Massachusetts Institute of Technology
6.863J/9.611J, Natural Language Processing, Spring 2003
Department of Electrical Engineering and Computer Science
Department of Brain and Cognitive Sciences
Laboratory 1b: Two-level morphology — Building a System

Handed out: February 12, 2003 Due: February 24, 2003

1 Introduction

For the second part of Lab 1, you will design Kimmo automata and Kimmo lexicons that can carry
out a morphological analysis of a subset of Spanish. The following sections describe the processes
that your machines should be designed to cope with. Your lab report should contain three elements;

e A description of how your system operates. What additional lexical characters have you
introduced (if any)? What do your subset definitions represent? What is the purpose of each
automaton? Briefly, how does each automaton work? If appropriate, mention problems that
arose in the design of your system.

e Pointers to your listings of your .1lex file and your .rul files.

e A pointer to a log record of a recognition run on the file spanish.rec. This file may be found
on the web page link for this laboratory.

Recognizably incomprehensible lab reports will not be graded. If you are a native Spanish speaker,
you may find that your judgements disagree with those included here. The ones included here (real
bugs aside) are to be considered the “gold standard” to use; we understand that dialect variants
may exist. (If you are industrious and clever, you may want to think about how dialectical variation
might be accommodated in a system like this one.)

Important: These labs have been used before and debugged. However, if you find an error in
the laboratory assignment, please let us know so that we may inform the rest of the class.

In the following sections we describe the automata (.rul) and lexicon (.lex) formats, along with
some of the (simple) tools we provide to aid in building the automata and visualizing them. After
this preliminary, we turn to the three Spanish phenomena we want you to handle with your system.

1.1 Kimmo Automata Format

You are to assume that Spanish orthography uses the following characters, some of which we have
introduced to stand for accented characters.

a“"bcCde<fghi{jJklmn "o*xpgqrstu>vwxyzl’

Here, ~ denotes an accented a, (4), < denotes an accented e (é); { an accented i ({); * denotes an
accented o (4); > denotes a u (i) accent; and ~ denotes an n tilde (n). For example, 1"piz stands
for ldpiz. In addition, by convention we use capital letters to denote characters that have a special
meaning. In particular, C stands for a possible ¢ softening, J stands for possible g softening, and
Z stands for possible z insertion. Given this, your automaton (.rul) file should be formatted as
follows. Do note, however, that section 1.1.1 on page 4 discusses an alternative method of writing
the automata down that most people have found preferable.

1. The very first line of the .rul file should declare your ALPHABET characters, the individual
tokens that you will use.

ALPHABET
a"bcCde<fghi{jJklmn “"o*xpgqrstu>vwxyzZH+

Note that the affix marker ‘+’ is required as part of the alphabet. If you later decide you
need additional characters for handling Spanish phenomena, you must modify this alphabet.

2. In the next three lines, declare your NULL (empty, zero), ANY (automata relative wildcard),
and BOUNDARY (end of word) characters:

NULL O
ANY @
BOUNDARY #

3. Next declare the SUBSETS of characters you want to refer to — groups of characters that will
be referred to in the automata rules. A SUBSET, then, is an abbreviatory device so that you
don’t have to keep mentioning each individual character by name, when it is really a GROUP
of characters that you mean. For example, in English, the characters s, x, z are often called
Sibilants because the Sibilants behave alike in many rules, like the one that inserts an e in
fox+s to yield foxes. You should use only the subsets that are necessary for handling the
phenomena described in this lab.

SUBSETS are denoted by capital letters. For example, in this lab you will require (say) the
subset V to stand for the class of vowels (V):

SUBSET v aeiou”~<{x*x>

You may also find it useful to group vowels according to the following subsets: Back (B),
Front, Low, and High (For our purposes, these refer to the way in which the vowel sound
is made — e.g., a Front vowel is articulated at the front of the mouth. Try it yourself —
that is the great thing about language, you can try all these experiments on yourself, without
clearing human subject protocols.)

