
6.863J Natural Language Processing
Lecture 13: Semantics II

Robert C. Berwick

6.863J/9.611J Lecture 13 Sp03

The Menu Bar
• Administrivia:

• Schedule alert: Lab 3 due today
• Lab 4: posted; due April 9

• Agenda:
• Semantics: the model-theoretic, composition-

based view of meaning; example system
• Noun phrase interpretation and quantification
• Details of quantification, semantic

representation & evaluation
• Lexical semantics: the meanings of words
• Tense and time

6.863J/9.611J Lecture 13 Sp03

Example of what we might do: text
understanding via q-answering

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6.863J/9.611J Lecture 13 Sp03

How: recover meaning from
structure

S or IP

NP VP

V NP
John

ate ice-cream

= λy.ate (y, ice-cream)

VP(NP)= ate (john ,icecream)

ice-cream

john

λxλy.ate(y, x)

6.863J/9.611J Lecture 13 Sp03

“Logical” semantic interpretation

• Four basic principles
1. Rule-to-Rule semantic interpretation [aka “syntax-

directed translation”]: pair syntax, semantic rules. (GPSG:
pair each cf rule w/ semantic ‘action’; as in compiler theory
– due to Knuth, 1968)

2. Compositionality: Meaning of a phrase is a function of
the meaning of its parts and nothing more e.g., meaning of
S→NP VP is f(M(NP)• M(VP)) (analog of ‘context-freeness’
for semantics – local)

3. Truth conditional meaning: meaning of S equated with
conditions that make it true

4. Model theoretic semantics: correlation betw. Language
& world via set theory & mappings

6.863J/9.611J Lecture 13 Sp03

Model theoretic semantics

More specifically, a model
1. Consists of a set D (the domain) and
2. A set of variables, V;
3. A function F (the interpretation function)
4. F assigns to each individual constant a

member of D;
5. Assigns to each one-place predicate (arity 1)

a subset of D; to each 2-place predicate (eg,
eat) a subset of D x D, etc.

• Our lambda calculus version merely makes
use of lambda functions to serve as these
functions

6.863J/9.611J Lecture 13 Sp03

In this picture

• The meaning of a sentence is the
composition of a function VP* on an
argument NP*

• The lexical entries are λ forms
• Simple nouns are just constants
• Verbs are λ forms indicating their argument

structure
• Verb phrases return λ functions as their

results (in fact – higher order)

6.863J/9.611J Lecture 13 Sp03

Example

• John ate ice-cream
• Top level process-sentence routine used,

with the (eventually constructed)
interpretation of the S (built from below):

(lambda (s)(process-sentence s)
‘(ATE :AGENT JOHN :PATIENT ICE-CREAM

:TENSE PAST))

• process-sentence actually does the job of
retrieving fact from db, adding fact to db, carrying
out an inference, carrying out a robot interface,
etc.

6.863J/9.611J Lecture 13 Sp03

Event structure representation

• Essentially ‘verb frames’
• Needs multiple arity predicate-argument

structures, semantic labeling of arguments from
predicates, and semantic constraints on the
fillers of the arguments

• Existing system in lab has just 3 sorts of
‘process sentence’ dispatches:
• Assert
• Retrieve yes-no
• Retrieve wh question

6.863J/9.611J Lecture 13 Sp03

Wh questions

• Part of process-sentence
• Wh form is placed by semantics in

template as, eg, ?which or ?who
• This will then correspond to the “for which

x, x a person” typed lambda calculus form
we wanted – explicitly in a procedural way

• Procedure prompts a search through db
for matching sets of items that can align
w/ the template

6.863J/9.611J Lecture 13 Sp03

How: to recover meaning from
structure

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

= V(NP*)=
λxλy ate(y,x).ic=

λy ate(y, ic)

6.863J/9.611J Lecture 13 Sp03

How

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*=λy ate(y, ic)

ate(John, ic)
= VP(NP*)=λy ate(y, ic).John=

ate(John, ic)

6.863J/9.611J Lecture 13 Sp03

How

• Application of the lambda form associated with
the VP to the lambda form given by the
argument NP

• Words just return ‘themselves’ as values (from
lexicon)

• Given parse tree, then by working bottom up as
shown next, we get to the logical form
ate(John, ice-cream)

• This predicate can then be evaluated against a
database – this is model interpretation- to
return a value, or t/f, etc.

