
The 6.863 Earley Parser

1 Introduction

The 6.863 Earley parser will work with any well­defined context­free grammar, including recursive
ones and those containing empty categories. It can use either no lookahead or a one word
lookahead, i.e. k = 0 or k = 1. A feature system has been overlaid on the parser, allowing
powerful grammars to be created more easily than with a simple CFG. Although this feature
system does not by any means implement any reasonable variation of the GPSG theory, it will
be referred to as GPSG for historical reasons.

In addition to the parser, the Earley system has Lisp facilities for creating and editing CFG and
GPSG grammars, dictionaries, and sentence sets.

2 Loading the System

All of the parser and utility code is Common Lisp, and were all Common Lisps equal, the
parser would be machine independent. The files are set to load into the package USER The file
earley.lisp contains all the necessary code.

3 A Quick Overview

The Earley system stores various types of rule sets, such as CFG grammars, GPSG grammars, or
sentence sets. These can be edited and used as input for the parser. The parser requires special
grammar tables as input, which are compiled from featureless context­free grammars (GPSGs
are automatically translated into featureless CFGs).

To look at the rule sets stored, evaluate (list­all). This prints out the name, type, and number
of rules in each rule set. There are 6 different types of rule sets: CFG, GPSG, CFG­TABLE,
GPSG­TABLE, SENTENCES, and DICTIONARY. The ­TABLE types are used as input for
the parser. They can not be edited, but all other types of rule sets can.

3.1 Parsing Sentences

Before we can parse a sentence we need to supply grammar information. The parser requires
a DICTIONARY and either a CFG­TABLE or a GPSG­TABLE before it can parse. Parsing
is handled through the p function. Let’s say we have the CFG­TABLE CT stored, and also the
dictionary DICT. We can parse the sentence “John saw Mary” by evaluating

> (p ’(JOHN SAW MARY) :grammar ’CT :dictionary ’DICT)

1

which will return a list of valid tree structures. The grammar and dictionary variables are
sticky, so now that we’ve specified the grammar to use, to parse “John walked into the tree”
only requires

> (p ’(JOHN WALKED INTO THE TREE))

Parses are returned as lists of possible tree structures, where each tree structure has the form
(Category SubTree1 SubTree2 . . .). Thus for the above example we might get back the parse list

((ROOT (S (NP (N JOHN))

(VP (VP (V WALKED))

(PP (P INTO) (NP (D THE) (NP (N TREE))))))))

The full form of the p function is

(p sentence &key (template ’*) grammar dictionary (use­lookahead t)
print­states file sentence­set)

where sentence can either be a list or a string; :template specifies which parses are to be ac­
cepted; :grammar and :dictionary specify the grammar and dictionary to use; :use­lookahead
specifies whether or not to use lookahead if it is available; :print­states specifies whether or
not to print out all the Earley states at the end of the parse; :file, if given, is the name of a
file to send all output to; and :sentence­set specifies a set of sentences to parse. After a parse
has been completed the function retrieve­parses with the format

(retrieve­parses &optional (template ’*))

can be used to retrieve the results again. More parsing functions, including ones to parse sets of
sentences at one time, are given in the function listing later.

3.2 Editing Rule Sets

If there is a rule set SD, a DICTIONARY, it can be listed by evaluating (list­rules ’SD). This
will print out all of the rules (dictionary entries) in the set. A template may be specified, so all
verbs in SD could be listed with (list­rules ’SD ’(* V)). Likewise, all rules with verb phrases
as heads in the CFG GRAMMAR1 could be listed with (list­rules ’GRAMMAR1 ’(VP **)).

List­rules does more than just print out rules: it also sets up rule sets for quick editing. Let’s
say we evaluated (list­rules ’SD ’(* A)) to list out all the adjectives in the dictionary SD.
Perhaps the result was

2

> (list­rules ’SD ’(* A))
1. HARD A
2. QUICK A
3. RED A
4. SLIMY A
5. SLOW A

We can now use the three functions ADD, DEL, and RPL to edit the dictionary SD. To delete “hard”
and “slimy” we evaluate (del 1 4). Now, we decide to add “lazy” in their place, so we do (add
’(LAZY A)), and finally we decide to replace “quick” with “fast” and “slow” with an adverb,
“slowly” ­ (rpl 2 ’(FAST A) 5 ’(SLOWLY ADV)). These three functions work on the last rule
set listed with list­rules. Thus they permit quick and easy editing of grammars, dictionaries,
and test sentences.

