If 5, converges to the target 1, in a weak sense,
then for every £>0 there exists an m(e,d) s.t. for
all 1> m(e,d)

Probld(h; , 1, )>¢€]<0

With high probability (> 1-8) the learner’s
hypothesis is approximately close (within € in
this norm) to the target language

m is the # of samples the learner must draw
m(e,0) is the sample complexity of learning
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Vapnik- Chervonenkis result

e Gets lower & upper bounds on i(¢,0)

e Bounds depend on ¢, 6 and a measure of
the “capacity” of the hypothesis space H

called VC-dimension, d

m(€,0) > f(€,0, d)

e What's this 4 ?7?
e Note: distribution free!
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VC dimension,”“d”

e Measures how much info we can pack into a set
of hypotheses, in terms of its discriminability —
its learning capacity or flexibility

e Combinatorial complexity

e Defined as the largest ¢ s.t. there exists a set of
d points that H can shatter, and -« otherwise

o Key result: L is learnable iff it has finite VC
dimension (¢ finite )

e Also gives lower bound on # of examples
needed

e Defined in terms of “shattering”
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Shattering

e Suppose we have a set of points x;, x>,..., x,

o If for every different way of partitioning the set
of n points into two classes (labeled 0 & 1), a
function in H is able to implement the partition
(the function will be different for every different

partition) we say that the set of points is
shattered by H

e This says “how rich” or “how powerful” H is —

its representational or informational capacity for
learning
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Shattering — alternative ‘view’

e H can shatter a set of points iff for every

possible training set, there are some way
to twiddle the /’s such that the training
erroris 0
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Example 1

e Suppose H is the class of linear
separators in 2-D (half-plane slices)
e We have 3 points. With +/- (or 0/1)

labels, there are 8 partitions (in general:
with m pts, 27 partitions)

e Then any partition of 3 points in a plane
can be separated by a half-plane:
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Half-planes can shatter any 3 point
partition in 2-D: white=0; shaded =1
(there are 8 labelings)

T

.\ o
\\:\\\ .Z'Q\
\\ﬁ\ﬁ\ﬁ\h\ﬁ\ﬁ\;\\ OO "\.

BUT NOT...
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But not 4 points — this labeling can’t
be done by a half-plane:

...50, VC dimension for H = half-planes is 3
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Another case: class H is circles (of
a restricted sort)

H =f(x,b) = sign(x.x —b)

€

% Can this f shatter the following points?

T
L/
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Is this H powerful enough to separate
2 points?

iR R R R
NS T N A

OK OK Kl OH

H =f(x,b) = signum(x.x —b) U

Same circle can’t yield both + and -

N

NO!
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This H can separate one point...

D
%

12
NI
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VC dimension intuitions

e How many distinctions hypothesis can
exhibit

o # of effective degrees of freedom

e Maximum # of points for which H is
unbiased
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Main VC result & learning

e If H has VC-dimension d, then m(e, 9),

the # of samples required to guarantee
learning within ¢ of the target language,
1-6 of the time, is greater than:

d

10g(2)( log( )+ log(—))
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This implies

e Finite VC dimension of H is necessary for
(potential) learnability!

e This is true no matter what the
distribution is

e This is true no matter what the learning
algorithm is

e This is true even for positive and negative
examples
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Applying VC dimension to language
learning

e For H (or L) to be learnable, it must
have finite VC dimension

e SO0 what about some familiar classes?

o Let's start with the class of all finite
languages (each L generates only
sentences less than a certain length)
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VC dimension of finite lang

o s infinite! So the family of finite lan

uages

guages is

not learnable (in (&,0) or PAC learning terms)!

o Why? the set of finite languages is infinite - the
# of states can grow larger and larger as we

grow the fsa’s for them

e It is the # of states that distinguish
different equivalence classes of sym

e This ability to partition can grow wit

hetween
Hols

nout bound

— 50, for every set of ¢ points one can partition
— shatter — there’s another of size 4+1 one can
also shatter — just add one more state
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Gulp!

o If class of all finite languages is not PAC
learnable, then neither are:

e fsa’s, cfg’s,...- pick your favorite general
set of languages

e What's a mother to do?