6.863J/9.611J Lecture 13 Sp03

Code – sample rules

(root ==> s) (lambda (s)(PROCESS-SENTENCE s))

(s ==> np vp) (lambda (np vp)(funcall vp np)))

(vp ==> v+args) (lambda (v+args)(lambda (subj)
(funcall v+args subj))))

(v+args ==> v2 np)(lambda (v2 np)
(lambda (subj)

(funcall v2 subj np))))

(v kiss) (lambda (agent beneficiary affcted-obj))

(np-pro ==> name) #'identity)

Syntactic rule Semantic rule

Verb arguments

6.863J/9.611J Lecture 13 Sp03

The semantic interpreter
procedure

(lambda (s) (process-sentence s)
(ate :agent John :patient ice-cream :tense past)

S

NP

NP-pro

John

(lambda(x) x)

lexical-semantics

John

VP

(lambda (np vp)
(funcall vp np)

John

Name

(lambda(x) x)

V+args

V2+tns NPJohn

Root

(lambda (subj) (funcall v2+tns subj))

lexical-semantics

NP

NP-pro

Name

ice-cream

ice-cream*lexical-semantics*

(lambda (agent patient)(ate :agent agent :patient patient :tense past))

ate

(lambda(v2+tns np)

(lambda (subj)
(funcall v2+tns subj np))

ice-cream

6.863J/9.611J Lecture 13 Sp03

How does this work?

• Top level lambda says to call procedure named VP
(whose value will be determined “from below”, ie, S-I of
VP) by using the arg NP (again whose meaning will be
provided “from below)

• In other words, to find the meaning of S, we call the
procedure VP using as an argument the subject NP

• These two values will be supplied by the (recursive)
semantic interpretation of the NP and VP nodes.

• At the very bottom, individual words must also contain
some paired ‘semantic’ value

• This is almost enough to do the code for the whole
example!

6.863J/9.611J Lecture 13 Sp03

Code – sample rules
add-rule-semantics '(root ==> s)

'(lambda (s)
(PROCESS-SENTENCE s)))

(add-rule-semantics '(s ==> np vp)
#'(lambda (np vp)

(funcall vp np)))

(add-rule-semantics '(vp ==> v+args)
#'(lambda (v+args)
#'(lambda (subj)

(funcall v+args subj))))

(add-rule-semantics '(v+args ==> v2 np)
#'(lambda (v2 np)

#'(lambda (subj)
(funcall v2 subj np))))

(add-rule-sem '(np-pro ==> name) #'identity)

Syntactic rule
Semantic rule

6.863J/9.611J Lecture 13 Sp03

Code – the interpreter
;;Parse rules into syntactic/semantic parts, recursively
(defun phrase-semantics (phrase)
(cond ((atom (second phrase)) ; find phrase name –a word?

(word-semantics (second phrase) (first phrase))) ; o.w.
(t (rule-apply (rule-semantics (first phrase) ; recurse

(mapcar
#’first(rest phrase)))

(mapcar #'phrase-semantics
(rest phrase))))))

;; now apply-eval loop for the semantic rules
(defun rule-apply (head args)
(let ((result (apply head args)))

(if (and (consp result)
(eq (first result) 'lambda))

(eval (list 'function result))
result)))

6.863J/9.611J Lecture 13 Sp03

Code for this

(defun word-semantics (word sense)
(let ((x (lookup2 word sense *lexical-semantics*)))
(if (and (consp x)

(eq (first x) 'lambda))
(eval (list 'function x))
x)))

(defun rule-semantics (head args)
(let ((x (lookup2 head args *phrasal-semantics*)))
(if (and (consp x)

(eq (first x) 'lambda))
(eval (list 'function x))
x)))

6.863J/9.611J Lecture 13 Sp03

Database that ‘grounds out’

Looks up the lambda form associated w/ a word
Indexed by the head word and then its grammatical category

Example: "eat" is indexed under "eat" and V1 (verb in
subcategory 1)
Then the function actually runs the associated lambda
Procedure associated, if any.