SUBSET BACK u o a > x ~
SUBSET FRONT e i < {
SUBSET LOW e o a < * ~
SUBSET HIGH i u { >

Finally, you may need to declare a subset for consonants:

SUBSET CONSONANTS bcdf gh jklmn " pgqrstvwzxyz

Summarizing so far then, the first lines of your .rul file should look like this:

; semi-colon is a comment, like Lisp - put them anywhere
; This is the format for the .rul file for Spanish. Note that blank lines are ignored

; + = morpheme break
ALPHABET

a"bcCde<fghi{jJklmn o*xpgrstu>vwxyzlH+
NULL O

ANY @
BOUNDARY #
SUBSET V ou "~ < { x>

a
SUBSET BACK u o
SUBSET FRONT e i
SUBSET LOW e o
SUBSET HIGH i u
SUBSET CONSONANTS bc df gh jk1lmn "pgrstvwxyz

. At this point, you skip one blank line and then are ready to specify the rule transducers them-
selves. Your very first automaton must define the default surface character correspondence
(that is, the surface characters paired with themselves). It is a “dummy” automaton that has
just 1 state, and one transition for each surface character, to itself.

Thus, if there are 33 characters that can be written “on the surface,” the resulting fsa table
will have 33 columns. (Note that purely underlying characters like C and Z are not included.)
This is required as a mechanical device by the Kimmo system. The dummy automaton should
include the ANY character, @, (but not the affix boundary marker +. This is because @ is a
possible surface match, but + can only be an underlying, lexical character). This automaton
should thus be defined as follows:

RULE "Surface Characters" 1 33

a"bcde<fghi{jklmn 0o*xpgqrstu>vwxyz
a"bcde<fghi{jklmn " o*pgqrstu>vwxyzae
1:111111111111111111111111111111111

Again, if you later decide you need additional characters for handling Spanish phenomena,
you must modify this automaton.

5. Important: if you decide to use the fst program to more easily write individual automaton
rules, then you can skip some of the dirty work in steps 1-4 above. See below, the next section
for a description of fst. We do urge you to try fst rather than typing in the ugly automata
by hand.

)

6. You follow this “dummy” automaton with a blank like and then the set of automata that
you write for Spanish. This is the beginning of the actual work you will do for the
laboratory — your contribution to the .rul file. (The names below are just made up
of course — the names and the number of automata is up to you.)

RULE "pluralize"

(automaton table)

RULE "ctoz"

(automaton table)

7. The very last line in your rule file should be:

END

Once again, note that if you use the program fst you NEED NOT construct these tables as given
above. You will have to describe the rules to £st in a form as described below.

If you desire more insight into what a .rul file should look like, please examine the file for english,
english.rul in the course locker in the pckimmo-o0ld subdirectory.

1.1.1 Building automata using fst

As the PC-KIMMO manual notes, writing out the automata by hand is something only computers,
not humans, should do. “Compiling” a set rules written in so-called “re-write rule” format, e.g., “i
goes to e except after ¢” into correct automata is In general tricky to work out, because of general
and more specific applications of rules. (Also as mentioned in class, the soon-to-be extinct Xerox
Corporation implemented a two-level compiler called twolc that could do this, and licensed their
system for (a lot?) of money. In fact, as far as I understand it, they “patented” the trie-based
idea for compressing dictionary storage which has then found its way into all the spelling/language
handhelds that you see — e.g., Franklin dictionaries, etc. So, you see, this knowledge you are
acquiring is very practical indeed!) If you want to know more about the challenging of writing a
real rule compiler that “intersects” the individual automata into one, you can read the notes I will
post on this subject, which have additional pointers to the literature.

To make the process of writing the rule automata easier, we have supplied a very simple rule “re-
write engine”, called fst, that takes over some of the drudgery of writing the finite-state automata
tables. The program takes as input rules that are more in a minimal transition table format, and
then and outputs the full finite-state tables necessary for PC-KIMMO to run as well as the required
preamble before the automata. NOTE: this program is far from perfect, and sometimes requires
some ‘post-editing’ of the tables to ensure that they work correctly. So, look over the output of
this program. You have been warned! Still, in the past, people have had good success using fst.
Whatever you decide to do, remember that in the end you are to turn in the resulting automata
rules themselves in the (the .rul file), though it is helpful to supply the fst input as explanation.

