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The Menu Bar
• Administrivia:

• Project-p?

• Can we beat the Gold standard?
• Review of the framework
• Various stochastic extensions

• Modern learning theory & sample size
• Gold results still hold!

• Learning by setting parameters: the 
triggering learning algorithm
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The problem

• From finite data, induce infinite set
• How is this possible, given limited time & 

computation?
• Children are not told grammar rules

• Ans: put constraints on class of possible 
grammars (or languages)



6.863J/9.611J Lecture 22 Sp03

To review: the Gold framework

• Components:
• Target language Lgt or Lt (with target grammar 

gt ), drawn from hypothesis family H
• Data (input) sequences D and texts t; tn
• Learning algorithm (mapping) A ; output 

hypothesis after input tn A (tn)

• Distance metric d , hypotheses h

• Definition of learnability:
d(gt , hn ) →n→∞0
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Framework for learning

1. Target Language Lt∈ L is a target language 
drawn from a class of possible target languages L
.

2. Example sentences si ∈ Lt are drawn from the 
target language & presented to learner. 

3. Hypothesis Languages h ∈H drawn from a class 
of possible hypothesis languages that child 
learners construct on the basis of exposure to the 
example sentences in the environment

4. Learning algorithm A is a computable procedure 
by which languages from H are selected given 
the examples
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Some details

• Languages/grammars – alphabet Σ∗

• Example sentences
• Independent of order
• Or: Assume drawn from probability distribution µ

(relative frequency of various kinds of sentences) –
eg, hear shorter sentences more often

• If µ ∈ Lt , then the presentation consists of positive
examples, o.w.,

• examples in both Lt & Σ∗ − Lt (negative examples),
I.e., all of Σ∗ (“informant presentation”)
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Learning algorithms & texts

• A is mapping from set of all finite data streams to 
hypotheses in H

• Finite data stream of k examples (s1, s2 ,…, sk )
• Set of all data streams of length k ,

Dk = {(s1, s2 ,…, sk)| si ∈ Σ∗}= (Σ*)k

• Set of all finite data sequences D = ∪k>0 Dk (enumerable), so:
A : D → H
- Can consider A to flip coins if need be

If learning by enumeration: The sequence of hypotheses after each
sentence is h1, h2, …,

Hypothesis after n sentences is hn
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ID in the limit - dfns

• Text t of language L is an infinite sequence of sentences 
of L with each sentence of L occurring at least once 
(“fair presentation”)

• Text tn is the first n sentences of t
• Learnability: Language L is learnable by algorithm A if

for each t of L if there exists a number m s.t. for all 
n>m, A (tn )= L

• More formally, fix distance metric d, a target grammar gt

and a text t for the target language. Learning algorithm 
A identifies (learns) gt in the limit if

d(A (tk), gt ) → 0 k →∞
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Convergence in the limit

d(gt , hn ) →n→∞0
• This quantity is called generalization error
• Generalization error goes to 0 as # of 

examples goes to infinity
• In statistical setting, this error is a random 

variable & converges to 0 only in 
probabilistic sense (Valiant – PAC
learning)
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ε−learnability & “locking sequence/data 
set”

L Ball of radius ε
Locking sequence:
If (finite) sequence lε 
gets within ε of target
& then it stays there

ε

ε

lε 
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Locking sequence theorem

• Thm 1 (Blum & Blum, 1975, ε version)
If A identifies a target grammar g in the 
limit, then, for every ε>0, ∃ a locking 
sequence le ∈ D s.t.