Example: (lookup2 'who 'PRONP+wh *lexical-semantics*)
returns ?WHO

6.863J/9.611J Lecture 13 Sp03

Construction step by step – on
NP side

S (IP)

NP-pro VP

NP
John

ate

VP(NP)= ate (john , ice-cream)

-

john

(root ==> s)(lambda (s)(PROCESS-SENTENCE s)))

(lambda (np vp)(funcall vp np))

root
s ==> np vp

np-pro ==> name

name

#'identity

john

Word-semantics john

john

name

V2

V+args

6.863J/9.611J Lecture 13 Sp03

Example of logical form
construction
• John ate ice-cream
• Top level process-sentence routine

used, with the (eventually constructed)
interpretation of the S (built from below):
(lambda (s)(process-sentence s)

‘(ATE :AGENT JOHN :PATIENT
ICE-CREAM :TENSE PAST))

6.863J/9.611J Lecture 13 Sp03

Construction step by step

6.863J/9.611J Lecture 13 Sp03

Let’s elaborate

• What is the interpretation of S?
(lambda (np vp) (funcall vp np))

• This needs 2 values: one for the VP, one for
NP

• These 2 vals are supplied from below, and
substituted via evaluation done by rule-
apply

• Let’s see where the values come from

6.863J/9.611J Lecture 13 Sp03

Filling in values from below
• The Subject NP value – this is built

syntactically as,
(NP (NP-PRO (Name John)))

• If we look at the 3 rules for these items (NP,
NP-pro, Name) we find:
(add-r-s ‘(np ==> #’identity)

(add-r-s ‘(np-pro ==> #’identity)

(add-r-s ‘John ‘name ‘John)

• So the call to phrase-semantics just
leads to the composition of two identity
functions, followed by the constant John, I.e,
‘John’.

6.863J/9.611J Lecture 13 Sp03

The VP meaning is a higher-order
function

• Note that the VP procedure returns a procedure
– namely, that procedure object which takes 1
object (the semantic value of the Subject), and
calls the function produced by V+args on it

• Note that the actual semantic value is supplied
‘higher up’ by the funcall of vp on np

• For each verb subcategory, V+args constructs
a lambda procedure that is a function of the
verb and its arguments (excluding the subject);
this lambda procedure in turn constructs a basic
thematic frame whose values are filled in by the
subject and the arguments to the verb

6.863J/9.611J Lecture 13 Sp03

V+args construction
• For ate, need this syntactic rule + corresponding paired

semantic rule:
(v+args ==> v2+tns np)
#`(lambda(lambda (subj)

(funcall v2+tns subj np)))

• Note what this says: it expects 2 arguments to follow
1. The semantic value of v2+tns
2. The semantic value of an np (the object np)
• It returns a procedure that requires one argument as its

value: the subject; with the values of v2+tns and np filled
in

verb (a func)
arg to verb

6.863J/9.611J Lecture 13 Sp03

What are the values for v2+tns
and np, and Subj?
• Np: value is ice-cream
• Subj: value filled in by lambda

substitution higher up, as mentioned
• V2+tns: lexical entry for ate:
(ate :agent ,agent :patient

,patient :tense
:past))

• Paste this all back together as we unwind
to the tops

6.863J/9.611J Lecture 13 Sp03

In this picture

• The meaning of a sentence is the
composition of a function VP* on an
argument NP*

• The lexical entries are λ forms
• Simple nouns are just constants
• Verbs are λ forms indicating their argument

structure
• Verb phrases return a function as its

result

6.863J/9.611J Lecture 13 Sp03

Syntax & paired semantics

Item or rule Semantic translation
Verb ate λxλy.ate(y, x)
propN λx.x
V V*= λ for lex entry
S (or CP) S*= VP*(NP*)
NP N*
VP V*(NP*)

6.863J/9.611J Lecture 13 Sp03

How: to recover meaning from
structure

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

= V(NP*)=
λxλy ate(y,x).ic=

λy ate(y, ic)

6.863J/9.611J Lecture 13 Sp03

How

S

NP VP

V NPJohn

ate ice-cream
λx.x, x=John

λx.x, x=ice-creamλxλy ate(y,x)

*

* *

John=

=ice-cream

*=λy ate(y, ic)

ate(John, ic)
= VP(NP*)=λy ate(y, ic).John=

ate(John, ic)

6.863J/9.611J Lecture 13 Sp03

Processing options

• Off-line vs. on-line
• Off-line: do all syntax first, then pass to

semantic interpretation (via pass on
syntax tree(s))

• On-line: do it as each phrase is completed

6.863J/9.611J Lecture 13 Sp03

On-line

S NP VP {VP*(NP*)}
• VP* has been stored in state representing VP
• NP* stored with the state for NP
• When rule completed, go get value of VP*, go get

NP*, and apply VP* to NP*
• Store result in S*.