The fst program resides (surprise!) under the fst directory in the directory pckimmo-old. A
simple help file can be found in that directory as fst.help; this is also linked on the course web
site. The program takes two arguments: an input file that you write, your-rules.fst and writes
as output the PC-Kimmo .rul file. To use this program then, you can cd to the fst directory and
then type (for example):

athenal, fst -o <your dir path>/turkish.rul <your dir path>/turkish.fst

Here is an example of what an fst file looks like:

subset vowel a e

machine "ken"
state foo
vowel:vowel bar
b:b foo

c:c foo

d:d foo

others reject

rejecting state bar
b:e foo

b:b reject

others foo

This machine implements the well-known grammar rule, “b after a vowel turns to e.” It contains
two states (called foo and bar), the first is the starting state. If it sees a vowel paired with another
vowel, it goes to state bar where, if it sees a b, it must be paired with an e. The state table generated
is smaller, but harder to edit (note how the rejecting state is automatically accommodated):

ALPHABET a e b c d
NULL O

ANY @

BOUNDARY #

SUBSET vowel a e

RULE "Bogus rule for KIMMO brain lossage" 1 6
aebcdo@

aebcda@

1: 111111

RULE "ken" 2 6
vowel b cdb @
vowel b c d e @

1: 211100
2. 101111
END

Things to note: fst creates the alphabet for you, and makes assumptions about the null, any,
and boundary characters. To get letters into the alphabet that you never otherwise use, put them
in a bogus subset. Note that it creates for you the “bogus rule” so that KIMMO knows that x can
always pair with x.

There is an IMPORTANT known bug with fst: self-referential rules cause (not unexpectedly)
infinite looping! (They are also wrong to write in the first place, however.)

Having discussed the automata format, we next turn to the Lexicon — the specification of the fsa
that describes the Lexical (root and ending) tree.

1.2 Kimmo Lexicon Format

The word tree finite state automaton is written in what the system calls a .1lex file. PC-KIMMO
has a slightly baroque way of specifying the fsa “word tree”. It uses two separate sections in the
.lex file to describe (1) the fsa state names and then (2) the transition arcs between these fsa
states. The state names are given first, in a section called Alternations, while the transition arcs
are given in the second section, called Lexicons. If you find this a bit confusing, it is most helpful
to take a look at the file english.lex in the pckimmo-old directory.

Your final system will have at least a main lexicon file, which may include sub-lexicons for nouns,
verbs, etc. that contain the actual lexical entries for their respective roots. (In fact, you actually
do not need sublexicons for this particular laboratory, but you can use them to divide up nouns
and verbs for clarity.)

1.2.1 Kimmo Lexicon file

All alternation classes should be listed at the very top of the .lex file. What the Alternation
section specifies is a list of all the state names in the word tree finite-state automaton. The very
first alternation thus specifies the “root” of the lexicon tree, so it always starts out the same, as
shown just below.

The format of an alternation class has three parts, all written on one line separated by spaces:

1. The keyword ALTERNATION
2. The name of the Alternation class (i.e., a state in the word tree finite-state automaton).

3. One or more state names. The intended meaning of this is that given an Alternation class,
an fsa state, one can make a transition from the state label one the left to any of the state
names listed on the right. However, the Alternation classes do not specify all the possible
state transitions, nor do they provide any of the actual transition “arcs” that carry the fsa
from one state to another. The remaining possible transitions as well as the actual transition
labels are listed in the Lexicon section that follows the Alternations.

ALTERNATION Begin <your list of state names here, e.g., Singular Plural...>

At least one of your states should make a transition to a special End state, as follows:

ALTERNATION Foo End

To give a more concrete example, remember that the Alternation classes are simply specifying (part
of) the fsa tree transitions. For example, here’s the Begin alternation from the english.lex file:

ALTERNATION Begin N_ROOT ADJ_PREFIX V_PREFIX

This simply says that the word search will commence by first moving to the Lexicon (state) named
N_ROOQT, (i.e., Noun roots). If we assume a serial, depth-first search, then further states after this
one will be explored, with the system finally returning to state named ADJ_PREFIX (Adjective
prefixes), and then, finally, Verb Prefixes.