(i) le ⊆ Lg (ii) d(A (le),g)< ε & 
(iii) d(A (le .σ),g)< ε , ∀ σ∈D, σ ⊆ Lg

• Proof by contradiction. Suppose no such le
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Proof…

• If no such le , then ∃ some σl s.t.
d(A (l•σl ,g) ≥ ε 

• Use this to construct a text q on which A
will not identify the target Lg

• Evil daddy: every time guesses get ε close
to the target, we’ll tack on a piece of σl

that pushes it outside that ε−ball – so,
conjectures on q greater than ε infinitely
often
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The adversarial parent…

• Remember: d(A (l•σl ,g) ≥ ε 
• Easy to be evil: construct r= s1 , s2 , …, sn …

for Lg

• Let q1 = s1. If d(A (qi,g) < ε , then pick a σqi

and tack it onto the text sequence, 
qi+1 = qi σqi si+1

o.w. , d is already too large (>ε ) , so can 
leave qi+1 sequence as qi followed by si+1

qi+1 = qi si+1
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Pinocchio sequence…

L
ε

εEvil daddy sequence
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Gold’s theorem

• Suppose A is able to identify the family 
L. Then it must identify the infinite 
language, Linf .

• By Thm, a locking sequence exists, σinf

• Construct a finite language L σinf from this 
locking sequence to get locking sequence 
for L σinf - a different language from Linf

• A can’t identify L σinf , a contradiction



6.863J/9.611J Lecture 22 Sp03

Example of identification (learning) in the 
limit – whether TM halts or not

1     2     3    4    5  …   m m+1 …
NO  NO  NO  NO NO … NO YES  YES  YES …

Dfn of learns: ∃ some point m after which (i) algorithm A outputs correct answer; and
(ii) no longer changes its answer.

The following A will work:
Given any Turing Machine Mj , at each time i , run the machine for i steps.
If after i steps, if M has not halted, output 0 (i.e., “NO”), o.w., output 1 (i.e, “Yes”)

Suppose TM halts:

Suppose TM  does not halt:

1     2     3    4    5  …
NO  NO  NO  NO NO … NO  NO  NO NO …
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Exact learning seems too stringent

• Why should we have to speak perfect 
French forever?

• Can’t we say “MacDonald’s” once in a 
while?

• Or what about this:
• You say potato; I say pohtahto; You say 

potato; I say pohtahto;…
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Summary of learnability given Gold

• With positive-only evidence, no interesting
families of languages are learnable

• Even if given (sentence, meaning) 
• Even if a stochastic grammar (mommy is 

talking via some distribution µ )
• BUT if learner knew what the distribution 

was, they could learn in this case – however,
this is almost like knowing the language 
anyway
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If a parent were to provide true negative evidence of 
the type specified by Gold, interactions would look like 
the Osbournes:

Child: me want more.
Father: ungrammatical.
Child: want more milk.
Father: ungrammatical.
Child: more milk !
Father: ungrammatical.
Child: cries
Father: ungrammatical
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When is learnability possible?

• Strong constraints on distribution
• Finite number of languages/grammars
• Both positive and (lots of) negative 

evidence
• the negative evidence must also be ‘fair’ – in

the sense of covering the distribution of 
possibilities (not just a few pinpricks here and 
there…)
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Positive results from Gold

• Active learning: suppose learner can 
query membership of arbitrary elts of Σ∗ 

• Then DFAs learnably in poly time, but
CFGs still unlearnable

• So, does enlarge learnability possibilities –
but arbitrary query power seems 
questionable
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Relaxing the Gold framework constraints:
toward the statistical framework

• Exact identification  → ε−identification
• Identification on all texts → identification

only on > 1-δ  (so lose, say, 1% of the 
time)
• This is called a (ε, δ) framework
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Statistical learning theory approach
• Removes most of the assumptions of the Gold 

framework –
• It does not ask for convergence to exactly the 

right language
• The learner receives positive and negative 

examples
• The learning process has to end after a certain 

number of examples
• Get bounds on the # of examples sentences 

needed to converge with high probability
• Can also remove assumption of arbitrary 

resources: efficient (poly time) [Valiant/PAC]
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Modern statistical learning: VC dimension
& Vapnik-Chervonenkis theorem (1971,1991)

• Distribution-free (no assumptions on the 
source distribution)