• As fragments of input parsed, semantic
fragments created

• Can be used to block ambiguous
representations

6.863J/9.611J Lecture 13 Sp03

Picture

S

NP

John

name

event

Conceptual interface
John

S-I

6.863J/9.611J Lecture 13 Sp03

Processing order: online
• Interpret subtree as soon as it is built –eg, as soon as

RHS of rule is finished (complete subtree)
• Picture: “ship off” subtree to semantic interpretation as

soon as it is “done” syntactically
• Allows for off-loading of syntactic short term memory;

SI returns with ‘ptr’ to the interpretation
• Natural order to doing things (if process left to right)
• Has some psychological validity – tendency to interpret

asap & lower syntactic load
• Example: I told John a ghost story vs. I told John a

ghost story was the last thing I wanted to hear

6.863J/9.611J Lecture 13 Sp03

Drawback

• You also perform semantic analysis on
orphaned constituents that play no role in
final parse

• Worst case:
• Jump out the window,

• But not before you put on your parachute

• Hence, case for pipelined approach: Do
semantics after syntactic parse

6.863J/9.611J Lecture 13 Sp03

Doing Compositional Semantics

• To incorporate semantics into grammar we must
• Figure out right representation for a single

constituent based on the parts of that constituent
(e.g. Adj)

• Figuring out the right representation for a category of
constituents based on other grammar rules making
use of that constituent (e.g NP Adj Noun)

• This gives us a set of function-like semantic
attachments incorporated into our CFG
• E.g. NP Adj Noun* {λx Noun*(x) ^ Isa(x,Adj*)}

6.863J/9.611J Lecture 13 Sp03

Non-Compositional Language

• What do we do with language whose meaning
isn’t derived from the meanings of its parts
• Metaphor: You’re the cream in my coffee.
• She’s the cream in George’s coffee.
• The break-in was just the tip of the iceberg.
• This was only the tip of Shirley’s iceberg.
• Idioms: The old man finally kicked the bucket.
• The old man finally kicked the proverbial bucket.
• (? The bucket was kicked by the old man)

• Solutions?
• Mix lexical items with special grammar rules?

6.863J/9.611J Lecture 13 Sp03

What do we do with them?

• As we did with feature structures:
• Alter an Earley-style parser so when

constituents (dot at the end of the rule) are
completed, the attached semantic function
applied and meaning representation created
and stored with state

• Or, let parser run to completion and then
walk through resulting tree running
semantic attachments from bottom-up

6.863J/9.611J Lecture 13 Sp03

What can we do with this
machinery?

• A lot (almost all): start adding phenomena
(figure out the representation) – and see

• To begin: adjs, PPs, wh-moved NPs
(which book…), which act just like other
quantifiers

6.863J/9.611J Lecture 13 Sp03

The lab – an example adding PPto

• John gave Fido to Mary
• We have to add 2 new syntactic rules
• We have to add 2 new semantic rules,

and dictionary semantics for any new
word meanings

6.863J/9.611J Lecture 13 Sp03

The syntactic rule

• Read off from the corresponding tree
S

NP VP

V+args

V NP PP+dat

P

V+args→ V NP PP+dat
PP+dat→ P NP

NP

6.863J/9.611J Lecture 13 Sp03

The semantic rules

• Look at what output should be
(give :agent john :patient fido

:beneficiary mary :tense past)

• This tells us what verb template should look
like

6.863J/9.611J Lecture 13 Sp03

The semantic rules

• PP+dat rule is easy – because we already have
semantics for NP
'(lambda (p np)

(funcall p np))

(add-rule-sem '(pp+dat ==> p np)

'(lambda (p np)

(funcall p np)))

nb: (add-r-s …)

6.863J/9.611J Lecture 13 Sp03

What about dictionary entry for ‘to’

(add-word-semantics 'to 'p 'identity)

6.863J/9.611J Lecture 13 Sp03

1 semantic rule for v3+tns

• Takes 3 args – namely, rhs of syntax rule
• Args are v3+tns, np, pp+dat
• Want to return a function as result
• Template thus:
'(lambda (v3+tns np pp+dat)

‘(lambda (subj)

(funcall subj ,v3+tns ,pp+dat ,np)))

6.863J/9.611J Lecture 13 Sp03

1 rule for v+args

'(v+args ==> v3+tns np pp+dat)

'(lambda (v3+tns np pp+dat)

`(lambda (subj)