3.3 Creating and Removing Rule Sets

To simply remove or add a rule set, we can use the functions (remove­rule­set name) and
(add­rule­set name type). Then rules can be added or removed from them either by using
the previously mentioned editing functions, or through

(add­rule name­of­rule­set rule)
;; (add­rule ’GRAMMAR1 ’(S ==> NP AUXP VP))

(del­rule name­of­rule­set rule)

(add­rule­list name­of­rule­set rule­list)
;; (add­rule­list ’DICT ’((THE D) (AND CONJ)))

(del­rule­list name­of­rule­set rule­list)

These will not help us generate the tables the parsers need for running, but only base rule
sets. Specialized functions are provided to compile rule sets into ­TABLEs. Translating a CFG
GRAMMAR1 to a CFG­TABLE CT usable by the parser takes one step, which requires specifying
the root node of the CFG and also whether k = 0 or k = 1. The lookahead table takes little time
to compute, so presumably k will be 1. The translation function is create­cfg­table, which
takes the form

(create­cfg­table table­name cfg­name root k)

or in our case, with root ROOT

(create­cfg­table ’CT ’GRAMMAR1 ’ROOT 1)

The corresponding function for GPSG grammars is create­gpsg­table, which takes the same
arguments.

3

3.4 Templates

There are two places templates are used, in retrieving parses and in listing rule sets. They
merely provide a filtering system to either limit the types of parse tree structures accepted or
limit the types of rules to be printed. Look back to the respective sections for more background
information.

Templates follow four basic rules

1. A symbol matches itself or any list with that symbol as it’s first element, or car.

2. A list matches another list if each element matches, or if each element before a double
asterisk in the template list matches the other list.

3. An asterisk * matches any symbol or list.

4. A double asterisk ** matches any symbol or list unless it appears in a list, in which case
it matches any ending to that list.

thus the template NP matches NP and (NP (N JOHN)), the template (* V) matches (JUMP V),
and the template (* ==> NP **) matches any list with ==> as it’s second element and NP as
it’s third element. For instance, if we had just parsed a sentence which 26 different structures,
we might want to examine only those with an adjunct prepositional phrase attached to the verb
phrase after the object.

> (retrieve­parses ’(ROOT (S NP (VP * PP **) **)))

3.5 Loading and Saving Rule Sets

Some rule sets can be saved in text files designed to be read back with the standard Lisp load
function. Unfortunately, because Lisp has problems reading arrays, rule sets of type CFG­
TABLE and GPSG­TABLE can not be saved. So even if a text file is used to store a base
grammar, the parser tables must be recompiled before use.

To save rule sets to a readable text file, use the function save­rules supplying as arguments
the name of the file and the names of all the rule sets we wish to save. If only the file name
is supplied, all rule sets possible to save are saved. Below two rule sets are saved, deleted, and
reloaded. given below.

> (save­rules "~/rules.lisp" ’RULE­SET­1 ’RULE­SET­2)
> (remove­rule­set ’RULE­SET­1)
> (remove­rule­set ’RULE­SET­2)
> (load "~/rules.lisp")

4

3.6 Incidental Warnings

Many functions will return incedental messages as they run. These less important messages
can be toggled by evaluating (verbose), or can be specified with (verbose :set nil) and
(verbose :set t). Detailed information on GPSG parsing is printed when verbose is turned
on.

4 Rule Formats

Dictionary entries and CFG or GPSG rules have certain required formats. A DICTIONARY
entry must by a list with the first element the symbol for the word, and all other elements either
symbols or lists representing the categories the word can take. Thus sample entries are (WALK N
(V Action + Tense INF)) and (I (PRO Pers 1st)). A dictionary without features will work
with a GPSG set of rules, but each word will be featureless. Likewise, features will be ignored
when using a GPSG dictionary with a CFG. If a word is entered multiple times (each time with
one or more definitions), the union of the sets of definitions will be used.