o Well: posit a priori restrictions — or make
the class H finite in some way
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FSAs with n states

e DO have finite VC dimension...
e So, as before, they are learnable

e More precisely: their VC dimension is
O(n log n), n= # states
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Lower bound for learning

e If H has VC-dimension d then m(e, 9),

the # of samples required to guarantee
learning within ¢ of the target language,
1-0 of the time, is at least:

d

m(e, d)>log(2)( log(— )+10g(—))
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OK, smarty: what can we do?

e Make the hypothesis space finite, small,
and ‘easily separable’

e One solution: parameterize set of possible
grammars (languages) according to a
small set of parameters

o We've seen the head-first/final parameter
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English is function-argument
form

function args

the stock
4t a bargain price

sold

with envy
the \.over-priced stock
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Other languages are the mirror-
inverse: arg-function

This is like Japanese

¥003s padud-1ano\H
AAUD UM

2011d uiebieq e 1€
)203s /Yy

P|OS
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English form

.




Bengali, German, Japanese form

]
-

/\ ——
I/\/\
A

/N
2
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Variational space of languages

Language

Arabic
Dutch
English
French
German
Hin di
Icelandic

S-H |C-H |[C Ng |Va |Vt SR |Ser |[NP |Op |LD |V2 |Wh [Pro
Scr | Ser | Sc

ST 0 o e o (o e [ [
EN_EoE_ECRCEEmCISIS
jjj-jjjj;_j;;;
T I L o [
SN N e e —

jjjjjjjjjj_ {—
] [ T (e Ty [ T [

Irish
Ttalian
Japanese
Mala
Mandarin
Swe dish
Tamil

N (|
N -. ] T [ e (|
jIlElg._l_l (I [ (|

6.8631/9.611] Lecture 22 Sp03



=l

Principles—and-Parameters Parser

Examples ..

[2:18¢] Taroo[i]-kara okane—o moratta hito—ga kare[i]-o suisenshita
i

Run r) Language r) Theaory r) Parsers \—) History \—) Options r)

Une parse found
Parsing: [2:18¢] Taroo[i]-kara okane-o moratta hito-ga kare[i]-o suisenshita
LF {1}

c2
/\
12 C
NPT] L
case(nom)
WP (AGR)[T]
c2 NP[1]
case(nom}  npE] s V(5] IfAGRI[T]
Opl] C casei[acc) |
case(_0) -~ jﬁ% L/j"‘—‘
2 C  hito T’E‘{' sLisenshita
kare
NPt-4-P[1] 11
case(nom) T T
= IAGRI[1]
’-/_/__,-—-\\\
PP WP V4] KAGR)[1]
NP2 P NPE il B
case?ﬂbq]' | Casel(a“) %nt;?att?;:-
725
jtﬂﬂ kara jﬁﬁ
taroo okane

Cine parse found

LLel »

14 Iv]

, Mew Tree Feature option settings are now in effect!

T o N T T Y N T Ty Y R AN RY SR P ETay T i ST ey

L N e N e N S e sl e e

Info ..
. Deme .. |

Filters
Theta Criterion

D—structure Theta Condition

Subjacency

Wh—maovement in Syntax

S—bar Deletion

Case Filter

Trace Caze Condition

Coindex Subjact

Candition &

Condition B

Condition C

ECP

Cantrol

License Clitics

License Ohject Pro

ECP at LF

Fl: License operator/variahles

FI: Quantifier Scoping

Fl: Reanalvze Bound Proforms

License Clausal arguments

License syntactic Adjuncts

wh Comp Requirement

Generators
Parse PF

Parse S—Structure

fssign Theta—Raoles

Inherent Case Assignment

Assign Structural Case

Trace Theaory

Functional Determination

Free Indexation

Expletive Linking

LF Movement




Actual (prolog) code for this diff

% parametersEng.pl

%% X-Bar Parameters
speclnitial.

specFinal :- \+ speclnitial.

headlInitial( ).
headFinal(X) :- \+ headInitial(X).

agr(weak).

%°% V2 Parameters

% Q is available as adjunction site
boundingNode(i2).
boundingNode(np).

%% Case Adjacency Parameter
CaseAdjacency. % holds

%% Wh In Syntax Parameter
whInSyntax.

%% Pro-Drop Parameter

%% X-Bar Parameters
speclnitial.
specFinal :- \+ speclnitial.

headFinal.

headInitial :- \+ headFinal.
headInitial(X) :- \+ headFinal(X).
headFinal(_) :- headFinal.

agr(strong).