(funcall ,v3+tns subj
',pp+dat ',np)))

6.863J/9.611J Lecture 13 Sp03

The semantic rules

• Look at what output should be
(give :agent john :patient fido

:beneficiary mary :tense past)

• This tells us what verb template should look
like

6.863J/9.611J Lecture 13 Sp03

Last: rule for the verb gave

(give :agent john :patient fido
:beneficiary mary :tense past)

`(lambda (agent beneficiary patient)

`(',v-tns :agent ,agent
:patient ,patient

:beneficiary ,beneficiary
:tense past))))

6.863J/9.611J Lecture 13 Sp03

Adjectives & Prepositions

• We take these as essentially restrictions
on sets (pick out an item from a set)

• We’ll elaborate this shortly

6.863J/9.611J Lecture 13 Sp03

• Adjectives modifying nouns: red book
• Add an NP “frame” as follows, a ‘search’

template:
• Add slot for :mod as follows:

(book :mod (:color red))
• To actually retrieve objects in database, call

match function (of some kind)
• Adjectives can be a list of modifiers, eg big

red book
• Semantics of this still simple: a filter on the

db (conjoined) big∧red = red∧big

Simple Adjectives

6.863J/9.611J Lecture 13 Sp03

Nouns as predicates; adjectives

• wedding
• λg wedding (g)

• Greek wedding
• λg greek(g), wedding (g)

• big fat Greek wedding
• λg big(g), fat(g), Greek(g), wedding(g)

• But: `fake gun’ is not the intersection of
‘fake’ and ‘gun’

6.863J/9.611J Lecture 13 Sp03

Beyond simple adjectives

• Still very limited: allows only one order
and no ambiguity (adult library card)

• What could you do to fix this?

6.863J/9.611J Lecture 13 Sp03

Primitive determiners

• The red book vs. a red book
• Add :number and ?definite components –

make it part of search template
• (book ?definite ?det :number singular :mod

(:color red))
• This will do a search in the db for matching set

of objects that are definite, singular, red

6.863J/9.611J Lecture 13 Sp03

Complex quantifiers

• Logically, quantifier is an ‘iteration’ over a
(possibly infinite) Domain, sweeping up
objects into a set

• Eg, ∀ x, x green cheese – iterate over set
of cheese, find set of green cheese

• Naturally implemented as a loop
• But we can have nested quantifiers:
Put the block on a pyramid

6.863J/9.611J Lecture 13 Sp03

Quantifiers & scope - briefly

• Everybody loves somebody sometime
• How many people?? Times??

• We will see there are 2 parts to this –
representation in the syntax, and the logical
representation of determiners/quantifiers

• Why important? To get the right answer
• Each person on a key congressional committee

voted against the bill…

6.863J/9.611J Lecture 13 Sp03

The notion of LF

• In general: notion of a logical form (LF)
that is distinct (perhaps!) from syntax –
or, at least, the apparent surface syntax

• Evidence: quantifier scope ambiguity;
ambiguity in form maps to
representational ambiguity (at every
level, so at LF too
Everybody loves somebody (sometime)…
∀ ∃ vs. ∃ ∀

6.863J/9.611J Lecture 13 Sp03

Notion of LF

• This has (at least) 2 interpretations
(corresponding to 2 different scopings of
the quantifiers ∀ and ∃):
∀x, x a person, ∃ y, y a person s.t.
loves(x, y)
∃ y, y a person, ∀ x, x a person s.t.
loves(x, y)

6.863J/9.611J Lecture 13 Sp03

PPs

• Again extend NP template
(adjectives/modifiers) – insert at end;
equivalent to relative clauses

• Example: book on the table, book which is
on the table
(book :mod (:support on :mod (:loc table))

(of course, table itself would be a recursive,
structured object, not just table)

6.863J/9.611J Lecture 13 Sp03

Wh questions

• Part of process-sentence
• Wh form is placed by semantics in

template as, eg, ?which or ?who
• This will then correspond to the “for which

x, x a person” typed lambda calculus form
we wanted – explicitly in a procedural way

• Procedure prompts a search through db
for matching sets of items that can align
w/ the template

6.863J/9.611J Lecture 13 Sp03

Picture – wh-NP & variable x exactly
in correct configuration

which
book/?which
book

see x

6.863J/9.611J Lecture 13 Sp03

Semantic event forms – more
sophisticated events

• Bob put the book on the shelf

(cause :agent (bob) :effect (go :theme (book)
:path (path :oper (on) :terminal+ (shelf)))