• No assumption about learning algorithm
• TWO key results:
1. Necessary & sufficient conditions for 

learning to be possible at all (“capacity” 
of learning machinery)

2. Upper & lower bounds on # of examples 
needed
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Statistical learning theory goes 
further – but same results

• Languages defined as before:
1L(s)=1 if s ∈ L, 0 o.w. (an ‘indicator function’)

• Examples provided by some distribution P
on set of all sentences

• Distances between languages defined as 
well by the probability measure P
d(L1 – L2) = ΣS | 1L1 (s) - 1L2(s) |P(s)

This is a ‘graded distance’ - L1 (P) topology
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Learnability in statistical framework

Model:
• Examples drawn randomly, depending on P
• After l data pts, learner conjectures hypothesis 

hl - note, this is now a random variable, because 
it depends on the randomly generated data

• Dfn: Learner’s hypothesis hl converges to the 
target (1L) with probability 1, iff for every ε > 0

Prob[d(hl , 1L) > ε ] →l →∞0
P is not known to the learner except through the 

draws
(What about how h is chosen? We might want to 

minimize error from target…)
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Standard P(robably) A(approximately)
C(orrect) formulation  (PAC learning)

• If hl converges to the target 1L in a weak sense, 
then for every ε>0 there exists an m(ε,δ) s.t. for 
all l > m(ε,δ)

Prob[d(hl , 1L ) > ε ] < δ

With high probability (> 1-δ) the learner’s 
hypothesis is approximately close (within ε in
this norm) to the target language

m is the # of samples the learner must draw
m(ε,δ) is the sample complexity of learning
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Vapnik- Chervonenkis result

• Gets lower & upper bounds on m(ε,δ)
• Bounds depend on ε, δ and a measure of 

the “capacity” of the hypothesis space H
called VC-dimension, d

m(ε,δ) > f(ε,δ, d)

• What’s this d ??
• Note: distribution free!
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VC dimension,”d”

• Measures how much info we can pack into a set 
of hypotheses, in terms of its discriminability –
its learning capacity or flexibility

• Combinatorial complexity
• Defined as the largest d s.t. there exists a set of 

d points that H can shatter, and ∞ otherwise
• Key result: L is learnable iff it has finite VC

dimension (d finite )
• Also gives lower bound on # of examples 

needed
• Defined in terms of “shattering”
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Shattering

• Suppose we have a set of points x1 , x2 ,…, xn

• If for every different way of partitioning the set 
of n points into two classes (labeled 0 & 1), a 
function in H is able to implement the partition 
(the function will be different for every different 
partition) we say that the set of points is
shattered by H

• This says “how rich” or “how powerful” H is –
its representational or informational capacity for 
learning
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Shattering – alternative ‘view’ 

• H can shatter a set of points iff for every 
possible training set, there are some way 
to twiddle the h’s such that the training 
error is 0



6.863J/9.611J Lecture 22 Sp03

Example 1 

• Suppose H is the class of linear 
separators  in 2-D (half-plane slices)

• We have 3 points.  With +/- (or 0/1) 
labels, there are 8 partitions (in general: 
with m pts, 2m partitions)

• Then any partition of 3 points in a plane 
can be separated by a half-plane:



6.863J/9.611J Lecture 22 Sp03

Half-planes can shatter any 3 point 
partition  in 2-D: white=0; shaded =1
(there are 8 labelings)

BUT NOT…
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But not 4 points – this labeling can’t 
be done by a half-plane:

…so, VC dimension for H = half-planes is 3
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Another case: class H is circles (of
a restricted sort)

H =f(x,b) = sign(x.x –b)

Can this f shatter the following points?
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Is this H powerful enough to separate 
2 points?

OK! OK!

H =f(x,b) = signum(x.x –b)

OK! OH
NO!

