6.863J Natural Language Processing
Lecture 2: Automata, Two-level
phonology, & PC-Kimmo
L (the Hamlet lecture)

Instructor: Robert C. Berwick

The Menu Bar

B Administrivia

Questionnaire posted (did you email it?)
Labl: split into Labla (this time) Lablb (next time)

 \What and How: word processing, or computational
morphology

e What's in a word: morphology

e Modeling morpho-phonology by finite-state devices
e Finite-state automata vs. finite state transducers

e Some examples from English

e PC-Kimmo & Laboratory 1:how-to

6.863J/9.611J SPO3 Lecture 2

Levels of language

. what
words (or subwords) are we dealing with?

. What phrases are we dealing with?
Which words modify one another?

. What's the literal meaning?

. What should you conclude from
the fact that | saild something? How should
you react?

6.863J/9.611J SPO3 Lecture 2

The “spiral notebook” Model
Sentence

Noun phrase Verb phrase

erb Noun Phrase
surface th d%c a

‘logical’
form ‘sound’
| x, xe{dogs}, ate(x, i-c) 9€daWOZ... form

6.863J/9.611J SPO3 Lecture 2

Start with words: they illustrate all
the problems (and solutions) in NLP

mlll
e Parsing words
Cats ® CAT + N(oun) + PL(ural)
e Used in:
e Traditional NLP applications
e Finding word boundaries (e.g., Latin, Chinese)
e Text to speech (boathouse)
e Document retrieval (example next slide)

e |n particular, the problems of parsing, ambiguity,and

computational efficiency (as well as the problems of
how people do it)

6.863J/9.611J SPO3 Lecture 2

Example from information retrieval

mlll
e Keywork retrieval: marsupial or kangaroo or

koala

* Trying to form equivalence classes - ending not
Important

e Can try to do this without extensive knowledge,
but then:

organization ® organ Europedf ® Europe
generalization ® generic noise ® noisy

6.863J/9.611J SPO3 Lecture 2

Morphology

e Morphology is the study of how words are
built up from smaller meaningful units called
morphemes (morph= shape; logos=word)

e Easy in English — what about other
languages?

6.863J/9.611J SPO3 Lecture 2

What about other languages?

Imperf | Imperf Future Preterite | Present Cond Imp. FL
Indic. Subjun Subj. S
amaba amare amé ame amaria amara al
ama amabas amaras amaste ames amarias amaras | at
ames
amamba amara amo ame amaria amara al
amamos
EINES amad amambais | amremos | amomos |amemos | amarianos | amarais | al
amais
aman amamban | amaran amaron amen amarian amarain | al
How to fove T Spanish. .. Tncomplete...you C

finish it after Valentine's Day ...

6.863J/9.611J SPO3 Lecture 2

What about other languages?
I

Lexical: Paris+mut+nngau+juma+nirag+laug+sima+nngit+junga
Surface: Parl mu nngau juma nira lauq sima nngit tunga

Paris = (root = Paris)

+mut = terminalis case ending

+nngau = go (verbalizer)

+juma = want

+niraq = declare (that)

+laug = past

+sima = (added to -laug- indicates "distant past")
+nngit = negative

+junga = 1st person sing. present indic (nonspecific)

Figure 2: Inuktitut: Parimunngaujumaniralougsimanngittunga = “1 never said I wanted to go to
Paris”

6.863J/9.611J SPO3 Lecture 2

What about other processes?

W Stem: core meaning unit (morpheme) of a word

e Affixes: bits and pieces that combine with the stem to
modify its meaning and grammatical functions

Prefix: un- , anti-, etc.
Suffix: -ity, -ation, etc.

Infix:
Tagalog: vm—+hinigi ® humingi (borrow)
Any infixes in ‘nonexotic’ language like English?

Here' s one: un- believable

6.863J/9.611J SPO3 Lecture 2

OK, now how do we deal with this
computationally?

il
 What knowledge do we need?

 How is that knowledge put to use?

e What:
duckling; beer (implies what K...?)
chase + ed ® chased (implies what K?)
breakable + un ® unbreakable (‘prefix’)

e How: a bit trickier, but clearly we are at least
doing this kind of mapping...

6.863J/9.611J SPO3 Lecture 2

Our goal: PC-Kimmo

S

I_’ =

| exical form

UES

()

N

>| L exicon

I_' f

Surfaceform

6.863J/9.611J SPO3 Lecture 2

Two parts to the “what”

sl
1. Which units can glue to which others (roots
and affixes) (or stems and affixes), eg,
2. What ‘spelling changes’ (orthographic
changes) occur — like dropping the e In
‘chase + ed’

OK, let’s tackle these one at a time, but first
consider a (losing) alternative...