:tense past))

• What did Bob put on the shelf

(cause :agent (bob) :effect (go :theme (? (what))
:path (path :oper (on) :terminal+ (shelf)))

:tense past))

6.863J/9.611J Lecture 13 Sp03

Linguistic representation: events

• So far: assumed that the predicate
representation meaning of a verb has the same
of args as in the verb’s subcategorization
frame

• Problems:
• Determining the correct # of thematic roles
• Representing facts about these roles
• Ensuring that correct inferences can be derived

directly from the representation of an even
• Ensuring that no incorrect inferences can be

derived

6.863J/9.611J Lecture 13 Sp03

How many verb classes do we
need?

• We have to look and see!

6.863J/9.611J Lecture 13 Sp03

Verb Subcategorization

• Intransitive: (1 arg)
The light glowed.

* He glowed the light.

• Transitive: (2 args)
* He devoured.

He devoured the apple.

• Intransitive/Transitive: (1 or 2)
The door opened.
He opened the door.

… How do we encode knowledge of verb
subcategorization?

Ditransitive: (3 args)
* He put.
* He put the book.

He put the book on the table.

Ditransitive: (2 or 3 args)
* Water poured.

Water poured into the sink.
* Water poured with the sink.

He poured water into the sink.
* He poured water with the sink.

6.863J/9.611J Lecture 13 Sp03

Traditional cfg (w/ or w/o features)

S->NP VP
VP-> V0 Pploc
PPloc -> Ploc NP
V1 -> put
Ploc -> on| ...

VPass -> V0 PPloc
VP/NP -> V0 NP/NP PPloc
VP/NP -> V0 NP PPloc/NP
PPloc/NP -> Ploc NP/NP

6.863J/9.611J Lecture 13 Sp03

Link syntax to ‘lexical conceptual’ structure
- Thematic Roles (theta roles)

• Agent Patient Theme Goal Location Source Recipient
Experiencer Force (nonvolitional: the wind) Instrument

• Or, does the verb specify its own: Love has a Lover and
a Lovee

• Linking theory: mapping between conceptual structure
and grammatical function

• Separate out syntax from ‘semantics’ (good?)
• Where do the features come from?
• How do we assign thematic roles?

6.863J/9.611J Lecture 13 Sp03

A universal set of features?

put
V
___ NPj PPk
[Event CAUSE([Thing]i,

[Event GO([Thing]j,
[Path
TO([Place]{k})]{k})]

Lexical-Conceptual Structure: Jackendoff (1983)
Indices = ‘links’

6.863J/9.611J Lecture 13 Sp03

Linking = mapping from syntax
to thematic roles

• I poured water into the glass

affected object
‘theme’ or

‘figure’

‘ground’

6.863J/9.611J Lecture 13 Sp03

Linking = mapping from syntax
to thematic roles

• I filled the glass with water

affected object
‘theme’ or

‘figure’

‘ground’

6.863J/9.611J Lecture 13 Sp03

Where do thematic roles come
from?

• Verbs don’t have many arguments. Why not (in
principle there could be many -
schoenfinkelization)

• The list of so-called universal thematic roles is
short (6-10, depending on who you are)

• Is there a principled reason why no verb has
more than 3 thematic (theta) roles?

• Why should this be an autonomous linguistic
system? If so, why would it be need to be
hierarchical?

6.863J/9.611J Lecture 13 Sp03

Verb alternations as litmus test
for verb classes
SPRAY/LOAD alternation

• John sprayed the wall with paint
• John sprayed paint on the wall

• John filled the glass with milk
• *John filled milk in the glass

• *John poured the glass with milk
• John poured milk into the glass

• John covered the wall with paint
• *John covered paint on the wall
What is relevant here? Telicity - e.g. finishing the job?
Foreground/vs Background?

6.863J/9.611J Lecture 13 Sp03

Verb differences: alternations

• Similar verbs link differently
• So, why

I poured water into the glass but
*I filled water into the glass

• Identical verbs have different alternations
I gave the book to John/ I gave John the book
I donated the book to the library / *I donated the library
the book
John faxed the message to me/ John faxed me the
message
John whispered the message to me / *John whispered me
the message

6.863J/9.611J Lecture 13 Sp03

How many classes?