Additional alternations should of course appear between the Begin and End alternations. After
terminating the Alternation class specification with End, you skip one or more blank lines, and
then go on to list the possible transitions between states. Each of the transitions emanating from
a single state is labeled in the file as a LEXICON.

Here’s how you specify LEXICONS in PC-KIMMO.

e First, you write the keyword LEXICON, followed by the name of the Lexicon (that is, a state
name, as given in the ALTERNATION section on either the left- or right-hand sides).

e You then specify “arcs” that exit from this fsa state — the transition mapping from this state
to any next states, one per line.

e Each transition takes the form of a triple: (1) the transition symbol, a string of (underlying)
characters; (2) the name of a possible state (note: not usually the state the machine is
moving to, as you'd expect); and (3) finally, any string of symbols you want printed out as a
transition is made between states. This can be any string you want, but is usually something
informative, and is printed out to the external world. (I know — that makes it sound like a
transducer, but this is just for printing purposes.)

Note that since the Lexicon refers only to underlying (or lexical) forms, not surface characters.
Recall also that this fsa never has to worry about spelling changes — that normalization is
taken care of by the spelling change finite state transducers in the .rul file.

The only tricky part of the arc triple description is in the second item — the state name you provide
in the second column of a Lexicon arc description. There are two possibilities for this state name,
depending upon the Lexicon state name itself: it is either the name of an Alternation class or
it is not. If it is an Alternation class name, then the possible next states are specified by the
right-hand side of the Alternation description, as we have seen in our Begin example above. In
this case then, the Lexicon name and the second column of the arc specifications should match.
However, this need not be always so. One can also specify a different next state than one given by
the Alternation class descriptions by providing a single state name as the second column of the
arc description.

An example will clarify. Here’s an example of the case where the Lexicon name refers to an
Alternation class, for English Genitives (the possessive marker ’s at the end of words like guy’s).

ALTERNATION Begin N_ROOT ADJ_PREFIX V_PREFIX
AL%ERNATION Genitive End

END

LékiCON GENITIVE

+’s Genitive "+GEN"
0 Genitive "

Since the Genitive Alternation already specifies a next state of End (i.e., we must be at the end
of a word), we need not specify any other next states, unless our design demands it. So, in the
Lexicon specification, you can see that we just list Genitive in the second column of the transition
specifications, and let the Alternations tell us what the next state should be (END). In this case,
there are two character sequences that admit transitions from the Genitive state, +’s and 0, The
third column says what the fsa outputs as these transitions are made: if the machine successfully
pairs an underlying +’s with some surface sequence, then it outputs GEN (i.e., the word is indeed
Genitive). If it pairs a 0, then it outputs nothing (this is an “otherwise” condition if all else fails).

If the Lexicon is not an Alternation class, then by definition it must appear only on the right-hand
side of the Alternation class descriptions, and so does not have any next states defined for it there.
So, you must provide these in the second column of the arc descriptions. Here’s an example drawn
from the English lexicon file, where we have the state name ADJ_PREFIX on the right-hand side of
the BEGIN Alternation and never on the left-hand side — so we must specify the next states for
ADJ_PREFIX in theLexicon description itself. These are transitions meant to handle the prefixes of
adjectives (of course!) such as unhappy.

ALTERNATION Begin N_ROOT ADJ_PREFIX V_PREFIX
END
LEXICON ADJ_PREFIX

un+ Adj_Prefixi "NEG1"
0 Adj_Prefix2 "

In this description we see that there are two arcs that exit from the state ADJ_PREFIX. The first
has the label un+. So, if this sequence of characters is successfully paired up with some surface
form, then the word tree fsa can make a transition to the next state Adj_Prefix1 (this is indeed
the name of an Alternation class, if you look at the english.lex file). At the same time, the

system outputs the symbols NEG1, i.e., recording the fact that “un” in front of an adjective means
“NEGative of”, as in unhappy. The second arc says that a zero (or null) symbol can carry the
word tree fsa to the state Adj_Prefix2, outputting nothing.