6.863J/9.611J SPO3 Lecture 2

KISS: A (very) large dictionary

mlll _ _ _ _
Impractical: some languages associate a single meaning w/ a

Sagan number of distinct surface forms (600 billion in
Turkish)

German: Leben+s+versichergun—+gesellschaft+s+angestellter

1.

Chinese compounding: about 3000 ‘words,’ combine to yield
tens of thousands

2. Speakers don't represent words as a list
Wug test (Berko, 1958)

Juvenate is rejected slower than pertoire (real prefix
matters)

6.863J/9.611J SPO3 Lecture 2

Representing possible roots + affixes
as a finite-state automaton

C L _ Network
Wordlist 3
cl ear
cl ever
ear compile > |f
ever
f at
f at her
FSM
[usr/dict/words 17728 states
25K words 37100 arcs
206K chars

6.863J/9.611J SPO3 Lecture 2

Now add In states to get possible
combos, as well as features

+Ad]

O—»O- ’O_>OO>O >O+Cor;p@accept
i g

b
I

This much Is easy — a straightforward fsa
States = equivalence classes

6.863J/9.611J SPO3 Lecture 2

English morphology: what states do
we need for the fsa?

e As an example, consider adjectives
Big, bigger, biggest
Cool, cooler, coolest, coolly
Red, redder, reddest
Clear, clearer, clearest, clearly, unclear, unclearly
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Real, unreal, silly

6.863J/9.611J SPO3 Lecture 2

Will this fsa work?

6.863J/9.611J SPO3 Lecture 2

ANs: no!

e Accepts all adjectives above, but
e Also accepts unbig, readly, realest
e Common problem: overgeneration
e Solution?

6.863J/9.611J SPO3 Lecture 2

Revised picture

adj-root,

6.863J/9.611J SPO3 Lecture 2

How does PC-Kimmo represent this?

Here’'s what the pc-kimmo fsa
looks like — the fsa states are
called ‘alternation classes’ or
‘lexicons’

6.863J/9.611J SPO3 Lecture 2

PC-Kimmo states for affix combos
(portion) = lexicon tree

. <:§§gnmunn@§:>

R D

*
L 4 .
N Q LS
» D)
U

END END END

(at start of file english.lex)

: END
END

6.863J/9.611J SPO3 Lecture 2

Next: what about the spelling
changes? That's harder!

v Which units can glue to which others (roots
and affixes) (or stems and affixes)

2. What ‘spelling changes’ (orthographic
changes) occur — like dropping the e In
‘chase + ed’

6.863J/9.611J SPO3 Lecture 2

Mapping between surface form &
underlying form

ol
chased
R +ed

But clearly this can go either way — given the underlying
form, we can generate the surface form — so we really
have a relation betw. surface & underlying form, viz.:

6.863J/9.611J SPO3 Lecture 2

Conventional notation

Lexical (underlying) form:¢c h a s e +
Surface form: c h a s 0 0 e

The 0’s “line up” the lexical & surface strings
This immediately suggests a finite-state automaton
‘solution’ : an extension known as a

6.863J/9.611J SPO3 Lecture 2

Finite-state transducers: a pairing
between lexical/surface strings

‘ lexical string
C H A S

C h a S surface string
O o o " ©o .‘

e Or more carefully

6.863J/9.611J SPO3 Lecture 2

Definition of finite-state automaton
(fsa)

e A
(FSA) Is a quintuple (Q,S,d, g5, F) where
e Q Is a finite set of states

e Sis a finite set of terminal symbols, the
alphabet

e g, | Q is the initial state
e F1 Q, the set of final states

e dis a function from Q xS ® Q, the
transition function

6.863J/9.611J SPO3 Lecture 2

Definition of finite-state transducer

Wi state set Q

e initial state q,
e set of final states F
e Input alphabet S (also define S*, S™)

e transition functiond: Qx S ® 2°
S ®

6.863J/9.611J SPO3 Lecture 2

Regular relations on strings

e Relation: like a function, but multiple outputs ok
e Regular: finite-state

e Transducer: automaton w/ outputs

c®{b} “®{}
. ® {a-, aca, acab,
acabc}

The difference between (familiar)
fsa’'s and fst's: functions from...

i Acceptors (FSASs) Transducers (FSTSs)