CFG rules take the format (HEAD ==> T1 T2 ... Tn) where n can even be zero, representing
an empty category. Each element in the list must be a symbol and the second element must be
==>. A GPSG rule has GPSG categories substituted for symbols. A GPSG category is either
a symbol (like a CFG category) or a list with the category type as it’s first element. After the
first element come pairs of items, the first being a feature name and the second being a value,
either a symbol or a category. Features to be matched for unification can be specified with a
value starting with “?”. Some valid CFG and GPSG rules are

;; CFG

(NP ==> D N)

(S ==> NP VP)

(NP ==>) ;; empty category

;; GPSG

((NP PL +) ==> (D) (N PL +))

((S FIN ?val) ==> (NP WH ­) (AUX FIN ?val) (VP FIN ?val))

The parser does not parse GPSGs directly, but instead parses a featureless set of rules and then
adds features and performs unification later. This means that parsing may go very quickly for
GPSGs, but parse retrieval may take longer.

Sentence sets treat sentences as rules, and each sentence can either be a string or a list of words
(symbols). The sentences can be parsed as a group, making multiple tests a bit easier.

5

5 Debugging Parses

The parsing function p will print out the states generated by the Earley parser while it runs if
the :print­states t argument is given. But this often doesn’t provide enough information for
debugging GPSG parses. After a parse has been completed the function states can be used to
get more detailed information about what occurred.

(states start end &key matching print­parses print­rules)

states takes two arguments which specify the start point and end point of states to be printed.
In other words, it only prints information about completed states that build phrases between the
starting and ending points. If :print­rules is specified to be true, then along with each state
a corresponding GPSG rule is printed. If :print­parses is true, then all of the phrases that
were created are printed for each state. The :matching argument is a filter to apply to these
phrases. Each of the states is printed with an asterisk preceding it if no phrases were produced
during the GPSG unification process.

states prints an asterisk in front of a state if that state failed to produce any phrases during
the GPSG feature­passing portion of a GPSG parse. Unfortunately states can not provide any
information on why a rule might have failed. Using the :print­parses option lets you see the
phrases that result from successfull rule applications, but not failed ones. This information is
available during the parse by parsing with verbose on.

> (verbose :set t)

T

> (p ’(who saw mary))

Done CFG Parse.

Rule Failure: (S) ==> (S FIN +)

Sub Trees: (S FIN ­)

Done Parse Retrieval

While this provides the information we need, in a large parse it can be difficult to sift through
the entire printout to find the desired failure points.

6 GPSG Rules and Feature Passing

GPSG rules are preprocessed before parsing. Their features are stripped to created a featureless
CFG that is used by the parser in the first stage of parsing. Parse trees that are recovered by
the initial parse are augmented with features in a second pass that utilizes the original featured
rules.

Features are used to refine rules without multiplying out the number of categories. If a rule has
in its right hand side a category with a certain feature specification, then whatever subphrase
matches that category must have the same feature specification. This can be used to ensure,

6

for instance, that a rule matches only plural NPs and not just NPs in general without having
to create a seperate category for plural NPs. Feature values can be passed upwards, so that a
phrase inherits feature values from its daughters.

With the feature system it is possible to create ridiculously baroque devices. As much care as
possible should be taken to avoid unchecked feature generation; unfortunately the simplicity of
the context­free­grammar formalism sometimes necessitates this.

In a GPSG rule, each category can either be a simple category symbol or a list of a category
symbol and feature­value pairs. A feature­value pair is a combination of a symbol that names
a feature and a value for that feature. Possible GPSG categories are NP, (NP), (NP PLURAL
+), etc. In these categories the symbol plural and is a feature name and + is a feature value.
Features found in the left hand side of a GPSG rule are given to the phrase produced by the
rule. Features on the right hand side refine which daughters will match the categories­ daughter
phrases must contain the features specified. So the rule

((NP PLURAL +) ==> (DET SING ­) ADJ (N PLURAL +))

will fire if its first daughter has the value ­ for its SING feature and the third daughter has the
value + for its PLURAL feature. Naturally the categories DET, ADJ and N must also match. Notice
that the rule does not imply that the second daughter can not have features; it does not matter
what extra features the daughters have so long as the specified ones match. The rule will produce
a NP phrase that has the value + for its PLURAL feature, and no other features.