Finally (whew!) the LEXICON section must always have two special-purpose “cleanup” transition
descriptions, one that gives special treatment to the very beginning of words, kicking off their
analysis, and one to take care of the very end of words, delimited by the hash mark #. (So it’s a
tiny lie that the Alternation classes provide all the state names, but you already knew that one
has to fib a bit to explain things generally.)

First, there’s an INITIAL LEXICON that always looks like this, and so should be at the very start
of your Lexicon list, after the ALTERNATIONS:

LEXICON INITIAL
0 Begin " [u

You should now be able to figure this out: it says that the word fsa really kicks off in a special
initial state, and then, on processing a null symbol, goes to the state Begin, and outputs a left
square bracket [.

Similarly, there is a special cleanup Lexicon for the end of a word:

LEXICON End
O # "]n

which takes PC-KIMMO to its real end-of-word state denoted by a hash mark, and then spits out

a closing right bracket.

This last line is always followed by a blank line and then an END keyword on a separate line, and
— you are done!

Putting this all together, your .lex file should look like this:

ALTERNATION Begin
(your alternations here)
ALTERNATION Foo End

LEXICON INITIAL
0 Begin " [u

(your other Lexicons here)

10

LEXICON End
O # n]u

END

Now we turn to the actual Spanish phenomena for which you are to build your rules and lexicon.

1.3 Morphological Phenomena in Spanish

In this lab there are three basic Spanish word formation phenomena that we want you to handle,
described below. You should demonstrate the operation of your system on all of the Spanish forms
that are listed as examples in the following sections. There is a complete list of all the words your
final system should correctly analyze (dubbed “good examples”) and also reject as ill-formed (“bad
examples”) in the file spanish.rec in the course locker. There are 47 “good” forms to handle and
13 “bad” forms in this file.

It is suggested that you debug your automata (.rul file) before trying to create a dictionary (.lex file).
This is because you can debug the rules without a lexicon via the process of trying to generate
surface forms, while recognition requires both rules and a working lexicon. In addition, it may
be useful to construct your automata by a process of successive approximation, bringing in new
phenomena after you can handle old ones. It is especially important to realize that the automata
act mainly as filters, ruling out impossible surface/lexical possibilities.

Hint 1: Certain of the solutions (e.g., adding inflections to root forms) will involve programming
the automata in a way that appropriately handles the phenomena. Other cases (e.g., internal root
changes) will involve judicious choices of underlying forms in the lexicon.

Note 1: It is important that your final system neither under-generate nor over-generate. That
is, it should not accept invalid Spanish word forms (over-generation), nor fail to parse valid ones
(of those that we provide). Your finished product must be able to recognize and generate all and
only the forms in the file spanish.rec, which is in the course locker.

Further, your finished system should generate exactly one output form when recognizing a word,
except in the case of true ambiguities (as with flies in English, which is both a Noun and a Verb).
Finally, it is a bad sign if your system generates multiple copies of the same form This is not only
an indication of something amiss in the design, but it is a computational burden: a system that
generates 5 copies of “pagamos” , say, would be hard to reckon with in a post-Kimmo processing
phase.

Note 2: We do understand that some of you might not be native speakers of this very beautiful

language. Since some of this laboratory involves conjugating Spanish verbs, for reference we provide
a link to a Spanish verb conjugator (in case you want to know how decir comes out, for example:

11

http://www.verba.org/

On the other hand, as we mentioned at the outset, if you are a native Spanish speaker, you might
have dialect variations that don’t agree with what we state here — that’s OK, but you should take
what is written here as the standard. (How does one pronounce the name of the city “Barcelona”
for example? See below.)

Turning now to some substance, here are the three phenomena we’d like you to handle: (1) g-j-
mutation; (2) z-c-mutation; and (3) plural formation. We describe these next in turn.