{false, true} strings

@©© @@X©

6.863J/9.611J SPO3 Lecture 2

Defining an fst for a spelling-change
rule

e Suggests all we need to do is build an fst for
a spelling-change rule that ‘matches’ lexical
and surface strings

e Example: fox+s, foxes; buzz+s, buzzes
* Rule: Insert e before non initial x,s,z

e |nstantiation as an fst (using PC-Kimmo
notation)

f o X 0 e S # surface
F O X + 0] S # lexical

6.863J/9.611J SPO3 Lecture 2

Insert ‘e’ before non-initial z, s, x
(“epenthesis’)
1l

0
F O X + 0 S # lexical

6.863J/9.611J SPO3 Lecture 2

Successful pairing of foxes,fox+s

e S # surface
) # lexical

6.863J/9.611J SPO3 Lecture 2

Now we combine the fst for the rules
and the fsa for the lexicon by

.W;omposition

big | clear | clever | ear | fat | ...
Regul ar Expressi on q |
Lexi con
Compiler >
Regul ar Expressi ons
for Rul es '

b i g +Ad] +Conp
b i g g 0] e r

6.863J/9.611J SPO3 Lecture 2

So we're done, no?

mlll
v Which units can glue to which others (roots
and affixes) (or stems and affixes)

v" What ‘spelling changes’ (orthographic
changes) occur — like dropping the e In
‘chase + ed’

6.863J/9.611J SPO3 Lecture 2

So, we're done, right?

e Not so fast...!1!!

e Sometimes, more than 1 spelling change rule
applies. Example: spy+s, spies: y

e y goes to | before an inserted e (compare,
“spying”

e e Inserted at affix +s

6.863J/9.611J SPO3 Lecture 2

Simultaneous rules

e All we gotta do is write one fst for each of the
spelling change rules we can think of, no?

e Since fsa’s are closed under intersection, we

can apply all the rules simultaneously... can
we?

e No! Fst’'s cannot, in general, be intersected...
(but, they can, under certain conditions...)

6.863J/9.611J SPO3 Lecture 2

The classical problem
W% Traditional phonological grammars consisted of
a cascade of general rewrite rules, in the form:
x®y/] ¢
e If a symbol x Is rewritten as a symbol y, then
afterwards x Is no longer available to other rules

e Order of rules Is important

e Note this system isTuring complete — can
simulate general steps of any computation.. So,
gulp, how do we cram them into finite-state
devices...?

6.863J/9.611J SPO3 Lecture 2

Example from English (“gemination”)

underlying quiz +s

1 Rule A: s -> es after z

intermediate| quiz + es
1 Rule B: z doubles before

Suffix beginning with
vowel

surface quizzes

6.863J/9.611J SPO3 Lecture 2

What's the difference?

e Fsa Isomorphic to regular languages (sets of

strings)

e FST Isomorphic to regular relations, or sets of
pairs of strings

e |Like FSAs, closed under union, but unlike
~SAs, FSTs are not closed under

complementation, intersection, or set
difference

6.863J/9.611J SPO3 Lecture 2

But this is a problem...

How do we know which order of rules?

A transducer merely computes a static regular
relation, and is therefore inherently reversible —
so equally viable for analysis or synthesis

The constraints are declarative

Since t
genera
do we

ne rules describe such relations, in
, more than one possible answer — which

nick? (Inverting the order becomes hard)

This blocked matters until C. Johnson recalled a
theorem of Schuztenberger [1961] viz.,

6.863J/9.611J SPO3 Lecture 2

When is this possible?

Input
-
| Rulel]
S \ input
| Rule?2] 4 L
iyt | Single FST]

| Rule3] L
Q output
| Rule4]
L

6.863J/9.611J SPO3 Lecture 2

Schuztenberger’s condition on
closure of fst's

il
e The relations described by the individual

transducers add up to a regular relation (l.e., a
single transducer) when considered as a whole
If

e The transducers act in lockstep: each character
pair is seen simultaneously by all transducers,
and they must all “agree” before the next
character pair is considered

e No transducer can make a move on one string
while keeping the other one In place unless all
the other transducers do the same

6.863J/9.611J SPO3 Lecture 2

Simultaneous read heads

6.863J/9.611J SPO3 Lecture 2

The condition

sl
 For FSTs to act in lockstep, any O transitions
must be synchronized — that is, the
lexical/surface pairing must be equal length

e S. called this an equal length relation

e Under this condition, fst's can be intersected
— PC-Kimmo program simulates this
Intersection, via simultaneous “read heads”

6.863J/9.611J SPO3 Lecture 2

Plus lexicon — lexical forms always
constrained by the path we're

miollowing through the lexicon tree
mlll

6.863J/9.611J SPO3 Lecture 2

And that’s PC-Kimmo, folks... or
“Two-level morphology”