Same circle can’t yield both + and -
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This H can separate one point…
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VC dimension intuitions

• How many distinctions hypothesis can 
exhibit

• # of effective degrees of freedom
• Maximum # of points for which H is

unbiased
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Main VC result & learning

• If H has VC-dimension d , then m(ε, δ) , 
the # of samples required to guarantee 
learning within ε of the target language, 
1-δ of the time, is greater than:

3 1
log(2) log( ) log( )

4 2 8

d

δ
 +  
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This implies

• Finite VC dimension of H is necessary for
(potential) learnability!

• This is true no matter what the
distribution is

• This is true no matter what the learning 
algorithm is

• This is true even for positive and negative 
examples
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Applying VC dimension to language 
learning
• For H (or L ) to be learnable, it must 

have finite VC dimension

• So what about some familiar classes?

• Let’s start with the class of all finite
languages (each L generates only 
sentences less than a certain length)



6.863J/9.611J Lecture 22 Sp03

VC dimension of finite languages

• is infinite! So the family of finite languages is 
not learnable (in (ε,δ) or PAC learning terms)!

• Why? the set of finite languages is infinite - the
# of states can grow larger and larger as we 
grow the fsa’s for them

• It is the # of states that distinguish between 
different equivalence classes of symbols

• This ability to partition can grow without bound 
– so, for every set of d points one can partition 
– shatter – there’s another of size d+1 one can 
also shatter – just add one more state
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Gulp!

• If class of all finite languages is not PAC 
learnable, then neither are:

• fsa’s, cfg’s,…- pick your favorite general 
set of languages

• What’s a mother to do?

• Well: posit a priori restrictions – or make 
the class H finite in some way
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FSAs with n states

• DO have finite VC dimension…
• So, as before, they are learnable
• More precisely: their VC dimension is

O(n log n), n= # states
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Lower bound for learning

• If H has VC-dimension d then m(ε, δ) , 
the # of samples required to guarantee 
learning within ε of the target language, 
1-δ of the time, is at least:

3 1
(e,d) log(2) log( ) log( )

4 2 8

d
m

δ
 > +  
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OK, smarty: what can we do?

• Make the hypothesis space finite, small, 
and ‘easily separable’

• One solution: parameterize set of possible 
grammars (languages) according to a 
small set of parameters

• We’ve seen the head-first/final parameter
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English is function-argument
form

function

at

args

green

sold
the stock
a bargain price

with envy

the over-priced stock
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Other languages are the mirror-
inverse: arg-function

at
green

sold
the stock
a bargain price

with envy

theover-priced stock

This is like Japanese
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English form
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Bengali, German, Japanese form
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Variational space of languages
Language S-H C-H C Ng Va Vt SR Scr NP

Scr
Op
Scr

LD
Sc

V2 Wh Pro

Arabic
Dutch
English

French
German
Hindi
Icelandic
Irish
Italian
Japanese
Malay
Mandarin
Swedish
Tamil
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Actual (prolog) code for this diff
% parametersEng.pl
%% X-Bar Parameters
specInitial.
specFinal :- \+ specInitial.

headInitial(_).
headFinal(X) :- \+ headInitial(X).

agr(weak).

%% V2 Parameters
% Q is available as adjunction site
boundingNode(i2).
boundingNode(np).

%% Case Adjacency Parameter
CaseAdjacency. % holds

%% Wh In Syntax Parameter
whInSyntax.

%% Pro-Drop Parameter
no proDrop.

%% X-Bar Parameters
specInitial.
specFinal :- \+ specInitial.

headFinal.
headInitial :- \+ headFinal.
headInitial(X) :- \+ headFinal(X).
headFinal(_) :- headFinal.

agr(strong).
%% V2 Parameters
%% Subjacency Bounding Nodes
boundingNode(i2).
boundingNode(np).

%% Case Adjacency Parameter
no caseAdjacency.

%% Wh In Syntax Parameter
no whInSyntax.