1.3.1 g-j mutation

The first phenomenon that your machine should handle is known as g-j mutation. The canonical
example for this phenomenon is the verb coger (catch, seize, grab), where the consonant g becomes
j before back vowels, but g otherwise:

coger (infinitive)

cojo (pres indic 1p sg)
coges (pres indic 2p sg)
coge (pres indic 3p sg)
cogemos (pres indic 1p pl)
cogen (pres indic 3p pl)
coja (pres subj 3p 1p sg)

There are other verbs, however, that are not subject to this rule:

llegar (arrive)
llego

llegan

pagar (pay)
pago

pagan

You are to accept all of the verbs above, but not the ill-formed words:

llejo
lleja
cogo
coga

12

Hint 2: You could use the lexical character J to solve this. (But there are other solutions that do
not require a J.) You may also want to define special characters like J and Z for the o—ue vowel
changes that occur, but you should talk to me first about this, since real Spanish vowel changes
depend on stress in a complicated way that we do not describe here.

This issue of irregular verbs (decir, cocer) in Spanish and how to deal with them in the Lexicon
component versus in the Rules component is an issue with real bearing on the study of the human
language faculty. As you know, irregular verbs in English “spring-sprung, sing-sung, dig-dug”
could be handled in the Lexicon on a case-by-case basis (in fact, this sort of ad-hoc solution has
recently been proposed by S. Pinker in his next-to-latest bestselling airport novel). Of course, a
more insightful generalization might note that nasals followed by coronal stops are hard for humans
to articulate, like “digd,” and that there is a systematic change from i—u that occurs for these
forms. Thus, whether irregular past tense verbs are hard-coded in the lexicon or produced in a
generative component is an issue of serious debate in the cognitive sciences these days, and as
people who actually deal with the implementations of these issues, you may have more to say
one day about design, complexity, and redundancy than some of these armchair “the-brain is-a-
computer” polemicists. (I can refer interested parties to some interesting work on the acquisition
of irregular verbs.)

1.3.2 z-c mutation

For your next Spanish effect to model, note that the consonant z becomes ¢ before front vowels,
but z otherwise. The verb cruzar (cross) is a canonical example of the application of this rule:

cruzar (infinitive)

cruzo (pres indic 1p sg)
cruzas (pres indic 2p sg)
cruza (pres indic 3p sg)
cruzamos (pres indic 1p pl)
cruzan (pres indic 3p pl)
cruce (pres subj 3p 1p sg)

If adding an ‘s’ causes a front vowel (e.g., ‘€’) to surface (see the next subsection) the rule is still
applicable. The canonical example of this is the noun [* piz (pencil):

1"piz (pencil)
1"pices (pencil, plural)

You are to accept all of the words above, but not:

13

cruco
cruca
crucan
cruze
1 pizes

Note 3: I remind you that what we do in 6.863 and in the enterprise of NLP generally is deal
with tezt/spelling/orthography, and not pronunciation. Thus, some of you have asked whether the
z-->c mutation occurs for all words (as opposed to lexically, as in the o-->ue dipthongization),
and how it is pronounced. In fact, in Castillian Spanish, both ‘z’ and ‘c’ are pronounced as th
(as visitors to Gaudi’s Barthelona may know) (although with a voicing contrast, as distinguished
by distinct phonemes as in English the vs. they). We abstract away from such variation, since
Spanish is uniformly written with ‘z’ and ‘c’ in these cases, and since no morphological analysis
is plausibly carried out with the precision of the International Phonetic Alphabet — there is no
reason to change all words with silent p, like psycholinguistics, into a more “true” form. In short,
assume for this lab that the z-->c rule occurs uniformly (before back vowels) for everything a text
analysis will ever see.

Pluralization

Adding ‘s’ to a Spanish noun that ends in a consonant induces a surface ‘e’ to appear. Consider
the noun ciudad (city):

ciudad
ciudades

Note that this rule may interact with other rules, e.g., the z-c-mutation rule above. This is most
apparent for a noun like [" piz (pencil):

1°piz (pencil)
1"pices (pencil, plural)

Nouns ending in a vowel are not subject to this rule:

bota
botas

You are to accept all of the words above, but reject as ill-formed:

14

ciudads
1"pizs
1"pics
botaes

1.4 The Lexicon (Dictionary)

This section describes the suffixes that you should list in your lexicon (dictionary), combining with
either nouns or verbs.