%°% V2 Parameters

%% Subjacency Bounding Nodes
boundingNode(i2).
boundingNode(np).

%% Case Adjacency Parameter
no caseAdjacency.

%% Wh In Syntax Parameter
no whInSyntax.

%% Pro-Drop

no proDrop. 6.8631/9.611] Lecture B52E9P-



Learning In parameter space

e Greedy algorithm: start with some
randomized parameter settings

1. Get example sentence, s

2. If sis parsable (analyzable) by current
parameter settings, keep current
settings; o.w.,

3. Randomly flip a parameter setting & go
to Step 1.
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More details

e 1-bit different example that moves us
from one setting to the next is called a

trigger

e Let's do a simple model — 3 parameters
only, so 8 possible languages
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Tis a gift to be simple...

o Just 3 parameters, so 8 possible
languages (grammars) —set 0 or 1

e Complement first/final (dual of Head 1Y)
e English: Complement final (value = 1)

o Specifier first/final (determiner on right or
left, Subject on right or left)

e \Verb second or not (German/not
German)
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3-parameter case

1. Specifier first or final
2. Complement (Arguments) first/final
3. Verb 2" or not

Sentence NP
Spec 1st /\ /\

specifier specifier Noun
(N P) 6.8631/9.611] Lecture 22 Sp03



Parameters

Sentence NP
Spec 1st
Sul:b)ject Verb... /r\ /\

specifier specifier Noun
(subject NP)

Spec final Sygme /NP\

| specifier Noun specifier
Verb Subject... (SUbjeCt NP)
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Comp(lement) Parameter

VP

Comp 1st /\

NP  Verb

...Object Verb

Comp final VP

Verb NP

Verb Object...
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Verb second (V2)

e Finite (tensed) verb must appear in
exactly 2"d position in main sentence
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English / German

H B /[,o 1 0 ]=‘English’
N \

spec 1st/final comp 1st/final —-V2/+V2

B | [0 0 1]='German’
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Even this case can be hard...

e German: dass Karl da Buch kauft
(that Karl the book buys)
Karl kauft das Buch
e OK, what are the parameter settings?

e [s German comp-1st ? (as the first
example suggests) or comp-last?

e Ans: V2 parameter — in main sentence,
this moves verb kauft to 2" position
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Input data — 3 parameter case

e Labels: S, V, Aux, O, 01, 02
o All unembedded sentences (psychological
fidelity)

e Possible English sentences:

SV,SV0102; SAuxVO; SAuxVO0O102;, AdvSV;
Adv SV O; AdvSV 01 02; Adv S Aux V; Adv S Aux
V O; Adv S Aux V O1 O2

e Too simple, of course: collapses many
languages together...

e Like English and French...oops!
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Sentences drawn from target

o Uniformly
e From possible target patterns

o | earner starts in random initial state,
1,...8

e WWhat drives learner?
e Errors
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Learning driven by language
triggering set differences

A trigger is a sentence in one language that
Isnt in the other

ILAL/|L

target|

6.8631/9.611] Lecture 22 Sp03



How to get there from here

Bangla

Subject-Verb-Object

Spec-first, example Spec-first,
Comp ﬁrgt, sentence w Comp-first
—Verb 2" Hans kauft das Buch  +Verb 2
[00 0]
Hans boi-ta k o 1]
ans boi-ta kene
Hans kauft das Buch
Hans the book buys Hans buys the book

o transitions based on example sentence
Prob(transition) based on set differences between

languages, normalized by target language |Liarget|
examples (in our case, if t=English,36 of them)
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Formalize this as...

e A Markov chain relative to a target
language, as matrix M, where M(i,j) gives
the transition pr of moving from state i to
state j (given target language strings)

e Transition pr’s based on cardinality of the
set differences

e M x M = pr’s after 1 example step; in the
limit, we find M~

e Here is M when target is Ls = '‘English’
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The Ringstrasse (Pax Americana version)

1/12

English target =5
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Markov matrix, target = 5 (English)

To
Ly L, Ly Ly Ly Lg L; Lg
L 101 1 7
2 6 3
Lo 1
Ls 3 1 L
From Lq: ﬁ %
Ls 1
iﬁ § G 2 1
7 Bl
Ls TR
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