6.1 Feature Matching Semantics

Two values are considered equal for the purposes of matching if they are eq or if one of them is
the car of the other, or if one of them is *, or if they are both lists and each subelement matches.

If a category specification specifies a value for a certain feature and the phrase it is matching
does not contain a value for that feature (or the value is nil), then the specification matches so
long as the feature name does not start with +. So the specification (NP PLURAL ­) will match
(NP) and (NP PLURAL ­), but (NP +PLURAL ­) will only match (NP +PLURAL ­), not (NP).

6.2 Unification

If a specification contains a symbol starting with ? in a feature value slot, then that symbol
will match any value in that slot. Furthermore, if the same symbol is found in another part of
the same or a different specification in the same rule, it must match the same value it matched
before. The symbol can be used in the left hand side of a rule to define a feature value. The rule

((NP CLR ?X) ==> (DET PLURAL ?A) (ADJ COLOR ?X) (N PLURAL ?A))

specifies that the value for PLURAL must be the same in the first and third daughters, and that
the value for the COLOR feature in the second daughter will be given to the resulting phrase in
the CLR feature.

7

If a feature is not present in a daughter phrase, then unification does not take place on its value.
So if the N daughter does not contain a value for the PLURAL feature (or it is nil), then ?A is left
free to vary in the DET phraseq. And if COLOR is not specified for ADJ, then the resulting NP will
have no feature specification for CLR.

7 Function Summary

7.1 Loading and Saving Rule Sets

(save­rules file­name &rest rule­set­names)
Save rule sets to a text file. If rule­set­names is nil, then all possible are saved.

7.2 Manipulating Rule Sets

(list­all)
List all the rule sets names, their types, and how many rules are in them.

(rule­set name &optional type)
Returns the rule set name if it is of type type (always if type) is not given. A rule set is of the form
(name type rule­list) where the rule­list is the list of rules.

(add­rule­set name type)
Create a rule set name of the type type. Marks the new rule set for editing using add, del, and rpl.

(remove­rule­set name)
Remove the rule set name.

(sort­rules name)
Alphabetically sort the rules in the rule set name.

(list­rules name &optional (template ’*))
List all the rules in the rule set name that match the given template.

(add rule1 rule2 ...)
Add rules to the last rule set listed with list­rules or last rule set created.

(del n1 n2 ...)
Remove the numbered rules from the last rule set listed with list­rules or last rule set created.

(rpl n1 rule1 n2 rule2 ...)
Replace the numbered rules with the new ones in the last rule set listed with list­rules or last rule
set created.

(add­rule name rule)
Add rule to the rule set name.

(del­rule name rule)
Remove rule from the rule set name.

8

(add­rule­list name rule­list)
Add the rules in the list rule­list to the rule set name.

(del­rule­list name rule­list)
Remove the rules in the list rule­list from the rule set name.

7.3 Creating Grammar Tables

(create­cfg­table cfg­table­name cfg­name root k)
Create the rule set cfg­table­name by translating the CFG cfg­name into a CFG­TABLE, under the
assumption that root is the root node. If k is 0 no lookahead table is created. If it is 1, one is.

(create­gpsg­table gpsg­table­name gpsg­name root k)
Create the rule set cfg­table­name by translating the GPSG cfg­name into a GPSG­TABLE, under
the assumption that root is the root node. If k is 0 no lookahead table is created. If it is 1, one is. The
root should be a symbol, not a featured category.

7.4 Parsing Sentences

(p sentence &key (template ’*) grammar dictionary (use­lookahead t)
print­states file sentence­set)

See description in text. If a sentence set (a rule set of type SENTENCES) is specified, then what is
returned is a list of elements, the car of which is the sentence and the cdr the list of parses. When
parsing a sentence set, the given sentence is appended onto the sentence set. If a file name is specified,
all output is to that file.

(retrieve­parses &optional (template ’*) &key print­states)
Return the results of the last sentence parse which match the template template. If a GPSG grammar
is being used and print­states is set true, then unification information is printed during retrieval.

(states start end &key matching print­rules print­parses)
Print debugging information on states that completed phrases from start to end.

9