A morphological analyzer is intended to be the “front end” for a parsing system, and therefore your
dictionary should be designed so that your system recovers syntactic features that would be useful
in parsing. For example, the result of recognizing the Spanish verb venzo should include a feature
indicating that it is a verb with the features first person (1p), singular (sg) and present indicative
(pres indic).

In an actual system for understanding Spanish, dictionary entries would also include semantic
features of some kind, and as a standin for semantic information, you may wish to include the
English translation of a word as a kind of pseudofeature. For example, the result of recognizing
venzo might also include the ‘gloss’ (conquer, defeat). It may seem that you are being asked to
handle a large number of suffixes in this section, but once you have set up the basic structure of
your dictionary—in what sublexicon do noun endings go, and so forth—it is much easier to add a
new suffix than to design a new automaton. Remember too, that a fullscale morphological analyzer
would need a full set of tenses and endings, but you will only consider the present tense (indicative
and subjunctive) and infinitival forms. You need not consider other tenses, moods, or aspects.

We will consider only three items here that you must deal with: (1) Noun endings; (2) Verb endings;
and (3) some additional, miscellaneous examples (additional verbs).

1.4.1 Noun Endings

The only noun ending you will need is the plural suffix +s.

1.4.2 Verb Endings

In general, a verb consists of a verb stem (stored in your main lexicon, spanish.lex) and tense
endings. The simplest “tense marker” is the infinitive marker, which may be of three types: +ar,
+er, +ir. The present tense indicative for each of these three verb types is specified as follows:

15

Present Indicative
Person | +ar verbs | +er verbs | +ir verbs
1p, sg +o +o +o0
2p, sg +as +es +es
3p, sg +a +e +e
1p, pl +amos +emos +imos
3p, pl +an +en +en

The present tense subjunctive for each of these three verb types is specified as follows:

Present Subjunctive
Person | +ar verbs | +er verbs | +ir verbs
1p, sg +e +a +a
2p, sg +es +as +as
3p, sg +e +a +a
1p, pl +emos +amos +amos
3p, pl +en +an +an

For every verb listed previously, and for the verbs listed in the next section, we want your system to
be able to parse the proper conjugation, yielding the root form plus the right ending. For example,
cojas has an underlying root form of and must be parsed as coja+as (catch, 2p, sg). (Note how
one a gets erased.)

1.4.3 Examples

Here are a few more examples of subjunctive verb forms (not previously listed) that your system
should handle., where handle means “correctly parse and return the proper gloss for”. You may
note that they are verbs, so should follow the conjugation tables given above.

Remember, you can grab the complete list from the website under the “resources” section, as
spanish.rec.

cojas (v (catch seize grab) pres subj 2p sg)
cojamos (v (catch seize grab) pres subj 1p pl)
cojan (v (catch seize grab) pres subj 3p pl)
conozcas (v (know) pres subj 2p sg)

conozcamos (v (know) pres subj 1p pl)

conozcan (v (know) pres subj 3p pl)

parezcas (v (seem) pres subj 2p sg)

parezcamos (v (seem) pres subj 1p pl)
parezcan (v (seem) pres subj 3p pl)

16

venzas (v (conquer defeat) pres subj 2p sg)
venzamos (v (conquer defeat) pres subj 1p pl)
venzan (v (conquer defeat) pres subj 3p pl)
cuezas (v (cook bake) pres subj 2p sg)

cuezamos (v (cook bake) pres subj 1p pl)

cuezan (v (cook bake) pres subj 3p pl)

ejerzas (v (exercise practice) pres subj 2p sg)
ejerzamos (v (exercise practice) pres subj 1p pl)
ejerzan (v (exercise practice) pres subj 3p pl)
cruces (v (cross) pres subj 2p sg)

crucemos (v (cross) pres subj 1p pl)

crucen (v (cross) pres subj 3p pl)

(This is the conclusion of the laboratory.)

17