6.863J/9.611J Lecture 13 Sp03

This many… at least

Section9.1 (put arrange immerse install lodge mount place position set situate sling stash stow)
…
Section9.5 (pour dribble drip slop slosh spew spill spurt)

Section9.7 (spray brush cram crowd cultivate dab daub drape drizzle dust hang heap inject jam
load mound pack pile plant plaster prick pump rub scatter seed settle sew shower slather smear
smudge sow spatter splash splatter spread sprinkle spritz squirt stack stick stock strew string stuff
swab vest wash wrap)

Section9.8 (fill adorn anoint bandage bathe bestrew bind blanket block blot bombard carpet choke
cloak clog clutter coat contaminate cover dam dapple deck decorate deluge dirty dot douse drench
edge embellish emblazon encircle encrust endow enrich entangle face festoon fleck flood frame
garland garnish imbue impregnate infect inlay interlace interlard interleave intersperse interweave
inundate lard lash line litter mask mottle ornament pad pave plate plug pollute replenish repopulate
riddle ring ripple robe saturate season shroud smother soak soil speckle splotch spot staff stain
stipple stop up stud suffuse surround swaddle swathe taint tile trim veil vein wreathe)

Levin, 1993 “English verb classes & Alternations” (EVCA)

6.863J/9.611J Lecture 13 Sp03

Verb classes

• 183 Verb Classes
• 1 entry: 141 classes (/put/, /fill/, /butter/, /open/)
• 2 entry: 32 classes (/load/, /give/)
• 3+ entries: 10 classes (/email/)
• … 173/183 classes reduced to <3 entries

6.863J/9.611J Lecture 13 Sp03

Verb classes
• 1.1.2 Causative

2.4.3/2.4.4 Total Transformation
5.1 Verbal Passive
5.2 Prepositional Passive
1.1.1 Middle (+effect)
1.3 Conative (+motion, +contact)
2.12 Body-Part Possessor Ascension Alternation
7.1 Cognate Object Construction
7.2 Cognate Prepositional Phrase Construction

• 1.1.3 Substance / Source Alternation
1.2 Unexpressed Object Alternation
1.4. Preposition Drop Alternation
2.1 Dative (give)
2.2 Benefactive (carve)
2.3 Locative Alternation
2.4.1/2.4.2 Material/Product Alternation
2.6 Fulfilling Alternation
2.7 Image Impression Alternation
2.8 With/Against Alternation
2.9 Through/With Alternation
2.10 Blame Alternation
2.11 Search Alternation
2.14 As Alternation

6.863J/9.611J Lecture 13 Sp03

And more

2.5 Reciprocal Alternations
2.13 Possessor-Attribute Factoring Alternations
3.1 Time Subject Alternation
3.2 Natural Force Subject Alternation
3.3 Instrument Subject Alternation
3.4 Abstract Cause Subject Alternation
3.5 Locatum Subject Alternation
3.6 Location Subject Alternation
3.7 Container Subject Alternation
3.8 Raw Material Subject
3.9 Sum of Money Subject Alternation
3.10 Source Subject Alternation
4.1 Virtual Reflexive Alternation
4.2 Reflexive of Appearance
5.3/5.4 Adjectival Passive
6.1 There-insertion
7.3 Reaction Object Construction
7.4 X’s Way Construction
7.5 Resultative Construction
7.6 Unintentional Interpretation of Object
7.7 Bound Nonreflexive Anaphor as Prepositional Object

6.863J/9.611J Lecture 13 Sp03

Summing Up

• Hypothesis: Principle of Compositionality
• Semantics of NL sentences and phrases can be

composed from the semantics of their subparts

• Rules can be derived which map syntactic
analysis to semantic representation (Rule-to-
Rule Hypothesis)
• Lambda notation provides a way to extend FOPC to

this end
• But coming up with rule2rule mappings is hard

• Idioms, metaphors perplex the process

6.863J/9.611J Lecture 13 Sp03

PPs

• Again extend NP template
(adjectives/modifiers) – insert at end;
equivalent to relative clauses

• Example: book on the table, book which is
on the table
(book :mod (:support on :mod (:loc table))

(of course, table itself would be a recursive,
structured object, not just table)

6.863J/9.611J Lecture 13 Sp03

Primitive determiners

• The red book vs. a red book
• Add :number and definite? components – make it

part of search template
• (book ?definite ?det :number singular :mod

(:color red))
• This will do a search in the db for matching set of

objects that are definite, singular, red
• But where do these terms come from in general???
• What does event structure look like???