A lexicon tree (a fsa to represent the lexicon)

A set of (declarative) lexical/underlying relations,
represented as a set of fst's that address both lexical
and surface forms

For English, roughly 5 rules does most of the work
(you've seen 2 already) — 11 rules for a “full scale”
system with 20,000 lexical entries (note that this
typically achieves a 100-fold compression for English)

The only remaining business is to tidy up the actual
format PC-KIMMO uses for writing fst tables (which is
quite bizarre)

6.863J/9.611J SPO3 Lecture 2

Spelling change rules

VO&F6:1/9.611J SPO3 Lecture 2

QWName Description Example
dl Consonant 1-letter consonant beg/begging
Doubling doubled before -ing/ed
(gemination, G)
E deletion Silent e dropped make/making
(elision, EL), before -ing, -ed
E insertion e added after -s, -z, - |fox/foxes
(epenthesis, ch, -sh before -s
EP)
Y replacement |-y changes to -ie try/tries
(Y) before -ed
| spelling (1) | goes to y before lie/lying

How do we write these In PC-Kimmo?

6.863J/9.611J SPO3 Lecture 2

PC-Kimmo 2-level Rules

sl
e Rules look very similar to phonological rewrite
rules, but their semantics is entirely different

e 2-level rules are completely declarative. No
derivation; no ordering

e Rules are in effect modal statements about
how a form can, must, or must not be
realized

6.863J/9.611J SPO3 Lecture 2

Form & Semantics of 2-level Rules

wlll _ _
e Basic form iIs

L:SOPIc ... rc:

e |Lexical L pairs with surface S in (optional)
left, right context Ic, rc. OP Is one of

=> Only but not always,
<= Always but not only
<=> Always and only
/<= Never

e |c and rc are 2-level I.e. can address lexical
and surface strings

6.863J/9.611J SPO3 Lecture 2

a:b =1 r

il
e If the symbol pair a: b appears, it must be Iin
context | r

e |If the symbol pair a: b appears outside the
context | r, FAIL

lar lar |br xa
| br |l ar | br %{

6.863J/9.611J SPO3 Lecture 2

Example: epenthesis

, LR: fox+0s kiss+0s church+0s spy+0s

; SR: foxOes kissOes churchOes spiOe

(note: we NEED the + to mark the end of the root ‘fox’ — we
can't just have fox0s paired with foxOes)

RULE "3 Epenthesis, 0:e => [Csib|ch|sh|y:l]] +:0 s [+:0|#]" 7 9

6.863J/9.611J SPO3 Lecture 2

If a lexical t corresponds to a surface
, It precedes an |

(B 1 E 1 @
o1 @

tic => 1: 2 1 1

2 o 1 0

6.863J/9.611J SPO3 Lecture 2

a:b <=1 r

e If lexical a appears in context | _r, then it
must be realized as surface b

e |f lexical a appears in context | r,ifitis
realized as anything other than surface b,

FAIL

| ar \ay | br xay
| br | br xby

6.863J/9.611J SPO3 Lecture 2

il
; y:I-spelling
, LR: spy+s happy+ly spotO+y+ness
, SR: spies happiOly spottOiOness

RULE "5 y:i-spelling, y:i<=:C__+:0 ~[i|']" 47

6.863J/9.611J SPO3 Lecture 2

a:b <=>1 r

| _ _ :
e |f the symbol pair a:b appears, it must be in context | r

e |f lexical a appears in context |_r, then it must be
realized as surface b

e |If the symbol pair a:b appears outside the context | r,
FAIL

e |f lexical a appears in context | r, if it Is realized as
anything other than surface b, FAIL

| ar Nar/ | br
| br | Ibr%

6.863J/9.611J SPO3 Lecture 2

Possessives with ‘s’

wlll
: s-deletion

' LR: cat+s+'s fox+s+'s
* SR: cat0s0'0 foxes0'0

RULE "7 s-deletion, s:0 <=>+:0 (0O:e) s +:0" "

6.863J/9.611J SPO3 Lecture 2

Example: Japanese past tense

eVoicing: t:d <=> <b m n g>: (+:0) (0:i)

A M@

b mon gy

6.863J/9.611J SPO3 Lecture 2

a:b <= /1 r

e Lexical a 1s never realized as b In context
| r

e If lexical a Is realized as b in the context
| r, FAIL

ay | ar | br xay
| ar | br xby

6.863J/9.611J SPO3 Lecture 2

Gemination (consonant doubling)

, {C} ={b,d,f,g,l,m,n,p,r,s,t}
RULE "16 Gemination, 0:0 /<= :0C*V {C} _ +:0[V]y:]" 516

6.863J/9.611J SPO3 Lecture 2

2-Level Rule Semantics: summary

) | br ¥ax | br
|l ar \ay | br

b <= i
a - | br | br
b = . lar |lar | br
wh=l-n |l br lar Ibr

— | ar | br

6.863J/9.611J SPO3 Lecture 2

a lexical

surface
xay
Xby

b4
xay
Xby

Automata Notation (.rul file)

il
 What were those funny 2 numbers at the end
of the ‘rewrite’ notation?