%% Pro-Drop
proDrop.
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Learning in parameter space

• Greedy algorithm: start with some 
randomized parameter settings

1. Get example sentence, s
2. If s is parsable (analyzable) by current 

parameter settings, keep current 
settings; o.w.,

3. Randomly flip a parameter setting & go 
to Step 1.
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More details

• 1-bit different example that moves us 
from one setting to the next is called a 
trigger

• Let’s do a simple model – 3 parameters 
only, so 8 possible languages
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Tis a gift to be simple…

• Just 3 parameters, so 8 possible 
languages (grammars) – set 0 or 1

• Complement first/final (dual of Head 1st)
• English: Complement final (value = 1)

• Specifier first/final (determiner on right or 
left, Subject on right or left)

• Verb second or not (German/not
German)
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3-parameter case

1. Specifier first or final
2. Complement (Arguments) first/final
3. Verb 2nd or not

Sentence NP

specifier Nounspecifier
(NP)

Spec 1st
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Parameters

Sentence NP

specifier Nounspecifier
(subject NP)

Spec 1st

Sentence NP

specifierNounspecifier
(subject NP)

Spec final

Verb Subject…

Subject Verb…
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Comp(lement) Parameter

VP

Verb

Comp 1st

NP
…Object Verb

VP

NP

Comp final 

Verb
Verb Object…
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Verb second (V2)

• Finite (tensed) verb must appear in 
exactly 2nd position in main sentence
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English /  German

[ 0  1  0  ] = ‘English’

spec 1st/final  comp 1st/final –V2/+V2

[ 0   0  1] = ‘German’
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Even this case can be hard…

• German: dass Karl da Buch kauft 
(that Karl the book buys)

Karl kauft das Buch
• OK, what are the parameter settings? 
• Is German comp-1st ? (as the first 

example suggests) or comp-last?
• Ans: V2 parameter – in main sentence, 

this moves verb kauft to 2nd position
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Input data – 3 parameter case

• Labels: S, V, Aux, O, O1, O2
• All unembedded sentences (psychological 

fidelity)
• Possible English sentences:

S V, S V O1 O2; S Aux V O; S Aux V O1 O2; Adv S V; 
Adv S V O; Adv S V O1 O2; Adv S Aux V; Adv S Aux 
V O; Adv S Aux V O1 O2

• Too simple, of course: collapses many 
languages together…

• Like English and French…oops!
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Sentences drawn from target

• Uniformly
• From possible target patterns
• Learner starts in random initial state, 

1,…8
• What drives learner?
• Errors
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Learning driven by language 
triggering set differences

|Li\Lj|/|Ltarget| Ltarget

Li

Lj

A trigger is a sentence in one language that 
Isn’t in the other 
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How to get there from here

transitions based on example sentence•
Prob(transition) based on set differences between

languages, normalized by target language |Ltarget|
examples (in our case, if t=English,36 of them)

Bangla

Spec-first,
Comp first,
–Verb 2nd

[0 0 0]

Hans boi-ta kene
Hans the book buys

Subject-Verb-Object
example
sentence w

German

Spec-first,
Comp-first
+Verb 2nd

[0 0 1]

Hans buys the book
Hans kauft das Buch

Hans kauft das Buch
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Formalize this as…

• A Markov chain relative to a target 
language, as matrix M, where M(i,j) gives 
the transition pr of moving from state i to 
state j (given target language strings)

• Transition pr’s based on cardinality of the 
set differences

• M x M = pr’s after 1 example step; in the 
limit, we find M∞

• Here is M when target is L5 = ‘English’
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target: 5
5

2
3

8

4

[0 1 0]

1

7
6

[1 0 1]

[0 1 1]

[0  0  0]

[1 1 0]

[spec 1st, comp final, –V2]

sink
[1 1 1]

[0 0 1]

[1 0 0]

31/36

11/12

1/12
1/12

1
1/2

1/6
1/3

2/3

1/18

5/6

1/6

1

8/9

1/12

5/18
sink

1/18 1/36

The Ringstrasse (Pax Americana version)

English target =5

Bangla
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Markov matrix, target = 5 (English)