 They specify the rows and columns of the
corresponding automaton

e I'll show you one, but it’s like Halloween 6 — a
nightmare you don’t want to remember

 We have a nicer way of writing them...
e OK, here goes...

6.863J/9.611J SPO3 Lecture 2

Shudder...

+:0 [V|y:]" 516

:0 C* V {C}
@
0
1

RULE "16 Gemination, 0:0 /<
d
b

2:24222222222222172
3:2001111111111111
4:2115555555555511
5:2111111111111131

6.863J/9.611J SPO3 Lecture 2

Limits?

Mo Can PC-KIMMO do INFIXES?

Infix:
Tagalog: +hinigi ® humingi (borrow)
Any Infixes In ‘nonexotic’ language like
English?

Here' s one: un- believable

6.863J/9.611J SPO3 Lecture 2

Summary: what have we learned so
far?

WR¥ESTs can model many morphophonological systems -
esp. concatenative (linear) phonology

e You can compose and parallelize the FSTs

e Nulls cause nondeterminism - why can’'t we get rid of
nondeterminism like in FSAs

e \What can this machine do?
e What can't it do?

e How complex can it be? (computational complexity Iin
official sense)

e How complex is it in practice?
e Example from Warlpiri

6.863J/9.611J SPO3 Lecture 2

Lab 1: PC-kimmo warmup

8 Login to Athena SUN workstation
““' attach 6.863
cd /mit/6.863/pckimmo-old
pckimmo
PC-Kimmo=>take english
PC-Kimmo= recognize flies
“fly+s fly+PL

PC-Kimmo=>generate fly+s
flies

PC-Kimmo=set tracing on

PC-Kimmo>quit

6.863J/9.611J SPO3 Lecture 2

An example — try it yourself

H—

6.863J/9.611J SPO3 Lecture 2

Outfoxed? Off to the races...

A8 race of an example races’

s The machine has to dive down many paths...

Recognizing surface form "races’".
0 (r.r) —> (11 121 1)
EP GY ELTI

1 (a.a) > (11 412 1)
EP G Y EL I

(c.c) --> (1 2 16 2 11 1)

(e.0) -—> (1 1 16 1 12 1)
EP G Y EL I

Entry |race| ends --> new lexicon N, config (1 1 16 1 12 1

6.863J/9.611J SPO3 Lecture 2

More to go...
“jmm Problem: ewas paired with O (null)...!
=B (which iswrong - it’ s guessing that the formis
“racing” - has stuck in an empty (zero) character
after ¢ but before e) - elision automaton has 2 choices

This s nondeterminism in action (or inaction)!

Entry /0 ends —-> new lexicon C1, config (11 16 1 12 1
EP G Y EL I
Entry /0 is word-final --> path rejected (leftover input)
(+.0) --> (1116 113 1)

EP G Y EL I
Nothing to do.
(+.e) -—-> automaton Epenthesis blocks from state 1.
Entry |race| ends --> new lexicon P3, config (1 1 16 1 12 1)

6.863J/9.611J SPO3 Lecture 2

And still more maze of twisty

1mpassages, all alike...it’s going to try
all the sublexicons w/ this bad
guess..

6.863J/9.611J SPO3 Lecture 2

Winding paths...after 22 steps...
I
|

3 (e.e) -=> (11161 14 1)
EP G Y EL I
Entry |race| ends --> new lexicon N, (1 1 16 1 14 1)
E GYELTI
Entry /0 ends --> new lexicon C1, config (1 1 16 1 14 1]
Entry /0 is word-final -->rejected (leftover input)
(+.0) --> (1116 1 15 1)
(s.s) -—> (1 416 21 1)
Entry +/s ends--> new lexicon C2, (1 4 16 2 1 1)
Entry /0 is word-final -->rejected(leftover input)
(?.?) ——> (1116 1 1 1)
End --> lexical form : N PL GEN))

5
6
5
6
7
8
8
9

6.863J/9.611J SPO3 Lecture 2

